new file mode 100644
@@ -0,0 +1,292 @@
+User process backed memory driver
+=================================
+
+Intro
+=====
+User process backed memory driver provides /dev/uvmem device.
+This /dev/uvmem device is designed for some sort of distributed shared memory.
+Especially post-copy live migration with KVM.
+
+page fault in the area backed by this driver is propagated to (other) server
+process which serves the page contents. Usually the server process fetches
+page contents from the remote machine. Then the faulting process continues.
+
+
+Kernel-User protocol
+====================
+ioctl
+UVMEM_INIT: Initialize the uvmem device with some parameters.
+ IN size: the area size in bytes (which is rounded up to page size)
+ OUT shmem_fd: the file descript to tmpfs that is associated to this uvmem
+ device This is served as backing store of this uvmem device.
+
+mmap: Mapping the initialized uvmem device provides the area which
+ is served by user process.
+ The fault in this area is propagated to uvmem device via read
+ system call.
+read: kernel notifies a process that pages are faulted by returning
+ page offset in page size in u64 format.
+ uvmem device is pollable for read.
+write: Process notifies kernel that the page is ready to access
+ by writing page offset in page size in u64 format.
+
+
+operation flow
+==============
+
+ |
+ V
+ open(/dev/uvmem)
+ |
+ V
+ ioctl(UVMEM_INIT)
+ |
+ V
+ Here we have two file descriptors to
+ uvmem device and shmem file
+ |
+ | daemon process which serves
+ | page fault
+ V
+ fork()---------------------------------------,
+ | |
+ V V
+ close(shmem) mmap(shmem file)
+ | |
+ V V
+ mmap(uvmem device) close(shmem file)
+ | |
+ V |
+ close(uvmem device) |
+ | |
+ now the setup is done |
+ work on the uvmem area |
+ | |
+ V V
+ access uvmem area (poll and) read(uvmem)
+ | |
+ V V
+ page fault ------------------------------> read system call returns
+ block page offsets
+ |
+ V
+ create page contents
+ (usually pull the page
+ from remote)
+ write the page contents
+ to the shmem which was
+ mmapped above
+ |
+ V
+ unblock<--------------------------------write(uvmem, page offsets)
+ the fault handler returns the page tell kernel which pages are
+ page fault is resolved served
+ |
+ |
+ | write to shmem area that
+ | isn't faulted yet
+ | |
+ V V
+ The specified pages<-------------------write(uvmem, page offsets)
+ are cached the unfaulted pages also can
+ so future page fault will be served proactively
+ be served immediately |
+ | |
+ V V
+
+ repeat until all pages are served
+
+ | |
+ V V
+ exit()
+
+
+
+Example code
+============
+#include <err.h>
+#include <errno.h>
+#include <inttypes.h>
+#include <unistd.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+#include <fcntl.h>
+
+#include <linux/uvmem.h>
+
+#if 1
+#define DPRINTF(format, ...) \
+ printf("%s:%d "format, __func__, __LINE__, ## __VA_ARGS__)
+#else
+#define DPRINTF(format, ...) do { } while (0)
+#endif
+
+#define DEV_UVMEM "/dev/uvmem"
+#define UVMEM_NR_PAGES 8
+
+struct pages {
+ uint64_t nr;
+ uint64_t pgoffs[0];
+};
+
+static void server(int uvmem_fd, int shmem_fd, size_t size, size_t page_size)
+{
+ int nr_pages = size / page_size;
+
+ void* shmem = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED,
+ shmem_fd, 0);
+ if (shmem == MAP_FAILED) {
+ err(EXIT_FAILURE, "server: mmap(\"shmem\")");
+ }
+ close(shmem_fd);
+
+ ssize_t bufsize = nr_pages * sizeof(uint64_t);
+ struct pages *page_request = malloc(sizeof(*page_request) + bufsize);
+ if (page_request == NULL) {
+ err(EXIT_FAILURE, "server: malloc(\"page_request\")");
+ }
+
+ struct pages *page_cached = malloc(sizeof(*page_cached) + bufsize);
+ if (page_cached == NULL) {
+ err(EXIT_FAILURE, "server: malloc(\"page_cached\")");
+ }
+
+ int fill = 0;
+ fill++;
+ memset(shmem, fill, page_size);
+ page_cached->pgoffs[0] = 0;
+
+ DPRINTF("write: 0\n");
+ ssize_t len = sizeof(page_cached->pgoffs[0]);
+ ssize_t written = write(uvmem_fd, page_cached->pgoffs, len);
+ if (written < len) {
+ err(EXIT_FAILURE, "server: write");
+ }
+
+ int page_served = 1;
+ while (page_served < nr_pages) {
+ DPRINTF("read\n");
+ len = read(uvmem_fd, page_request->pgoffs,
+ sizeof(page_request->pgoffs[0]) * nr_pages);
+ if (len < 0) {
+ err(EXIT_FAILURE, "server: read");
+ }
+ page_request->nr = len / sizeof(page_request->pgoffs[0]);
+
+
+ DPRINTF("request.nr %"PRId64"\n", page_request->nr);
+ page_cached->nr = 0;
+ int i;
+ for (i = 0; i < page_request->nr; ++i) {
+ memset(shmem + page_size * page_request->pgoffs[i],
+ fill, page_size);
+ fill++;
+ page_cached->pgoffs[page_cached->nr] =
+ page_request->pgoffs[i];
+ page_cached->nr++;
+ DPRINTF("request[%d] %lx fill: %d\n",
+ i, (unsigned long)page_request->pgoffs[i],
+ fill - 1);
+ }
+
+ DPRINTF("write\n");
+ len = sizeof(page_cached->pgoffs[0]) * page_cached->nr;
+ written = write(uvmem_fd, page_cached->pgoffs, len);
+ if (written < len) {
+ err(EXIT_FAILURE, "server: write");
+ }
+ page_served += page_cached->nr;
+
+
+ sleep(1); /* Wait for the fault handler completion.
+ * you have to communication with the client.
+ * sleep() is used here for simplicity.
+ */
+ for (i = 0; i < page_request->nr; ++i) {
+ madvise(shmem + page_size * page_request->pgoffs[i],
+ page_size, MADV_REMOVE);
+ }
+ }
+
+ munmap(shmem, size);
+ close(uvmem_fd);
+}
+
+static void client(int uvmem_fd, size_t size, size_t page_size)
+{
+ DPRINTF("mmap\n");
+ void *ram = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
+ uvmem_fd, 0);
+ if (ram == MAP_FAILED) {
+ err(EXIT_FAILURE, "client: mmap");
+ }
+
+ DPRINTF("close\n");
+ close(uvmem_fd);
+
+ /* do some tasks on the uvmem area */
+ int pages[] = {7, 1, 6, 2, 0, 5, 3, 4};
+ int val[UVMEM_NR_PAGES];
+ int i;
+ for (i = 0; i < UVMEM_NR_PAGES; ++i) {
+ if (i == 2 || i == 6)
+ sleep(1);
+ DPRINTF("access to %d\n", pages[i]);
+ fflush(stdout);
+ val[i] = *(uint8_t*)(ram + page_size * pages[i]);
+ DPRINTF("page:%d val[i=%d]=%d\n", pages[i], i, val[i]);
+ }
+
+ /* done */
+ munmap(ram, size);
+}
+
+int main(int argc, char **argv)
+{
+
+ int uvmem_fd = open(DEV_UVMEM, O_RDWR);
+ if (uvmem_fd < 0) {
+ perror("can't open "DEV_UVMEM);
+ exit(EXIT_FAILURE);
+ }
+ long page_size = sysconf(_SC_PAGESIZE);
+ struct uvmem_init uinit = {
+ .size = UVMEM_NR_PAGES * page_size,
+ };
+ if (ioctl(uvmem_fd, UVMEM_INIT, &uinit) < 0) {
+ err(EXIT_FAILURE, "UVMEM_INIT");
+ }
+
+ int shmem_fd = uinit.shmem_fd;
+ size_t size = uinit.size;
+
+ if (ftruncate(shmem_fd, size) < 0) {
+ err(EXIT_FAILURE, "truncate(\"shmem_fd\")");
+ }
+
+ printf("uvmem_fd %d shmem_fd %d\n", uvmem_fd, shmem_fd);
+ fflush(stdout);
+
+ pid_t child = fork();
+ if (child < 0) {
+ err(EXIT_FAILURE, "fork");
+ }
+ if (child == 0) {
+ sleep(1);
+ printf("server pid: %d\n", getpid());
+ server(uvmem_fd, shmem_fd, size, page_size);
+ return 0;
+ }
+
+ printf("qemu pid: %d server pid: %d\n", getpid(), child);
+ close(shmem_fd);
+ sleep(1); /* wait the daemon is ready
+ * To make it sure, communication with the server
+ * is needed. sleep() is used here for simplicity.
+ */
+ client(uvmem_fd, size, page_size);
+ return 0;
+}
@@ -15,6 +15,16 @@ config DEVKMEM
kind of kernel debugging operations.
When in doubt, say "N".
+config UVMEM
+ tristate "/dev/umem user process backed memory support"
+ default n
+ help
+ User process backed memory driver provides /dev/umem device.
+ The /dev/umem device is designed for some sort of distributed
+ shared memory. Especially post-copy live migration with KVM.
+ For details please refer to <file:Documentation/misc-devices/umem.txt>
+ When in doubt, say "N".
+
config STALDRV
bool "Stallion multiport serial support"
depends on SERIAL_NONSTANDARD
@@ -3,6 +3,7 @@
#
obj-y += mem.o random.o
+obj-$(CONFIG_UVMEM) += uvmem.o
obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o
obj-y += misc.o
obj-$(CONFIG_ATARI_DSP56K) += dsp56k.o
new file mode 100644
@@ -0,0 +1,841 @@
+/*
+ * UVMEM: user process backed memory.
+ *
+ * Copyright (c) 2011,
+ * National Institute of Advanced Industrial Science and Technology
+ *
+ * https://sites.google.com/site/grivonhome/quick-kvm-migration
+ * Author: Isaku Yamahata <yamahata at valinux co jp>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/memcontrol.h>
+#include <linux/poll.h>
+#include <linux/file.h>
+#include <linux/anon_inodes.h>
+#include <linux/miscdevice.h>
+#include <linux/uvmem.h>
+
+struct uvmem_page_req_list {
+ struct list_head list;
+ pgoff_t pgoff;
+};
+
+
+/* those constants are taken from kvm internal values. */
+#define KVM_MAX_VCPUS 256
+#define ASYNC_PF_PER_VCPU 64
+
+#define ASYNC_REQ_MAX (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)
+#define SYNC_REQ_MAX (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)
+
+struct uvmem {
+ loff_t size;
+ pgoff_t pgoff_end;
+ spinlock_t lock;
+
+ wait_queue_head_t req_wait;
+
+ int async_req_max;
+ int async_req_nr;
+ pgoff_t *async_req;
+
+ /*
+ * Heuristic
+ * Asynchronous page fault with same pgoffset can occur repeatedly
+ * if guest kernel decides to schedule same process.
+ * In order to avoid to wake up with same request,
+ * record the async request and don't wake up.
+ */
+#define ASYNC_LOG_MAX (1 << 3) /* must be power of 2 */
+#define ASYNC_LOG_INVALID ((pgoff_t)-1)
+ pgoff_t async_log[ASYNC_LOG_MAX];
+ int async_log_index;
+
+ int sync_req_max;
+ unsigned long *sync_req_bitmap;
+ unsigned long *sync_wait_bitmap;
+ pgoff_t *sync_req;
+ wait_queue_head_t *page_wait;
+
+ int req_list_nr;
+ struct list_head req_list;
+ wait_queue_head_t req_list_wait;
+
+ unsigned long *cached;
+ unsigned long *faulted;
+
+ bool mmapped;
+ unsigned long vm_start;
+ unsigned int vma_nr;
+ struct task_struct *task;
+
+ struct file *shmem_filp;
+ struct vm_area_struct *vma;
+};
+
+static bool uvmem_initialized(struct uvmem *uvmem)
+{
+ BUG_ON(!spin_is_locked(&uvmem->lock));
+ return uvmem->shmem_filp != NULL;
+}
+
+static void uvmem_release_fake_vmf(int ret, struct vm_fault *fake_vmf)
+{
+ if (ret & VM_FAULT_LOCKED) {
+ unlock_page(fake_vmf->page);
+ }
+ page_cache_release(fake_vmf->page);
+}
+
+static int uvmem_minor_fault(struct uvmem *uvmem,
+ struct vm_area_struct *vma,
+ struct vm_fault *vmf)
+{
+ struct vm_fault fake_vmf;
+ int ret;
+ struct page *page;
+
+ BUG_ON(!test_bit(vmf->pgoff, uvmem->cached));
+ fake_vmf = *vmf;
+ fake_vmf.page = NULL;
+ ret = uvmem->vma->vm_ops->fault(uvmem->vma, &fake_vmf);
+ if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))
+ return ret;
+
+ /*
+ * TODO: pull out fake_vmf->page from shmem file and donate it
+ * to this vma resolving the page fault.
+ * vmf->page = fake_vmf->page;
+ */
+
+ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->virtual_address);
+ if (!page)
+ return VM_FAULT_OOM;
+ if (mem_cgroup_cache_charge(page, vma->vm_mm, GFP_KERNEL)) {
+ uvmem_release_fake_vmf(ret, &fake_vmf);
+ page_cache_release(page);
+ return VM_FAULT_OOM;
+ }
+
+ copy_highpage(page, fake_vmf.page);
+ uvmem_release_fake_vmf(ret, &fake_vmf);
+
+ set_bit(vmf->pgoff, uvmem->faulted); /* SetPageUptodate() means wmb */
+ ret |= VM_FAULT_LOCKED;
+ SetPageUptodate(page);
+ vmf->page = page;
+
+ return ret;
+}
+
+static bool uvmem_fatal_signal_pending(struct task_struct *p)
+{
+ unsigned long flags;
+
+ if (unlikely(fatal_signal_pending(p))) {
+ return true;
+ }
+
+ /*
+ * Make the fault handler killable by not only tgkill, but also kill
+ * in order to make coredumping process killable.
+ *
+ * the uvmem fault handler can be called during coredump where
+ * the process is already group-exiting.
+ * In such situation, SIGKILL isn't delivered to other threads
+ * which isn't directly received the signal.
+ * So to catch SIGKILL sent to our process, shared signal must be
+ * checked.
+ *
+ * Another option is to tell users to use tgkill instead of kill
+ * in order to kill coredumping process.
+ */
+ spin_lock_irqsave(&p->sighand->siglock, flags);
+ if (unlikely(sigismember(&p->signal->shared_pending.signal,
+ SIGKILL))) {
+ sigaddset(&p->pending.signal, SIGKILL);
+ spin_unlock_irqrestore(&p->sighand->siglock, flags);
+ return true;
+ }
+ spin_unlock_irqrestore(&p->sighand->siglock, flags);
+
+ return false;
+}
+
+static int uvmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+ struct file *filp = vma->vm_file;
+ struct uvmem *uvmem = filp->private_data;
+ int fault_retry;
+ unsigned long bit;
+ DEFINE_WAIT(wait);
+
+ if (vmf->pgoff >= uvmem->pgoff_end) {
+ return VM_FAULT_SIGBUS;
+ }
+
+ if (test_bit(vmf->pgoff, uvmem->cached))
+ return uvmem_minor_fault(uvmem, vma, vmf);
+
+ /* major fault */
+ fault_retry = vmf->flags & FAULT_FLAG_ALLOW_RETRY? VM_FAULT_RETRY: 0;
+ spin_lock(&uvmem->lock);
+ if (fault_retry) {
+ if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) {
+ /* async page fault */
+ int i;
+ for (i = 0; i < ASYNC_LOG_MAX; i++) {
+ if (uvmem->async_log[i] == vmf->pgoff) {
+ spin_unlock(&uvmem->lock);
+ return VM_FAULT_RETRY;
+ }
+ }
+ if (uvmem->async_req_nr < uvmem->async_req_max) {
+ uvmem->async_req[uvmem->async_req_nr] =
+ vmf->pgoff;
+ uvmem->async_req_nr++;
+ uvmem->async_log[uvmem->async_log_index] =
+ vmf->pgoff;
+ uvmem->async_log_index++;
+ uvmem->async_log_index &= ASYNC_LOG_MAX;
+ }
+ spin_unlock(&uvmem->lock);
+ wake_up_poll(&uvmem->req_wait, POLLIN);
+ return VM_FAULT_RETRY;
+ }
+
+ up_read(&vma->vm_mm->mmap_sem);
+ }
+
+ /*
+ * sync fault sometimes follows async fault with same pgoff.
+ * Don't request same pgoff twice by easy check.
+ * NOTE: user process must be aware that same pgoff can be
+ * requested multiple times due to race condition anyway.
+ */
+ if (uvmem->async_req_nr > 0 &&
+ uvmem->async_req[uvmem->async_req_nr - 1] == vmf->pgoff)
+ uvmem->async_req_nr--;
+
+again:
+ bit = find_first_zero_bit(uvmem->sync_wait_bitmap,
+ uvmem->sync_req_max);
+ if (likely(bit < uvmem->sync_req_max)) {
+ uvmem->sync_req[bit] = vmf->pgoff;
+ prepare_to_wait(&uvmem->page_wait[bit], &wait, TASK_KILLABLE);
+ set_bit(bit, uvmem->sync_req_bitmap);
+ set_bit(bit, uvmem->sync_wait_bitmap);
+ spin_unlock(&uvmem->lock);
+ wake_up_poll(&uvmem->req_wait, POLLIN);
+
+ if (!test_bit(vmf->pgoff, uvmem->cached) &&
+ test_bit(bit, uvmem->sync_req_bitmap) &&
+ !uvmem_fatal_signal_pending(current))
+ schedule();
+
+ finish_wait(&uvmem->page_wait[bit], &wait);
+ clear_bit(bit, uvmem->sync_wait_bitmap);
+ } else {
+ struct uvmem_page_req_list page_req_list = {
+ .pgoff = vmf->pgoff,
+ };
+ uvmem->req_list_nr++;
+ list_add_tail(&page_req_list.list, &uvmem->req_list);
+ wake_up_poll(&uvmem->req_wait, POLLIN);
+ for (;;) {
+ prepare_to_wait(&uvmem->req_list_wait, &wait,
+ TASK_KILLABLE);
+ if (test_bit(vmf->pgoff, uvmem->cached) ||
+ uvmem_fatal_signal_pending(current)) {
+ uvmem->req_list_nr--;
+ break;
+ }
+ spin_unlock(&uvmem->lock);
+ schedule();
+ spin_lock(&uvmem->lock);
+ }
+ spin_unlock(&uvmem->lock);
+ finish_wait(&uvmem->req_list_wait, &wait);
+ }
+
+ if (!test_bit(vmf->pgoff, uvmem->cached)) {
+ if (fatal_signal_pending(current))
+ return VM_FAULT_SIGBUS | fault_retry;
+
+ spin_lock(&uvmem->lock);
+ goto again;
+ }
+
+ if (fault_retry)
+ return VM_FAULT_MAJOR | VM_FAULT_RETRY;
+ return uvmem_minor_fault(uvmem, vma, vmf) | VM_FAULT_MAJOR;
+}
+
+/* for partial munmap */
+static void uvmem_vma_open(struct vm_area_struct *vma)
+{
+ struct file *filp = vma->vm_file;
+ struct uvmem *uvmem = filp->private_data;
+
+ spin_lock(&uvmem->lock);
+ uvmem->vma_nr++;
+ spin_unlock(&uvmem->lock);
+}
+
+static void uvmem_vma_close(struct vm_area_struct *vma)
+{
+ struct file *filp = vma->vm_file;
+ struct uvmem *uvmem = filp->private_data;
+ struct task_struct *task = NULL;
+
+ spin_lock(&uvmem->lock);
+ uvmem->vma_nr--;
+ if (uvmem->vma_nr == 0) {
+ task = uvmem->task;
+ uvmem->task = NULL;
+ }
+ spin_unlock(&uvmem->lock);
+
+ if (task)
+ put_task_struct(task);
+}
+
+static const struct vm_operations_struct uvmem_vm_ops = {
+ .open = uvmem_vma_open,
+ .close = uvmem_vma_close,
+ .fault = uvmem_fault,
+};
+
+static int uvmem_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct uvmem *uvmem = filp->private_data;
+ int error;
+
+ /* allow mmap() only once */
+ spin_lock(&uvmem->lock);
+ if (unlikely(!uvmem_initialized(uvmem))) {
+ error = -ENXIO;
+ goto out;
+ }
+ if (uvmem->mmapped) {
+ error = -EBUSY;
+ goto out;
+ }
+ if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff >
+ uvmem->pgoff_end) {
+ error = -EINVAL;
+ goto out;
+ }
+
+ uvmem->mmapped = true;
+ uvmem->vma_nr = 1;
+ uvmem->vm_start = vma->vm_start;
+ get_task_struct(current);
+ uvmem->task = current;
+ spin_unlock(&uvmem->lock);
+
+ vma->vm_ops = &uvmem_vm_ops;
+ vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
+ vma->vm_flags &= ~VM_SHARED;
+ return 0;
+
+out:
+ spin_unlock(&uvmem->lock);
+ return error;
+}
+
+static bool uvmem_req_pending(struct uvmem* uvmem)
+{
+ return !list_empty(&uvmem->req_list) ||
+ !bitmap_empty(uvmem->sync_req_bitmap, uvmem->sync_req_max) ||
+ (uvmem->async_req_nr > 0);
+}
+
+static unsigned int uvmem_poll(struct file* filp, poll_table *wait)
+{
+ struct uvmem *uvmem = filp->private_data;
+ unsigned int events = 0;
+
+ poll_wait(filp, &uvmem->req_wait, wait);
+
+ spin_lock(&uvmem->lock);
+ if (uvmem_initialized(uvmem) && uvmem_req_pending(uvmem))
+ events |= POLLIN;
+ spin_unlock(&uvmem->lock);
+
+ return events;
+}
+
+/*
+ * return value
+ * true: finished
+ * false: more request
+ */
+static bool uvmem_copy_page_request(struct uvmem *uvmem,
+ pgoff_t *pgoffs, int req_max,
+ int *req_nr)
+{
+ struct uvmem_page_req_list *req_list;
+ struct uvmem_page_req_list *tmp;
+
+ unsigned long bit;
+
+ *req_nr = 0;
+ list_for_each_entry_safe(req_list, tmp, &uvmem->req_list, list) {
+ list_del(&req_list->list);
+ pgoffs[*req_nr] = req_list->pgoff;
+ (*req_nr)++;
+ if (*req_nr >= req_max)
+ return false;
+ }
+
+ bit = 0;
+ for (;;) {
+ bit = find_next_bit(uvmem->sync_req_bitmap,
+ uvmem->sync_req_max, bit);
+ if (bit >= uvmem->sync_req_max)
+ break;
+ pgoffs[*req_nr] = uvmem->sync_req[bit];
+ (*req_nr)++;
+ clear_bit(bit, uvmem->sync_req_bitmap);
+ if (*req_nr >= req_max)
+ return false;
+ bit++;
+ }
+
+ if (uvmem->async_req_nr > 0) {
+ int nr = min(req_max - *req_nr, uvmem->async_req_nr);
+ memcpy(pgoffs + *req_nr, uvmem->async_req,
+ sizeof(*uvmem->async_req) * nr);
+ uvmem->async_req_nr -= nr;
+ *req_nr += nr;
+ memmove(uvmem->async_req, uvmem->sync_req + nr,
+ uvmem->async_req_nr * sizeof(*uvmem->async_req));
+
+ }
+ return uvmem->async_req_nr == 0;
+}
+
+/* get page request from fault handler */
+static ssize_t uvmem_read(struct file *filp, char __user *buf, size_t count,
+ loff_t *ppos)
+{
+ struct uvmem *uvmem = filp->private_data;
+ pgoff_t __user *u_pgoffs = (pgoff_t __user*)buf;
+ size_t nr_pgoffs = count / sizeof(u_pgoffs[0]);
+
+ ssize_t ret = 0;
+ DEFINE_WAIT(wait);
+
+#define REQ_MAX ((size_t)32)
+ pgoff_t pgoffs[REQ_MAX];
+ size_t req_copied = 0;
+
+ if (unlikely(nr_pgoffs == 0))
+ return -EINVAL;
+
+ spin_lock(&uvmem->lock);
+ if (unlikely(!uvmem_initialized(uvmem))) {
+ ret = -ENXIO;
+ goto out_unlock;
+ }
+
+ for (;;) {
+ prepare_to_wait(&uvmem->req_wait, &wait, TASK_INTERRUPTIBLE);
+ if (uvmem_req_pending(uvmem)) {
+ break;
+ }
+ if (filp->f_flags & O_NONBLOCK) {
+ ret = -EAGAIN;
+ break;
+ }
+ if (signal_pending(current)) {
+ ret = -ERESTARTSYS;
+ break;
+ }
+ spin_unlock(&uvmem->lock);
+ schedule();
+ spin_lock(&uvmem->lock);
+ }
+ finish_wait(&uvmem->req_wait, &wait);
+ if (ret)
+ goto out_unlock;
+
+ while (req_copied < nr_pgoffs) {
+ int req_max;
+ int req_nr;
+ bool finished;
+ req_max = min(nr_pgoffs - req_copied, REQ_MAX);
+ finished = uvmem_copy_page_request(uvmem, pgoffs, req_max,
+ &req_nr);
+
+ spin_unlock(&uvmem->lock);
+
+ if (req_nr > 0) {
+ ret = 0;
+ if (copy_to_user(u_pgoffs + req_copied,
+ pgoffs, sizeof(*pgoffs) * req_nr)) {
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+ req_copied += req_nr;
+ if (finished)
+ goto out;
+
+ spin_lock(&uvmem->lock);
+ }
+
+out_unlock:
+ spin_unlock(&uvmem->lock);
+out:
+ if (ret < 0)
+ return ret;
+ return req_copied * sizeof(u_pgoffs[0]);
+}
+
+/* mark page cached and tell the fault handler that page is available */
+static ssize_t uvmem_write(struct file *filp,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ ssize_t ret = 0;
+ struct uvmem *uvmem = filp->private_data;
+ const pgoff_t __user *u_pgoffs = (const pgoff_t __user*)buf;
+ size_t nr_pgoffs = count / sizeof(u_pgoffs[0]);
+
+#define PG_MAX ((size_t)32)
+ __u64 pgoffs[PG_MAX];
+ size_t nr;
+ unsigned long bit;
+ bool wake_up_list;
+
+ if (unlikely(nr_pgoffs == 0))
+ return -EINVAL;
+
+ spin_lock(&uvmem->lock);
+ if (unlikely(!uvmem_initialized(uvmem))) {
+ spin_unlock(&uvmem->lock);
+ return -ENXIO;
+ }
+ spin_unlock(&uvmem->lock);
+
+ nr = 0;
+ while (nr < nr_pgoffs) {
+ int todo = min(PG_MAX, (nr_pgoffs - nr));
+ int i;
+
+ if (copy_from_user(pgoffs, u_pgoffs + nr,
+ sizeof(*pgoffs) * todo)) {
+ ret = -EFAULT;
+ goto out;
+ }
+ for (i = 0; i < todo; ++i) {
+ if (pgoffs[i] >= uvmem->pgoff_end) {
+ ret = -EINVAL;
+ goto out;
+ }
+ set_bit(pgoffs[i], uvmem->cached);
+ }
+ nr += todo;
+ }
+
+ smp_wmb();
+ spin_lock(&uvmem->lock);
+ bit = 0;
+ for (;;) {
+ bit = find_next_bit(uvmem->sync_wait_bitmap,
+ uvmem->sync_req_max, bit);
+ if (bit >= uvmem->sync_req_max)
+ break;
+ if (test_bit(uvmem->sync_req[bit], uvmem->cached))
+ wake_up(&uvmem->page_wait[bit]);
+ bit++;
+ }
+
+ wake_up_list = (uvmem->req_list_nr > 0);
+ spin_unlock(&uvmem->lock);
+
+ if (wake_up_list)
+ wake_up_all(&uvmem->req_list_wait);
+
+out:
+ if (ret < 0)
+ return ret;
+ return nr * sizeof(pgoffs[0]);
+}
+
+static unsigned long uvmem_bitmap_bytes(unsigned long pgoff_end)
+{
+ return round_up(pgoff_end, BITS_PER_LONG) / 8;
+}
+
+static int uvmem_init(struct file *filp, struct uvmem_init *uinit)
+{
+ int error = 0;
+ struct uvmem *uvmem = filp->private_data;
+ struct vm_area_struct *vma = NULL;
+ int shmem_fd;
+
+ int async_req_max = ASYNC_REQ_MAX;
+ pgoff_t *async_req = NULL;
+
+ int sync_req_max = SYNC_REQ_MAX;
+ unsigned long sync_bitmap_bytes;
+ unsigned long *sync_req_bitmap = NULL;
+ unsigned long *sync_wait_bitmap = NULL;
+ pgoff_t *sync_req = NULL;
+ wait_queue_head_t *page_wait = NULL;
+ int i;
+
+ unsigned long bitmap_bytes = 0;
+ unsigned long *cached = NULL;
+ unsigned long *faulted = NULL;
+
+
+ if (uinit->size == 0)
+ return -EINVAL;
+
+ spin_lock(&uvmem->lock);
+ if (uvmem_initialized(uvmem)) {
+ spin_unlock(&uvmem->lock);
+ return -EBUSY;
+ }
+ spin_unlock(&uvmem->lock);
+
+ uinit->size = roundup(uinit->size, PAGE_SIZE);
+ vma = kzalloc(sizeof(*vma), GFP_KERNEL);
+ vma->vm_start = 0;
+ vma->vm_end = uinit->size;
+ /* this shmem file is used for temporal buffer for pages
+ so it's unlikely that so many pages exists in this shmem file */
+ vma->vm_flags = VM_READ | VM_SHARED | VM_NOHUGEPAGE | VM_DONTCOPY |
+ VM_DONTEXPAND;
+ vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
+ vma->vm_pgoff = 0;
+ INIT_LIST_HEAD(&vma->anon_vma_chain);
+
+ shmem_fd = get_unused_fd();
+ if (shmem_fd < 0) {
+ error = shmem_fd;
+ goto out;
+ }
+ error = shmem_zero_setup(vma);
+ if (error < 0) {
+ put_unused_fd(shmem_fd);
+ goto out;
+ }
+ vma->vm_file->f_flags |= O_LARGEFILE;
+ fd_install(shmem_fd, vma->vm_file);
+ uinit->shmem_fd = shmem_fd;
+
+ async_req = kzalloc(sizeof(*uvmem->async_req) * async_req_max,
+ GFP_KERNEL);
+
+ sync_req_max = round_up(sync_req_max, BITS_PER_LONG);
+ sync_bitmap_bytes = sizeof(unsigned long) *
+ (sync_req_max / BITS_PER_LONG);
+ sync_req_bitmap = kzalloc(sync_bitmap_bytes, GFP_KERNEL);
+ sync_wait_bitmap = kzalloc(sync_bitmap_bytes, GFP_KERNEL);
+ sync_req = kzalloc(sizeof(*uvmem->sync_req) * sync_req_max,
+ GFP_KERNEL);
+ page_wait = kzalloc(sizeof(*uvmem->page_wait) * sync_req_max,
+ GFP_KERNEL);
+ for (i = 0; i < sync_req_max; ++i)
+ init_waitqueue_head(&page_wait[i]);
+
+ bitmap_bytes = uvmem_bitmap_bytes(uinit->size >> PAGE_SHIFT);
+ if (bitmap_bytes > PAGE_SIZE) {
+ cached = vzalloc(bitmap_bytes);
+ faulted = vzalloc(bitmap_bytes);
+ } else {
+ cached = kzalloc(bitmap_bytes, GFP_KERNEL);
+ faulted = kzalloc(bitmap_bytes, GFP_KERNEL);
+ }
+
+ spin_lock(&uvmem->lock);
+ if (unlikely(uvmem_initialized(uvmem))) {
+ spin_unlock(&uvmem->lock);
+ error = -EBUSY;
+ goto out;
+ }
+ uvmem->shmem_filp = vma->vm_file;
+ get_file(uvmem->shmem_filp);
+ uvmem->vma = vma;
+
+ uvmem->size = uinit->size;
+ uvmem->pgoff_end = uvmem->size >> PAGE_SHIFT;
+
+ uvmem->async_req_max = async_req_max;
+ uvmem->async_req_nr = 0;
+ uvmem->async_req = async_req;
+
+ uvmem->sync_req_max = sync_req_max;
+ uvmem->sync_req_bitmap = sync_req_bitmap;
+ uvmem->sync_wait_bitmap = sync_wait_bitmap;
+ uvmem->sync_req = sync_req;
+ uvmem->page_wait = page_wait;
+ uvmem->req_list_nr = 0;
+
+ uvmem->cached = cached;
+ uvmem->faulted = faulted;
+
+ spin_unlock(&uvmem->lock);
+
+ return 0;
+
+ out:
+ kfree(vma);
+ kfree(async_req);
+ kfree(sync_req_bitmap);
+ kfree(sync_wait_bitmap);
+ kfree(sync_req);
+ kfree(page_wait);
+ if (bitmap_bytes > PAGE_SIZE) {
+ vfree(cached);
+ vfree(faulted);
+ } else {
+ kfree(cached);
+ kfree(faulted);
+ }
+ return error;
+}
+
+static long uvmem_ioctl(struct file *filp, unsigned int ioctl,
+ unsigned long arg)
+{
+ void __user *argp = (void __user *) arg;
+ long ret = 0;
+
+ switch (ioctl) {
+ case UVMEM_INIT: {
+ struct uvmem_init uinit;
+ if (copy_from_user(&uinit, argp, sizeof(uinit))) {
+ ret = -EFAULT;
+ break;
+ }
+ ret = uvmem_init(filp, &uinit);
+ if (ret)
+ break;
+ if (copy_to_user(argp, &uinit, sizeof(uinit)))
+ ret = -EFAULT;
+ break;
+ }
+ default:
+ ret = -EINVAL;
+ break;
+ }
+ return ret;
+}
+
+static void uvmem_free(struct uvmem *uvmem)
+{
+ if (uvmem == NULL)
+ return;
+
+ if (uvmem->task) {
+ put_task_struct(uvmem->task);
+ uvmem->task = NULL;
+ }
+
+ kfree(uvmem->vma);
+ if (uvmem->shmem_filp)
+ fput(uvmem->shmem_filp);
+
+ kfree(uvmem->async_req);
+ kfree(uvmem->sync_req_bitmap);
+ kfree(uvmem->sync_wait_bitmap);
+ kfree(uvmem->sync_req);
+ kfree(uvmem->page_wait);
+
+ if (uvmem_bitmap_bytes(uvmem->pgoff_end) > PAGE_SIZE) {
+ vfree(uvmem->cached);
+ vfree(uvmem->faulted);
+ } else {
+ kfree(uvmem->cached);
+ kfree(uvmem->faulted);
+ }
+
+ kfree(uvmem);
+}
+
+static int uvmem_release(struct inode *inode, struct file *filp)
+{
+ struct uvmem *uvmem = filp->private_data;
+ uvmem_free(uvmem);
+ return 0;
+}
+
+static int uvmem_open(struct inode *inode, struct file *filp)
+{
+ struct uvmem *uvmem = kzalloc(sizeof(*uvmem), GFP_KERNEL);
+ int i;
+
+ spin_lock_init(&uvmem->lock);
+ init_waitqueue_head(&uvmem->req_wait);
+ INIT_LIST_HEAD(&uvmem->req_list);
+ init_waitqueue_head(&uvmem->req_list_wait);
+ uvmem->mmapped = false;
+ for (i = 0; i < ASYNC_LOG_MAX; ++i) {
+ uvmem->async_log[i] = ASYNC_LOG_INVALID;
+ }
+
+ filp->private_data = uvmem;
+ return 0;
+}
+
+static struct file_operations uvmem_fops = {
+ .open = uvmem_open,
+ .release = uvmem_release,
+ .unlocked_ioctl = uvmem_ioctl,
+ .mmap = uvmem_mmap,
+ .poll = uvmem_poll,
+ .read = uvmem_read,
+ .write = uvmem_write,
+ .llseek = noop_llseek,
+};
+
+static struct miscdevice uvmem_dev = {
+ MISC_DYNAMIC_MINOR,
+ "uvmem",
+ &uvmem_fops,
+};
+
+static int __init uvmem_dev_init(void)
+{
+ int r;
+ r = misc_register(&uvmem_dev);
+ if (r) {
+ printk(KERN_ERR "uvmem: misc device register failed\n");
+ return r;
+ }
+ return 0;
+}
+module_init(uvmem_dev_init);
+
+static void __exit uvmem_dev_exit(void)
+{
+ misc_deregister(&uvmem_dev);
+}
+module_exit(uvmem_dev_exit);
+
+MODULE_DESCRIPTION("UVMEM user process backed memory driver "
+ "for distributed shared memory");
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Isaku Yamahata");
new file mode 100644
@@ -0,0 +1,41 @@
+/*
+ * User process backed memory.
+ * This is mainly for KVM post copy.
+ *
+ * Copyright (c) 2011,
+ * National Institute of Advanced Industrial Science and Technology
+ *
+ * https://sites.google.com/site/grivonhome/quick-kvm-migration
+ * Author: Isaku Yamahata <yamahata at valinux co jp>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef __LINUX_UVMEM_H
+#define __LINUX_UVMEM_H
+
+#include <linux/types.h>
+#include <linux/ioctl.h>
+
+struct uvmem_init {
+ __u64 size; /* in bytes */
+ __s32 shmem_fd;
+ __s32 padding;
+};
+
+#define UVMEMIO 0x1E
+
+/* ioctl for uvmem fd */
+#define UVMEM_INIT _IOWR(UVMEMIO, 0x0, struct uvmem_init)
+
+#endif /* __LINUX_UVMEM_H */
This is a character device to hook page access. The page fault in the area is propagated to another user process by this chardriver. Then, the process fills the page contents and resolves the page fault. Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp> --- Changes v4 -> v5: - rename umem to uvmem to avoid name conflict Changes v3 -> v4: - simplified umem_init: kill {a,}sync_req_max - make fault handler killable even when core-dumping - documentation Changes v2 -> v3: - made fault handler killable - allow O_LARGEFILE - improve to handle FAULT_FLAG_ALLOW_RETRY - smart on async fault --- Documentation/misc-devices/uvmem.txt | 292 ++++++++++++ drivers/char/Kconfig | 10 + drivers/char/Makefile | 1 + drivers/char/uvmem.c | 841 ++++++++++++++++++++++++++++++++++ include/linux/uvmem.h | 41 ++ 5 files changed, 1185 insertions(+) create mode 100644 Documentation/misc-devices/uvmem.txt create mode 100644 drivers/char/uvmem.c create mode 100644 include/linux/uvmem.h