Message ID | 20240705142008.3965248-1-pan2.li@intel.com |
---|---|
State | New |
Headers | show |
Series | [v2] Vect: Distribute truncation into .SAT_SUB operands | expand |
pan2.li@intel.com writes: > From: Pan Li <pan2.li@intel.com> > > To get better vectorized code of .SAT_SUB, we would like to avoid the > truncated operation for the assignment. For example, as below. > > unsigned int _1; > unsigned int _2; > _9 = (unsigned short int).SAT_SUB (_1, _2); > > If we make sure that the _1 is in the range of unsigned short int. Such > as a def similar to: > > _1 = (unsigned short int)_4; > > Then we can do the distribute the truncation operation to: > > _3 = MIN_EXPR (_2, 65535); > _9 = .SAT_SUB ((unsigned short int)_1, (unsigned short int)_3); Sorry if this has been asked before, but: why not use SAT_TRUNC instead of MIN_EXPR+truncate? Richard > > Let's take RISC-V vector as example to tell the changes. For below > sample code: > > __attribute__((noinline)) > void test (uint16_t *x, unsigned b, unsigned n) > { > unsigned a = 0; > uint16_t *p = x; > > do { > a = *--p; > *p = (uint16_t)(a >= b ? a - b : 0); > } while (--n); > } > > Before this patch: > ... > .L3: > vle16.v v1,0(a3) > vrsub.vx v5,v2,t1 > mv t3,a4 > addw a4,a4,t5 > vrgather.vv v3,v1,v5 > vsetvli zero,zero,e32,m1,ta,ma > vzext.vf2 v1,v3 > vssubu.vx v1,v1,a1 > vsetvli zero,zero,e16,mf2,ta,ma > vncvt.x.x.w v1,v1 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t4 > bgtu t6,a4,.L3 > ... > > After this patch: > test: > ... > .L3: > vle16.v v3,0(a3) > vrsub.vx v5,v2,a6 > mv a7,a4 > addw a4,a4,t3 > vrgather.vv v1,v3,v5 > vssubu.vv v1,v1,v6 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t1 > bgtu t4,a4,.L3 > ... > > The below test suites are passed for this patch: > 1. The rv64gcv fully regression tests. > 2. The rv64gcv build with glibc. > 3. The x86 bootstrap tests. > 4. The x86 fully regression tests. > > gcc/ChangeLog: > > * tree-vect-patterns.cc (vect_recog_sat_sub_pattern_distribute): > Add new func impl to perform the truncation distribution. > (vect_recog_sat_sub_pattern): Perform above optimize before > generate .SAT_SUB call. > > Signed-off-by: Pan Li <pan2.li@intel.com> > --- > gcc/tree-vect-patterns.cc | 75 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 75 insertions(+) > > diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc > index 86e893a1c43..90449bd0ddd 100644 > --- a/gcc/tree-vect-patterns.cc > +++ b/gcc/tree-vect-patterns.cc > @@ -4566,6 +4566,79 @@ vect_recog_sat_add_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > return NULL; > } > > +/* > + * Try to distribute the truncation for .SAT_SUB pattern, mostly occurs in > + * the benchmark zip. Aka: > + * > + * unsigned int _1; > + * unsigned int _2; > + * _9 = (unsigned short int).SAT_SUB (_1, _2); > + * > + * if _1 is known to be in the range of unsigned short int. For example > + * there is a def _1 = (unsigned short int)_4. Then we can distribute the > + * truncation to: > + * > + * _3 = MIN (65535, _2); > + * _9 = .SAT_SUB (_4, (unsigned short int)_3); > + * > + * Then, we can better vectorized code and avoid the unnecessary narrowing > + * stmt during vectorization. > + */ > +static void > +vect_recog_sat_sub_pattern_distribute (vec_info *vinfo, > + stmt_vec_info stmt_vinfo, > + gimple *stmt, tree lhs, tree *ops) > +{ > + tree otype = TREE_TYPE (lhs); > + tree itype = TREE_TYPE (ops[0]); > + unsigned itype_prec = TYPE_PRECISION (itype); > + unsigned otype_prec = TYPE_PRECISION (otype); > + > + if (types_compatible_p (otype, itype) || otype_prec >= itype_prec) > + return; > + > + int_range_max r; > + gimple_ranger granger; > + > + if (granger.range_of_expr (r, ops[0], stmt) && !r.undefined_p ()) > + { > + wide_int bound = r.upper_bound (); > + wide_int otype_max = wi::mask (otype_prec, /* negate */false, itype_prec); > + tree v_otype = get_vectype_for_scalar_type (vinfo, otype); > + tree v_itype = get_vectype_for_scalar_type (vinfo, itype); > + > + if (!wi::leu_p (bound, otype_max) || v_otype == NULL || v_itype == NULL > + || !target_supports_op_p (v_itype, MIN_EXPR, optab_vector)) > + return; > + > + /* 1. Build truncated op_0 */ > + vect_unpromoted_value unprom; > + tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom); > + > + if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec) > + { > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_0_cast = gimple_build_assign (tmp, NOP_EXPR, ops[0]); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_0_cast, v_otype); > + } > + > + ops[0] = tmp; > + > + /* 2. Build MIN_EXPR (op_1, 65536) */ > + tree max = wide_int_to_tree (itype, otype_max); > + tree op_1_in = vect_recog_temp_ssa_var (itype, NULL); > + gimple *op_1_min = gimple_build_assign (op_1_in, MIN_EXPR, ops[1], max); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_min, v_itype); > + > + /* 3. Build truncated op_1 */ > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_1_cast = gimple_build_assign (tmp, NOP_EXPR, op_1_in); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_cast, v_otype); > + > + ops[1] = tmp; > + } > +} > + > /* > * Try to detect saturation sub pattern (SAT_ADD), aka below gimple: > * _7 = _1 >= _2; > @@ -4591,6 +4664,8 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > > if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL)) > { > + vect_recog_sat_sub_pattern_distribute (vinfo, stmt_vinfo, last_stmt, > + lhs, ops); > gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo, > IFN_SAT_SUB, type_out, > lhs, ops[0], ops[1]);
On Fri, Jul 5, 2024 at 4:20 PM <pan2.li@intel.com> wrote: > > From: Pan Li <pan2.li@intel.com> > > To get better vectorized code of .SAT_SUB, we would like to avoid the > truncated operation for the assignment. For example, as below. > > unsigned int _1; > unsigned int _2; > _9 = (unsigned short int).SAT_SUB (_1, _2); > > If we make sure that the _1 is in the range of unsigned short int. Such > as a def similar to: > > _1 = (unsigned short int)_4; > > Then we can do the distribute the truncation operation to: > > _3 = MIN_EXPR (_2, 65535); > _9 = .SAT_SUB ((unsigned short int)_1, (unsigned short int)_3); > > Let's take RISC-V vector as example to tell the changes. For below > sample code: > > __attribute__((noinline)) > void test (uint16_t *x, unsigned b, unsigned n) > { > unsigned a = 0; > uint16_t *p = x; > > do { > a = *--p; > *p = (uint16_t)(a >= b ? a - b : 0); > } while (--n); > } > > Before this patch: > ... > .L3: > vle16.v v1,0(a3) > vrsub.vx v5,v2,t1 > mv t3,a4 > addw a4,a4,t5 > vrgather.vv v3,v1,v5 > vsetvli zero,zero,e32,m1,ta,ma > vzext.vf2 v1,v3 > vssubu.vx v1,v1,a1 > vsetvli zero,zero,e16,mf2,ta,ma > vncvt.x.x.w v1,v1 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t4 > bgtu t6,a4,.L3 > ... > > After this patch: > test: > ... > .L3: > vle16.v v3,0(a3) > vrsub.vx v5,v2,a6 > mv a7,a4 > addw a4,a4,t3 > vrgather.vv v1,v3,v5 > vssubu.vv v1,v1,v6 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t1 > bgtu t4,a4,.L3 > ... > > The below test suites are passed for this patch: > 1. The rv64gcv fully regression tests. > 2. The rv64gcv build with glibc. > 3. The x86 bootstrap tests. > 4. The x86 fully regression tests. > > gcc/ChangeLog: > > * tree-vect-patterns.cc (vect_recog_sat_sub_pattern_distribute): > Add new func impl to perform the truncation distribution. > (vect_recog_sat_sub_pattern): Perform above optimize before > generate .SAT_SUB call. > > Signed-off-by: Pan Li <pan2.li@intel.com> > --- > gcc/tree-vect-patterns.cc | 75 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 75 insertions(+) > > diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc > index 86e893a1c43..90449bd0ddd 100644 > --- a/gcc/tree-vect-patterns.cc > +++ b/gcc/tree-vect-patterns.cc > @@ -4566,6 +4566,79 @@ vect_recog_sat_add_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > return NULL; > } > > +/* > + * Try to distribute the truncation for .SAT_SUB pattern, mostly occurs in > + * the benchmark zip. Aka: > + * > + * unsigned int _1; > + * unsigned int _2; > + * _9 = (unsigned short int).SAT_SUB (_1, _2); > + * > + * if _1 is known to be in the range of unsigned short int. For example > + * there is a def _1 = (unsigned short int)_4. Then we can distribute the > + * truncation to: > + * > + * _3 = MIN (65535, _2); > + * _9 = .SAT_SUB (_4, (unsigned short int)_3); > + * > + * Then, we can better vectorized code and avoid the unnecessary narrowing > + * stmt during vectorization. > + */ > +static void > +vect_recog_sat_sub_pattern_distribute (vec_info *vinfo, > + stmt_vec_info stmt_vinfo, > + gimple *stmt, tree lhs, tree *ops) > +{ > + tree otype = TREE_TYPE (lhs); > + tree itype = TREE_TYPE (ops[0]); > + unsigned itype_prec = TYPE_PRECISION (itype); > + unsigned otype_prec = TYPE_PRECISION (otype); > + > + if (types_compatible_p (otype, itype) || otype_prec >= itype_prec) > + return; > + > + int_range_max r; > + gimple_ranger granger; > + > + if (granger.range_of_expr (r, ops[0], stmt) && !r.undefined_p ()) I was suggesting to only rely on vect_look_through_possible_promotion and scrapping the use of ranges. > + { > + wide_int bound = r.upper_bound (); > + wide_int otype_max = wi::mask (otype_prec, /* negate */false, itype_prec); > + tree v_otype = get_vectype_for_scalar_type (vinfo, otype); > + tree v_itype = get_vectype_for_scalar_type (vinfo, itype); > + > + if (!wi::leu_p (bound, otype_max) || v_otype == NULL || v_itype == NULL > + || !target_supports_op_p (v_itype, MIN_EXPR, optab_vector)) > + return; > + > + /* 1. Build truncated op_0 */ > + vect_unpromoted_value unprom; > + tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom); > + > + if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec) > + { > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_0_cast = gimple_build_assign (tmp, NOP_EXPR, ops[0]); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_0_cast, v_otype); > + } > + > + ops[0] = tmp; > + > + /* 2. Build MIN_EXPR (op_1, 65536) */ > + tree max = wide_int_to_tree (itype, otype_max); > + tree op_1_in = vect_recog_temp_ssa_var (itype, NULL); > + gimple *op_1_min = gimple_build_assign (op_1_in, MIN_EXPR, ops[1], max); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_min, v_itype); > + > + /* 3. Build truncated op_1 */ > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_1_cast = gimple_build_assign (tmp, NOP_EXPR, op_1_in); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_cast, v_otype); > + > + ops[1] = tmp; > + } > +} > + > /* > * Try to detect saturation sub pattern (SAT_ADD), aka below gimple: > * _7 = _1 >= _2; > @@ -4591,6 +4664,8 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > > if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL)) > { > + vect_recog_sat_sub_pattern_distribute (vinfo, stmt_vinfo, last_stmt, > + lhs, ops); > gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo, > IFN_SAT_SUB, type_out, > lhs, ops[0], ops[1]); > -- > 2.34.1 >
Thanks Richard for comments. > Sorry if this has been asked before, but: why not use SAT_TRUNC > instead of MIN_EXPR+truncate? Oops, the .SAT_TRUNC is not ready when draft this patch. Yes, we can leverage SAT_TRUNC now as .SAT_TRUNC committed, will update in v3. > I was suggesting to only rely on vect_look_through_possible_promotion > and scrapping > the use of ranges. Oh, got it, will update in v3. Pan -----Original Message----- From: Richard Biener <richard.guenther@gmail.com> Sent: Monday, July 8, 2024 7:40 PM To: Li, Pan2 <pan2.li@intel.com> Cc: gcc-patches@gcc.gnu.org; juzhe.zhong@rivai.ai; kito.cheng@gmail.com; tamar.christina@arm.com; jeffreyalaw@gmail.com; rdapp.gcc@gmail.com; Liu, Hongtao <hongtao.liu@intel.com> Subject: Re: [PATCH v2] Vect: Distribute truncation into .SAT_SUB operands On Fri, Jul 5, 2024 at 4:20 PM <pan2.li@intel.com> wrote: > > From: Pan Li <pan2.li@intel.com> > > To get better vectorized code of .SAT_SUB, we would like to avoid the > truncated operation for the assignment. For example, as below. > > unsigned int _1; > unsigned int _2; > _9 = (unsigned short int).SAT_SUB (_1, _2); > > If we make sure that the _1 is in the range of unsigned short int. Such > as a def similar to: > > _1 = (unsigned short int)_4; > > Then we can do the distribute the truncation operation to: > > _3 = MIN_EXPR (_2, 65535); > _9 = .SAT_SUB ((unsigned short int)_1, (unsigned short int)_3); > > Let's take RISC-V vector as example to tell the changes. For below > sample code: > > __attribute__((noinline)) > void test (uint16_t *x, unsigned b, unsigned n) > { > unsigned a = 0; > uint16_t *p = x; > > do { > a = *--p; > *p = (uint16_t)(a >= b ? a - b : 0); > } while (--n); > } > > Before this patch: > ... > .L3: > vle16.v v1,0(a3) > vrsub.vx v5,v2,t1 > mv t3,a4 > addw a4,a4,t5 > vrgather.vv v3,v1,v5 > vsetvli zero,zero,e32,m1,ta,ma > vzext.vf2 v1,v3 > vssubu.vx v1,v1,a1 > vsetvli zero,zero,e16,mf2,ta,ma > vncvt.x.x.w v1,v1 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t4 > bgtu t6,a4,.L3 > ... > > After this patch: > test: > ... > .L3: > vle16.v v3,0(a3) > vrsub.vx v5,v2,a6 > mv a7,a4 > addw a4,a4,t3 > vrgather.vv v1,v3,v5 > vssubu.vv v1,v1,v6 > vrgather.vv v3,v1,v5 > vse16.v v3,0(a3) > sub a3,a3,t1 > bgtu t4,a4,.L3 > ... > > The below test suites are passed for this patch: > 1. The rv64gcv fully regression tests. > 2. The rv64gcv build with glibc. > 3. The x86 bootstrap tests. > 4. The x86 fully regression tests. > > gcc/ChangeLog: > > * tree-vect-patterns.cc (vect_recog_sat_sub_pattern_distribute): > Add new func impl to perform the truncation distribution. > (vect_recog_sat_sub_pattern): Perform above optimize before > generate .SAT_SUB call. > > Signed-off-by: Pan Li <pan2.li@intel.com> > --- > gcc/tree-vect-patterns.cc | 75 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 75 insertions(+) > > diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc > index 86e893a1c43..90449bd0ddd 100644 > --- a/gcc/tree-vect-patterns.cc > +++ b/gcc/tree-vect-patterns.cc > @@ -4566,6 +4566,79 @@ vect_recog_sat_add_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > return NULL; > } > > +/* > + * Try to distribute the truncation for .SAT_SUB pattern, mostly occurs in > + * the benchmark zip. Aka: > + * > + * unsigned int _1; > + * unsigned int _2; > + * _9 = (unsigned short int).SAT_SUB (_1, _2); > + * > + * if _1 is known to be in the range of unsigned short int. For example > + * there is a def _1 = (unsigned short int)_4. Then we can distribute the > + * truncation to: > + * > + * _3 = MIN (65535, _2); > + * _9 = .SAT_SUB (_4, (unsigned short int)_3); > + * > + * Then, we can better vectorized code and avoid the unnecessary narrowing > + * stmt during vectorization. > + */ > +static void > +vect_recog_sat_sub_pattern_distribute (vec_info *vinfo, > + stmt_vec_info stmt_vinfo, > + gimple *stmt, tree lhs, tree *ops) > +{ > + tree otype = TREE_TYPE (lhs); > + tree itype = TREE_TYPE (ops[0]); > + unsigned itype_prec = TYPE_PRECISION (itype); > + unsigned otype_prec = TYPE_PRECISION (otype); > + > + if (types_compatible_p (otype, itype) || otype_prec >= itype_prec) > + return; > + > + int_range_max r; > + gimple_ranger granger; > + > + if (granger.range_of_expr (r, ops[0], stmt) && !r.undefined_p ()) I was suggesting to only rely on vect_look_through_possible_promotion and scrapping the use of ranges. > + { > + wide_int bound = r.upper_bound (); > + wide_int otype_max = wi::mask (otype_prec, /* negate */false, itype_prec); > + tree v_otype = get_vectype_for_scalar_type (vinfo, otype); > + tree v_itype = get_vectype_for_scalar_type (vinfo, itype); > + > + if (!wi::leu_p (bound, otype_max) || v_otype == NULL || v_itype == NULL > + || !target_supports_op_p (v_itype, MIN_EXPR, optab_vector)) > + return; > + > + /* 1. Build truncated op_0 */ > + vect_unpromoted_value unprom; > + tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom); > + > + if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec) > + { > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_0_cast = gimple_build_assign (tmp, NOP_EXPR, ops[0]); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_0_cast, v_otype); > + } > + > + ops[0] = tmp; > + > + /* 2. Build MIN_EXPR (op_1, 65536) */ > + tree max = wide_int_to_tree (itype, otype_max); > + tree op_1_in = vect_recog_temp_ssa_var (itype, NULL); > + gimple *op_1_min = gimple_build_assign (op_1_in, MIN_EXPR, ops[1], max); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_min, v_itype); > + > + /* 3. Build truncated op_1 */ > + tmp = vect_recog_temp_ssa_var (otype, NULL); > + gimple *op_1_cast = gimple_build_assign (tmp, NOP_EXPR, op_1_in); > + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_cast, v_otype); > + > + ops[1] = tmp; > + } > +} > + > /* > * Try to detect saturation sub pattern (SAT_ADD), aka below gimple: > * _7 = _1 >= _2; > @@ -4591,6 +4664,8 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, > > if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL)) > { > + vect_recog_sat_sub_pattern_distribute (vinfo, stmt_vinfo, last_stmt, > + lhs, ops); > gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo, > IFN_SAT_SUB, type_out, > lhs, ops[0], ops[1]); > -- > 2.34.1 >
diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc index 86e893a1c43..90449bd0ddd 100644 --- a/gcc/tree-vect-patterns.cc +++ b/gcc/tree-vect-patterns.cc @@ -4566,6 +4566,79 @@ vect_recog_sat_add_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, return NULL; } +/* + * Try to distribute the truncation for .SAT_SUB pattern, mostly occurs in + * the benchmark zip. Aka: + * + * unsigned int _1; + * unsigned int _2; + * _9 = (unsigned short int).SAT_SUB (_1, _2); + * + * if _1 is known to be in the range of unsigned short int. For example + * there is a def _1 = (unsigned short int)_4. Then we can distribute the + * truncation to: + * + * _3 = MIN (65535, _2); + * _9 = .SAT_SUB (_4, (unsigned short int)_3); + * + * Then, we can better vectorized code and avoid the unnecessary narrowing + * stmt during vectorization. + */ +static void +vect_recog_sat_sub_pattern_distribute (vec_info *vinfo, + stmt_vec_info stmt_vinfo, + gimple *stmt, tree lhs, tree *ops) +{ + tree otype = TREE_TYPE (lhs); + tree itype = TREE_TYPE (ops[0]); + unsigned itype_prec = TYPE_PRECISION (itype); + unsigned otype_prec = TYPE_PRECISION (otype); + + if (types_compatible_p (otype, itype) || otype_prec >= itype_prec) + return; + + int_range_max r; + gimple_ranger granger; + + if (granger.range_of_expr (r, ops[0], stmt) && !r.undefined_p ()) + { + wide_int bound = r.upper_bound (); + wide_int otype_max = wi::mask (otype_prec, /* negate */false, itype_prec); + tree v_otype = get_vectype_for_scalar_type (vinfo, otype); + tree v_itype = get_vectype_for_scalar_type (vinfo, itype); + + if (!wi::leu_p (bound, otype_max) || v_otype == NULL || v_itype == NULL + || !target_supports_op_p (v_itype, MIN_EXPR, optab_vector)) + return; + + /* 1. Build truncated op_0 */ + vect_unpromoted_value unprom; + tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom); + + if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec) + { + tmp = vect_recog_temp_ssa_var (otype, NULL); + gimple *op_0_cast = gimple_build_assign (tmp, NOP_EXPR, ops[0]); + append_pattern_def_seq (vinfo, stmt_vinfo, op_0_cast, v_otype); + } + + ops[0] = tmp; + + /* 2. Build MIN_EXPR (op_1, 65536) */ + tree max = wide_int_to_tree (itype, otype_max); + tree op_1_in = vect_recog_temp_ssa_var (itype, NULL); + gimple *op_1_min = gimple_build_assign (op_1_in, MIN_EXPR, ops[1], max); + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_min, v_itype); + + /* 3. Build truncated op_1 */ + tmp = vect_recog_temp_ssa_var (otype, NULL); + gimple *op_1_cast = gimple_build_assign (tmp, NOP_EXPR, op_1_in); + append_pattern_def_seq (vinfo, stmt_vinfo, op_1_cast, v_otype); + + ops[1] = tmp; + } +} + /* * Try to detect saturation sub pattern (SAT_ADD), aka below gimple: * _7 = _1 >= _2; @@ -4591,6 +4664,8 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL)) { + vect_recog_sat_sub_pattern_distribute (vinfo, stmt_vinfo, last_stmt, + lhs, ops); gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo, IFN_SAT_SUB, type_out, lhs, ops[0], ops[1]);