From patchwork Thu Jun 29 15:35:48 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Jag Raman X-Patchwork-Id: 1801565 Return-Path: X-Original-To: incoming@patchwork.ozlabs.org Delivered-To: patchwork-incoming@legolas.ozlabs.org Authentication-Results: legolas.ozlabs.org; spf=pass (sender SPF authorized) smtp.mailfrom=nongnu.org (client-ip=209.51.188.17; helo=lists.gnu.org; envelope-from=qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org; receiver=) Authentication-Results: legolas.ozlabs.org; dkim=pass (2048-bit key; unprotected) header.d=oracle.com header.i=@oracle.com header.a=rsa-sha256 header.s=corp-2023-03-30 header.b=rOg/goEJ; dkim=pass (1024-bit key; unprotected) header.d=oracle.onmicrosoft.com header.i=@oracle.onmicrosoft.com header.a=rsa-sha256 header.s=selector2-oracle-onmicrosoft-com header.b=zgPenvjg; dkim-atps=neutral Received: from lists.gnu.org (lists.gnu.org [209.51.188.17]) (using TLSv1.2 with cipher ECDHE-ECDSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by legolas.ozlabs.org (Postfix) with ESMTPS id 4QsMyX3TMbz20WT for ; Fri, 30 Jun 2023 01:37:24 +1000 (AEST) Received: from localhost ([::1] helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1qEth0-0007Kj-Um; Thu, 29 Jun 2023 11:36:22 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1qEtgu-0007HC-T1 for qemu-devel@nongnu.org; Thu, 29 Jun 2023 11:36:20 -0400 Received: from mx0a-00069f02.pphosted.com ([205.220.165.32]) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1qEtgp-00026k-Eb for qemu-devel@nongnu.org; Thu, 29 Jun 2023 11:36:16 -0400 Received: from pps.filterd (m0246627.ppops.net [127.0.0.1]) by mx0b-00069f02.pphosted.com (8.17.1.19/8.17.1.19) with ESMTP id 35TE7qNM011603; Thu, 29 Jun 2023 15:36:03 GMT DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=oracle.com; h=from : to : cc : subject : date : message-id : in-reply-to : references : content-transfer-encoding : content-type : mime-version; s=corp-2023-03-30; bh=ap5KhEfY5HXNsTtZjpGvzMbuBM4kt0oLyYlP4My0KEw=; b=rOg/goEJ+5LtUUQjblwKxg4IoheTXtiPv59V4Z+kiedfAkZiDxHX3BTFuAgg0jLwTsqE PKXMlt2WPvVrz3FBcd4UxUSYK88DOcUCIZovld+lVB6gChS5Fm8/TcIJB1Zt39/UhI2q O8z/AuAVoEfrcbLM0luHY1rUKF9nMFe81ykkkrTP2I6X0dd6DhZ8c/2GGHPNkT5203wq lTbrYoy4Ps72GSUuR63Ne2g+BflbZZdXPblktaf7RJgXT/aZ64C+zoqYnLK8NQvXPcgi k/3bZPce3kcYjgedSjXgvqyo7XwLFY0wk5z/9P5uiBPEHPmm7WKuQ28QuwIAa6jAeaWM lQ== Received: from iadpaimrmta03.imrmtpd1.prodappiadaev1.oraclevcn.com (iadpaimrmta03.appoci.oracle.com [130.35.103.27]) by mx0b-00069f02.pphosted.com (PPS) with ESMTPS id 3rdq314wvw-1 (version=TLSv1.2 cipher=ECDHE-RSA-AES256-GCM-SHA384 bits=256 verify=OK); Thu, 29 Jun 2023 15:36:02 +0000 Received: from pps.filterd (iadpaimrmta03.imrmtpd1.prodappiadaev1.oraclevcn.com [127.0.0.1]) by iadpaimrmta03.imrmtpd1.prodappiadaev1.oraclevcn.com (8.17.1.19/8.17.1.19) with ESMTP id 35TEVKBF038208; Thu, 29 Jun 2023 15:36:01 GMT Received: from nam12-bn8-obe.outbound.protection.outlook.com (mail-bn8nam12lp2176.outbound.protection.outlook.com [104.47.55.176]) by iadpaimrmta03.imrmtpd1.prodappiadaev1.oraclevcn.com (PPS) with ESMTPS id 3rdpxe35a3-1 (version=TLSv1.2 cipher=ECDHE-RSA-AES256-GCM-SHA384 bits=256 verify=OK); Thu, 29 Jun 2023 15:36:00 +0000 ARC-Seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=OLf2KzyB5fHPTPBLctvDf+jYeUM1DxeHQxPe9iHGsEZqULwtl25cqjeuM8o8RzjQqV+OEJP63SZO6td9EgUPe9Hv6mZpV88mkDWBACqZ+XdlIlv3mbv6oG9bsR+BX8/cd2C8bxp0ZB1O2FxCMxQG5o2PzutNFbD3vUD/SLIauuRs+JZgifhvEIx5dEz5PyRNZhPTUfzUi2b6ylM8UTEyK2EFLkudrQK0q7LXEx+Kf8aQIRg5yjumzQQOLoGF8S5376snmPFdkvqk+qvnSZdgy5uqLsFb67BI8UpifJDZmUeuveyLO3EhmPscc0qK8UcNl9/T0TCZkXMKdOpkbJ0Lzw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=ap5KhEfY5HXNsTtZjpGvzMbuBM4kt0oLyYlP4My0KEw=; b=DpJkQbHKjCuJOXcv7uUOhW1MerQ1V6rulxAMDjHZFpCHlCAJ3rQhLUX57Mwu2UsZ3VBkEvF5QU8WZ8Hgwd8zg4uWK08Xm+1FBiBfbOXdPQvaONtoprc4d5c7VWxVPleknrng2oB4M98y41Q+419GVr0BZ7Gyk+aj4VmereLOHDwW3VROwMA2Kj1Jnp8f60W5TCGIyRqbG3w2IPJR9Q4KFD5U0N7WW0yniMg+mDF4GL9JtIAMMIkgX7rjkuU2HBqrjyUW/GYX31R8ON9LjsA5Herkier+CVXIggVtOt5KUIVp/BDzN4ZTLVrCdYXTp6FWIzmNj+7LdsvVx1mGnJvbLA== ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=oracle.com; dmarc=pass action=none header.from=oracle.com; dkim=pass header.d=oracle.com; arc=none DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=oracle.onmicrosoft.com; s=selector2-oracle-onmicrosoft-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=ap5KhEfY5HXNsTtZjpGvzMbuBM4kt0oLyYlP4My0KEw=; b=zgPenvjgVDGu3l3hT4dQk3TYN67iZn9NY+YbuOTYttDrDa91vMci9ypfBggt/9nYxeUc8ZB0T0Q13VWJdBMC+vOiXhOE13QnkbL4a3v13jia5uMQ2oHupAtpRGvcEb0xC20elCJhA+HBRdxJmFNSvdXEyBfUfugEfpmRR4jMhd8= Received: from MN2PR10MB4013.namprd10.prod.outlook.com (2603:10b6:208:185::25) by IA1PR10MB7214.namprd10.prod.outlook.com (2603:10b6:208:3f3::20) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.6521.24; Thu, 29 Jun 2023 15:35:57 +0000 Received: from MN2PR10MB4013.namprd10.prod.outlook.com ([fe80::bd6f:119d:f159:a803]) by MN2PR10MB4013.namprd10.prod.outlook.com ([fe80::bd6f:119d:f159:a803%6]) with mapi id 15.20.6521.026; Thu, 29 Jun 2023 15:35:57 +0000 From: Jagannathan Raman To: qemu-devel@nongnu.org Cc: alex.williamson@redhat.com, stefanha@gmail.com, philmd@linaro.org, clg@redhat.com, thanos.makatos@nutanix.com, levon@movementarian.org Subject: [PATCH v3 1/1] vfio-user: introduce vfio-user protocol specification Date: Thu, 29 Jun 2023 15:35:48 +0000 Message-Id: X-Mailer: git-send-email 2.31.1 In-Reply-To: References: X-ClientProxiedBy: BYAPR05CA0071.namprd05.prod.outlook.com (2603:10b6:a03:74::48) To MN2PR10MB4013.namprd10.prod.outlook.com (2603:10b6:208:185::25) MIME-Version: 1.0 X-MS-PublicTrafficType: Email X-MS-TrafficTypeDiagnostic: MN2PR10MB4013:EE_|IA1PR10MB7214:EE_ X-MS-Office365-Filtering-Correlation-Id: 6b8ea5c4-a0bf-410b-b8cc-08db78b68888 X-MS-Exchange-SenderADCheck: 1 X-MS-Exchange-AntiSpam-Relay: 0 X-Microsoft-Antispam: BCL:0; X-Microsoft-Antispam-Message-Info: iWc2FAWtBFWHmT7hpWJ106EhGacShWBQDI6pWtgzKuitZu4Inyi4UlrBvnGikRp9ZmECGstmjkTHSmqaNyYfPnn6aP2Vb9JtKq/3clEUjAXQvHBv+LRMe9UZm5DBYBRdhAv7Q37wPltMPVvgyhr0jUgKThz8NTJ+nynOyh2xeYt5ZOz/UB6a07jJsSBT/km5HZCuTy9catMgvCynzfK0BFq3jhoSqJrUseEoI0UVzvIyMfzlJKj68uBGX/TfYUbZasfpH2+TptJgexBDDpsTBoUvQ/+Nf/LWYArm3upIo0I3DOK7ivw0pin+RnyYD6aKiuSAQUkVJTDMBi9plnvHTeOcH+LtU4Sl5Z0fl5gH5E334OAlkw2CO4x6DvHn8DvzRexfUjp1d83a+IkgbmJHPi5qXlrre7pwjdWUkrlrf9/V4YtHoYUP2JERPwwaelFrh92ebx9o+mFV0cFAfAWqZ0gThGkF6CosiT7/5SPexKxy2q/jAt0lA/Y+59y4L0d/4/qdY2XfETxvNCfLoNIcgOUarfV8/cZW6FV90zSl0+jVpZLRyQC0cc4QKvJTsd7wx/cwT5RDIAPR4A57JJw/pA== X-Forefront-Antispam-Report: CIP:255.255.255.255; CTRY:; LANG:en; SCL:1; SRV:; IPV:NLI; SFV:NSPM; H:MN2PR10MB4013.namprd10.prod.outlook.com; PTR:; CAT:NONE; SFS:(13230028)(396003)(366004)(136003)(346002)(39860400002)(376002)(451199021)(66556008)(86362001)(30864003)(6916009)(36756003)(5660300002)(66476007)(8676002)(316002)(8936002)(66946007)(38100700002)(4326008)(41300700001)(966005)(2906002)(478600001)(6506007)(26005)(6512007)(186003)(6486002)(83380400001)(2616005)(6666004)(579004)(559001); DIR:OUT; SFP:1101; X-MS-Exchange-AntiSpam-MessageData-ChunkCount: 1 X-MS-Exchange-AntiSpam-MessageData-0: 7QVuh2O/ZUPBQohbtBR1Es7hh3GH4ghz+uk8DbZmCj0S4ulopOowTcL7hzkh3rsXUKDdHPtev4PRRoUmB0OZp74SwjdcjvEAj26ucqyMUTLr7P1Q/WpGrUqmlmAEqEcodgsn37VzOhCJASdsKVxSUjpUDyExxIyRzFNPITSJhbSsuWP58Vt0prGj9Nt+4krw9wPaqZUZhiFXWDVd466dGV/CJjM1McNYIx+/KwnZ9svRZ+g3S9oRQ0GquP7q/EYbD1x3uZmTCXjTHCq7gwswKm9QHJPCwF016td8iM7ez1zAgwk92qDLsqBuuny1kZRTs3nPyOx45sDBpXBcncZempEpFltTPlkMYhhd0rVfTcGYQL5Mg5O+w4gtN0ubLhN+mgjXQi01loKNqWvzyQqtEFK4Gd7Q1+r2r+zirC6Ciy98lU60U/WXvKlr5b0xJ/0m2wOCBMKLLtDY1XlXS+cmKO1BfG7BhDOHJDU9PxYxEgI3VR39b5d0vF/fFhAqYqXAzlgA2zIlo1x7S+Jqipk/yFcga3Uh1q3iAYMTkp4Gfn9A0pA0XiVHNZLXin2KKHtvr1N5mmMPkQBWW0AKiqSJ6jnNapyLQP9CpfwUab3QvTHsgUWiwpUdsuZaoi49LNoWzTQljI/L0VhLtf+8o6NzPa3KeYHn4TmSFjVhch3Y1Ry6UL4vsUkqnIfR96uEpiCLQRJGICWWmKzPf3EiUFqin7X4wOrn4WO0nOYT6zGOzJCjX2pJ4/z3mMqeXkC5u21O5y7kX0c0Oj+b8sjujGZafEy4JTvA06QG0KGVyZu9By3Sn7Byo15tglvCLItaPzvFWoDV4DSjvwJk7jDohktv48ood5EiNomweeMOQr4bP2zFFokmbvtioG2CbrarJn1Zi6Ot/ckfgLQ4OSLvS5T2Ur3xTOHrWvngsIjgSBDx7lojxUMKHA6YI3xClsRh00bPhuVnDhyv+GuoiyunQnVeyP0ep219VD/z+uBOuAVH5Lop0wsWAvEGRDzqUFRN00aA1tMuuHtisgrwKCqDWYANRtRf98LQ9613r6vCLG3baEiQpykzV55PkiWnrW0myXK2pzTvJ9kTNNDMSmnyIBlPThgxIxBumL+oaFoej4bqYik2LJAUYHKPV6S/6PRQOdqvDKGeumdQqwRj5akHsLuJyT8PV2zUjqLfL6SRgby9xrLnKu9Sl0hTzAisGwNbP+RZQJWsrkispe2C356m3N5TbHDDQF5DAsZBXAI2Gctw2TzQdRzkWtn8k/+MXw/6sAdCtnmugVvvyKf2isKxzDL9jsiPniz5ZLN5YCfZUjk1aaUYXCno1LWAuuPaCKCjUgzH5cFEe2nrOvHvtNRBb9YrwNhnBLMs5ULWum3RT10xrDFrfY0GvFFmRQzzpf1TLMiOJWmRntX88BqnHKCeyvNxy/bTVRtic3Ggy+5/hwhdNdjfP5zPxD+inpl+L35fGIVprymo9wUaYyXxcfYmAhsZn/7gt/JvF/qUoP+CXVkm9HUppBdM4Z4kZ3MMEGFXgdC6Y2hkPf4scRzV1aaEzFY/VHR6H9MSHqpYTiiYTD+s7LR2GJ8yFpCuh91zhiM2CxIB X-MS-Exchange-AntiSpam-ExternalHop-MessageData-ChunkCount: 1 X-MS-Exchange-AntiSpam-ExternalHop-MessageData-0: En3anVMQFVze+PZ537FL+maD6I4oUCF/wNHTcBSesaomgaYyqZezdWLIh7VMFJn67k6JcUYomrD8apfizmH3hhG1kwZIpf4UEhc8k8mSr18CKzv+tBX2EglV669IAu3VugMF8iYJ5LiRYmH/itVDtG9/pVNo0k4jaynOsDXBrkDir4flzpqtjNei7+HTaEbAIPS8/rPCHVWhKO0HZXQX0dfKmppEbrug8q+CtQsRjzZoDxSYaJuEwilp9irdX9iW+BkRcHsZEh/Ku6DdZX10Pr9fnCMPWW6mhW9wNpwLnHDA/zRIaR+/VyqBmjEPHvP380BrXQl0MeveFdgPm/FSE0ai7EQI9DDS/jrkVF4nQqS9FpNY7kpBEi+mxnc+30CKaaMe0d6MRb0SJyC9dj63M3ctyA57zoGlbdv/yDhsIJ8edFUFaYZkum1tpWnq8lqfCcVPeejsl7fwqJBoPAxyFXD3wnHo0OZBNwOJkJDvrgIRi8BpeVm4AIIswiX+60ypallaUi+O3+/OWlfjTjOtXsyzgRJPh9otB+AOco+peryaH58JLoYzx0kt9zz9k7pzYhDGKQgPehg6h7WVYO9AFevZ4ZCQZuG2E1fycxpuRqPttmz/9zR2z7zPcB1XwR8kyDW49/MmfEIqy7QFqZZ00+vZryFJ67VXBW3KaalSuVUlxNwIwcdA4rNMYXvyCk5nMNhLuDNeE25PAJK9GoqyMep1KEN0t/GPyOYzN+gCGcc5K8Q8Qx396z2zRh5md+fdOgpFy3pBTQT1fCkuu5BbG/+uKD0pU6aOFffCh505MGXlDQrEo8OcLfEXkULHoPUkG+EsG81fiO95LNiEO493LqkfKIgg9Goq4aWzH+Ze1ryfoY1m7ZdLaKarTpLf7EadnpkQkagK3OjliVkRRtzKlLXsv3r0o79g7qV2Lm5GjZ8= X-OriginatorOrg: oracle.com X-MS-Exchange-CrossTenant-Network-Message-Id: 6b8ea5c4-a0bf-410b-b8cc-08db78b68888 X-MS-Exchange-CrossTenant-AuthSource: MN2PR10MB4013.namprd10.prod.outlook.com X-MS-Exchange-CrossTenant-AuthAs: Internal X-MS-Exchange-CrossTenant-OriginalArrivalTime: 29 Jun 2023 15:35:57.6377 (UTC) X-MS-Exchange-CrossTenant-FromEntityHeader: Hosted X-MS-Exchange-CrossTenant-Id: 4e2c6054-71cb-48f1-bd6c-3a9705aca71b X-MS-Exchange-CrossTenant-MailboxType: HOSTED X-MS-Exchange-CrossTenant-UserPrincipalName: vM4ZNhfCoMW9ks2AxY/05wrX3QT3Ejz5Jy3E9iZzJaonwMa1Ag2wWjs/WfkgmHqpkU9esma9T3VKig0O5Nj87Q== X-MS-Exchange-Transport-CrossTenantHeadersStamped: IA1PR10MB7214 X-Proofpoint-Virus-Version: vendor=baseguard engine=ICAP:2.0.254,Aquarius:18.0.957,Hydra:6.0.591,FMLib:17.11.176.26 definitions=2023-06-29_03,2023-06-27_01,2023-05-22_02 X-Proofpoint-Spam-Details: rule=notspam policy=default score=0 adultscore=0 spamscore=0 mlxlogscore=999 malwarescore=0 phishscore=0 bulkscore=0 suspectscore=0 mlxscore=0 classifier=spam adjust=0 reason=mlx scancount=1 engine=8.12.0-2305260000 definitions=main-2306290141 X-Proofpoint-ORIG-GUID: Wvzr5INWtwvbmFD0LG8dmR9oBofzvhm4 X-Proofpoint-GUID: Wvzr5INWtwvbmFD0LG8dmR9oBofzvhm4 Received-SPF: pass client-ip=205.220.165.32; envelope-from=jag.raman@oracle.com; helo=mx0a-00069f02.pphosted.com X-Spam_score_int: -27 X-Spam_score: -2.8 X-Spam_bar: -- X-Spam_report: (-2.8 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_LOW=-0.7, RCVD_IN_MSPIKE_H5=0.001, RCVD_IN_MSPIKE_WL=0.001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001, T_SCC_BODY_TEXT_LINE=-0.01, WEIRD_QUOTING=0.001 autolearn=ham autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org Sender: qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org From: Thanos Makatos This patch introduces the vfio-user protocol specification (formerly known as VFIO-over-socket), which is designed to allow devices to be emulated outside QEMU, in a separate process. vfio-user reuses the existing VFIO defines, structs and concepts. It has been earlier discussed as an RFC in: "RFC: use VFIO over a UNIX domain socket to implement device offloading" Signed-off-by: John G Johnson Signed-off-by: Thanos Makatos Signed-off-by: John Levon --- MAINTAINERS | 4 +- docs/devel/index-internals.rst | 1 + docs/devel/vfio-user.rst | 1522 ++++++++++++++++++++++++++++++++ 3 files changed, 1526 insertions(+), 1 deletion(-) create mode 100644 docs/devel/vfio-user.rst diff --git a/MAINTAINERS b/MAINTAINERS index aba07722f64f..70499379c7ca 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -3791,11 +3791,13 @@ F: include/semihosting/ F: tests/tcg/multiarch/arm-compat-semi/ F: tests/tcg/aarch64/system/semiheap.c -Multi-process QEMU +Multi-process QEMU / vfio-user M: Elena Ufimtseva M: Jagannathan Raman +M: Thanos Makatos S: Maintained F: docs/devel/multi-process.rst +F: docs/devel/vfio-user.rst F: docs/system/multi-process.rst F: hw/pci-host/remote.c F: include/hw/pci-host/remote.h diff --git a/docs/devel/index-internals.rst b/docs/devel/index-internals.rst index e1a93df26392..0ecb5c6301d8 100644 --- a/docs/devel/index-internals.rst +++ b/docs/devel/index-internals.rst @@ -17,5 +17,6 @@ Details about QEMU's various subsystems including how to add features to them. s390-dasd-ipl tracing vfio-migration + vfio-user writing-monitor-commands virtio-backends diff --git a/docs/devel/vfio-user.rst b/docs/devel/vfio-user.rst new file mode 100644 index 000000000000..0d96477a68b4 --- /dev/null +++ b/docs/devel/vfio-user.rst @@ -0,0 +1,1522 @@ +.. include:: +******************************** +vfio-user Protocol Specification +******************************** + +-------------- +Version_ 0.9.1 +-------------- + +.. contents:: Table of Contents + +Introduction +============ +vfio-user is a protocol that allows a device to be emulated in a separate +process outside of a Virtual Machine Monitor (VMM). vfio-user devices consist +of a generic VFIO device type, living inside the VMM, which we call the client, +and the core device implementation, living outside the VMM, which we call the +server. + +The vfio-user specification is partly based on the +`Linux VFIO ioctl interface `_. + +VFIO is a mature and stable API, backed by an extensively used framework. The +existing VFIO client implementation in QEMU (``qemu/hw/vfio/``) can be largely +re-used, though there is nothing in this specification that requires that +particular implementation. None of the VFIO kernel modules are required for +supporting the protocol, on either the client or server side. Some source +definitions in VFIO are re-used for vfio-user. + +The main idea is to allow a virtual device to function in a separate process in +the same host over a UNIX domain socket. A UNIX domain socket (``AF_UNIX``) is +chosen because file descriptors can be trivially sent over it, which in turn +allows: + +* Sharing of client memory for DMA with the server. +* Sharing of server memory with the client for fast MMIO. +* Efficient sharing of eventfd's for triggering interrupts. + +Other socket types could be used which allow the server to run in a separate +guest in the same host (``AF_VSOCK``) or remotely (``AF_INET``). Theoretically +the underlying transport does not necessarily have to be a socket, however we do +not examine such alternatives. In this protocol version we focus on using a UNIX +domain socket and introduce basic support for the other two types of sockets +without considering performance implications. + +While passing of file descriptors is desirable for performance reasons, support +is not necessary for either the client or the server in order to implement the +protocol. There is always an in-band, message-passing fall back mechanism. + +Overview +======== + +VFIO is a framework that allows a physical device to be securely passed through +to a user space process; the device-specific kernel driver does not drive the +device at all. Typically, the user space process is a VMM and the device is +passed through to it in order to achieve high performance. VFIO provides an API +and the required functionality in the kernel. QEMU has adopted VFIO to allow a +guest to directly access physical devices, instead of emulating them in +software. + +vfio-user reuses the core VFIO concepts defined in its API, but implements them +as messages to be sent over a socket. It does not change the kernel-based VFIO +in any way, in fact none of the VFIO kernel modules need to be loaded to use +vfio-user. It is also possible for the client to concurrently use the current +kernel-based VFIO for one device, and vfio-user for another device. + +VFIO Device Model +----------------- + +A device under VFIO presents a standard interface to the user process. Many of +the VFIO operations in the existing interface use the ``ioctl()`` system call, and +references to the existing interface are called the ``ioctl()`` implementation in +this document. + +The following sections describe the set of messages that implement the vfio-user +interface over a socket. In many cases, the messages are analogous to data +structures used in the ``ioctl()`` implementation. Messages derived from the +``ioctl()`` will have a name derived from the ``ioctl()`` command name. E.g., the +``VFIO_DEVICE_GET_INFO`` ``ioctl()`` command becomes a +``VFIO_USER_DEVICE_GET_INFO`` message. The purpose of this reuse is to share as +much code as feasible with the ``ioctl()`` implementation``. + +Connection Initiation +^^^^^^^^^^^^^^^^^^^^^ + +After the client connects to the server, the initial client message is +``VFIO_USER_VERSION`` to propose a protocol version and set of capabilities to +apply to the session. The server replies with a compatible version and set of +capabilities it supports, or closes the connection if it cannot support the +advertised version. + +Device Information +^^^^^^^^^^^^^^^^^^ + +The client uses a ``VFIO_USER_DEVICE_GET_INFO`` message to query the server for +information about the device. This information includes: + +* The device type and whether it supports reset (``VFIO_DEVICE_FLAGS_``), +* the number of device regions, and +* the device presents to the client the number of interrupt types the device + supports. + +Region Information +^^^^^^^^^^^^^^^^^^ + +The client uses ``VFIO_USER_DEVICE_GET_REGION_INFO`` messages to query the +server for information about the device's regions. This information describes: + +* Read and write permissions, whether it can be memory mapped, and whether it + supports additional capabilities (``VFIO_REGION_INFO_CAP_``). +* Region index, size, and offset. + +When a device region can be mapped by the client, the server provides a file +descriptor which the client can ``mmap()``. The server is responsible for +polling for client updates to memory mapped regions. + +Region Capabilities +""""""""""""""""""" + +Some regions have additional capabilities that cannot be described adequately +by the region info data structure. These capabilities are returned in the +region info reply in a list similar to PCI capabilities in a PCI device's +configuration space. + +Sparse Regions +"""""""""""""" +A region can be memory-mappable in whole or in part. When only a subset of a +region can be mapped by the client, a ``VFIO_REGION_INFO_CAP_SPARSE_MMAP`` +capability is included in the region info reply. This capability describes +which portions can be mapped by the client. + +.. Note:: + For example, in a virtual NVMe controller, sparse regions can be used so + that accesses to the NVMe registers (found in the beginning of BAR0) are + trapped (an infrequent event), while allowing direct access to the doorbells + (an extremely frequent event as every I/O submission requires a write to + BAR0), found in the next page after the NVMe registers in BAR0. + +Device-Specific Regions +""""""""""""""""""""""" + +A device can define regions additional to the standard ones (e.g. PCI indexes +0-8). This is achieved by including a ``VFIO_REGION_INFO_CAP_TYPE`` capability +in the region info reply of a device-specific region. Such regions are reflected +in ``struct vfio_user_device_info.num_regions``. Thus, for PCI devices this +value can be equal to, or higher than, ``VFIO_PCI_NUM_REGIONS``. + +Region I/O via file descriptors +------------------------------- + +For unmapped regions, region I/O from the client is done via +``VFIO_USER_REGION_READ/WRITE``. As an optimization, ioeventfds or ioregionfds +may be configured for sub-regions of some regions. A client may request +information on these sub-regions via ``VFIO_USER_DEVICE_GET_REGION_IO_FDS``; by +configuring the returned file descriptors as ioeventfds or ioregionfds, the +server can be directly notified of I/O (for example, by KVM) without taking a +trip through the client. + +Interrupts +^^^^^^^^^^ + +The client uses ``VFIO_USER_DEVICE_GET_IRQ_INFO`` messages to query the server +for the device's interrupt types. The interrupt types are specific to the bus +the device is attached to, and the client is expected to know the capabilities +of each interrupt type. The server can signal an interrupt by directly injecting +interrupts into the guest via an event file descriptor. The client configures +how the server signals an interrupt with ``VFIO_USER_SET_IRQS`` messages. + +Device Read and Write +^^^^^^^^^^^^^^^^^^^^^ + +When the guest executes load or store operations to an unmapped device region, +the client forwards these operations to the server with +``VFIO_USER_REGION_READ`` or ``VFIO_USER_REGION_WRITE`` messages. The server +will reply with data from the device on read operations or an acknowledgement on +write operations. See `Read and Write Operations`_. + +Client memory access +-------------------- + +The client uses ``VFIO_USER_DMA_MAP`` and ``VFIO_USER_DMA_UNMAP`` messages to +inform the server of the valid DMA ranges that the server can access on behalf +of a device (typically, VM guest memory). DMA memory may be accessed by the +server via ``VFIO_USER_DMA_READ`` and ``VFIO_USER_DMA_WRITE`` messages over the +socket. In this case, the "DMA" part of the naming is a misnomer. + +Actual direct memory access of client memory from the server is possible if the +client provides file descriptors the server can ``mmap()``. Note that ``mmap()`` +privileges cannot be revoked by the client, therefore file descriptors should +only be exported in environments where the client trusts the server not to +corrupt guest memory. + +See `Read and Write Operations`_. + +Client/server interactions +========================== + +Socket +------ + +A server can serve: + +1) one or more clients, and/or +2) one or more virtual devices, belonging to one or more clients. + +The current protocol specification requires a dedicated socket per +client/server connection. It is a server-side implementation detail whether a +single server handles multiple virtual devices from the same or multiple +clients. The location of the socket is implementation-specific. Multiplexing +clients, devices, and servers over the same socket is not supported in this +version of the protocol. + +Authentication +-------------- + +For ``AF_UNIX``, we rely on OS mandatory access controls on the socket files, +therefore it is up to the management layer to set up the socket as required. +Socket types that span guests or hosts will require a proper authentication +mechanism. Defining that mechanism is deferred to a future version of the +protocol. + +Command Concurrency +------------------- + +A client may pipeline multiple commands without waiting for previous command +replies. The server will process commands in the order they are received. A +consequence of this is if a client issues a command with the *No_reply* bit, +then subsequently issues a command without *No_reply*, the older command will +have been processed before the reply to the younger command is sent by the +server. The client must be aware of the device's capability to process +concurrent commands if pipelining is used. For example, pipelining allows +multiple client threads to concurrently access device regions; the client must +ensure these accesses obey device semantics. + +An example is a frame buffer device, where the device may allow concurrent +access to different areas of video memory, but may have indeterminate behavior +if concurrent accesses are performed to command or status registers. + +Note that unrelated messages sent from the server to the client can appear in +between a client to server request/reply and vice versa. + +Implementers should be prepared for certain commands to exhibit potentially +unbounded latencies. For example, ``VFIO_USER_DEVICE_RESET`` may take an +arbitrarily long time to complete; clients should take care not to block +unnecessarily. + +Socket Disconnection Behavior +----------------------------- +The server and the client can disconnect from each other, either intentionally +or unexpectedly. Both the client and the server need to know how to handle such +events. + +Server Disconnection +^^^^^^^^^^^^^^^^^^^^ +A server disconnecting from the client may indicate that: + +1) A virtual device has been restarted, either intentionally (e.g. because of a + device update) or unintentionally (e.g. because of a crash). +2) A virtual device has been shut down with no intention to be restarted. + +It is impossible for the client to know whether or not a failure is +intermittent or innocuous and should be retried, therefore the client should +reset the VFIO device when it detects the socket has been disconnected. +Error recovery will be driven by the guest's device error handling +behavior. + +Client Disconnection +^^^^^^^^^^^^^^^^^^^^ +The client disconnecting from the server primarily means that the client +has exited. Currently, this means that the guest is shut down so the device is +no longer needed therefore the server can automatically exit. However, there +can be cases where a client disconnection should not result in a server exit: + +1) A single server serving multiple clients. +2) A multi-process QEMU upgrading itself step by step, which is not yet + implemented. + +Therefore in order for the protocol to be forward compatible, the server should +respond to a client disconnection as follows: + + - all client memory regions are unmapped and cleaned up (including closing any + passed file descriptors) + - all IRQ file descriptors passed from the old client are closed + - the device state should otherwise be retained + +The expectation is that when a client reconnects, it will re-establish IRQ and +client memory mappings. + +If anything happens to the client (such as qemu really did exit), the control +stack will know about it and can clean up resources accordingly. + +Security Considerations +----------------------- + +Speaking generally, vfio-user clients should not trust servers, and vice versa. +Standard tools and mechanisms should be used on both sides to validate input and +prevent against denial of service scenarios, buffer overflow, etc. + +Request Retry and Response Timeout +---------------------------------- +A failed command is a command that has been successfully sent and has been +responded to with an error code. Failure to send the command in the first place +(e.g. because the socket is disconnected) is a different type of error examined +earlier in the disconnect section. + +.. Note:: + QEMU's VFIO retries certain operations if they fail. While this makes sense + for real HW, we don't know for sure whether it makes sense for virtual + devices. + +Defining a retry and timeout scheme is deferred to a future version of the +protocol. + +Message sizes +------------- + +Some requests have an ``argsz`` field. In a request, it defines the maximum +expected reply payload size, which should be at least the size of the fixed +reply payload headers defined here. The *request* payload size is defined by the +usual ``msg_size`` field in the header, not the ``argsz`` field. + +In a reply, the server sets ``argsz`` field to the size needed for a full +payload size. This may be less than the requested maximum size. This may be +larger than the requested maximum size: in that case, the full payload is not +included in the reply, but the ``argsz`` field in the reply indicates the needed +size, allowing a client to allocate a larger buffer for holding the reply before +trying again. + +In addition, during negotiation (see `Version`_), the client and server may +each specify a ``max_data_xfer_size`` value; this defines the maximum data that +may be read or written via one of the ``VFIO_USER_DMA/REGION_READ/WRITE`` +messages; see `Read and Write Operations`_. + +Protocol Specification +====================== + +To distinguish from the base VFIO symbols, all vfio-user symbols are prefixed +with ``vfio_user`` or ``VFIO_USER``. In this revision, all data is in the +endianness of the host system, although this may be relaxed in future +revisions in cases where the client and server run on different hosts +with different endianness. + +Unless otherwise specified, all sizes should be presumed to be in bytes. + +.. _Commands: + +Commands +-------- +The following table lists the VFIO message command IDs, and whether the +message command is sent from the client or the server. + +====================================== ========= ================= +Name Command Request Direction +====================================== ========= ================= +``VFIO_USER_VERSION`` 1 client -> server +``VFIO_USER_DMA_MAP`` 2 client -> server +``VFIO_USER_DMA_UNMAP`` 3 client -> server +``VFIO_USER_DEVICE_GET_INFO`` 4 client -> server +``VFIO_USER_DEVICE_GET_REGION_INFO`` 5 client -> server +``VFIO_USER_DEVICE_GET_REGION_IO_FDS`` 6 client -> server +``VFIO_USER_DEVICE_GET_IRQ_INFO`` 7 client -> server +``VFIO_USER_DEVICE_SET_IRQS`` 8 client -> server +``VFIO_USER_REGION_READ`` 9 client -> server +``VFIO_USER_REGION_WRITE`` 10 client -> server +``VFIO_USER_DMA_READ`` 11 server -> client +``VFIO_USER_DMA_WRITE`` 12 server -> client +``VFIO_USER_DEVICE_RESET`` 13 client -> server +``VFIO_USER_REGION_WRITE_MULTI`` 15 client -> server +====================================== ========= ================= + +Header +------ + +All messages, both command messages and reply messages, are preceded by a +16-byte header that contains basic information about the message. The header is +followed by message-specific data described in the sections below. + ++----------------+--------+-------------+ +| Name | Offset | Size | ++================+========+=============+ +| Message ID | 0 | 2 | ++----------------+--------+-------------+ +| Command | 2 | 2 | ++----------------+--------+-------------+ +| Message size | 4 | 4 | ++----------------+--------+-------------+ +| Flags | 8 | 4 | ++----------------+--------+-------------+ +| | +-----+------------+ | +| | | Bit | Definition | | +| | +=====+============+ | +| | | 0-3 | Type | | +| | +-----+------------+ | +| | | 4 | No_reply | | +| | +-----+------------+ | +| | | 5 | Error | | +| | +-----+------------+ | ++----------------+--------+-------------+ +| Error | 12 | 4 | ++----------------+--------+-------------+ +| | 16 | variable | ++----------------+--------+-------------+ + +* *Message ID* identifies the message, and is echoed in the command's reply + message. Message IDs belong entirely to the sender, can be re-used (even + concurrently) and the receiver must not make any assumptions about their + uniqueness. +* *Command* specifies the command to be executed, listed in Commands_. It is + also set in the reply header. +* *Message size* contains the size of the entire message, including the header. +* *Flags* contains attributes of the message: + + * The *Type* bits indicate the message type. + + * *Command* (value 0x0) indicates a command message. + * *Reply* (value 0x1) indicates a reply message acknowledging a previous + command with the same message ID. + * *No_reply* in a command message indicates that no reply is needed for this + command. This is commonly used when multiple commands are sent, and only + the last needs acknowledgement. + * *Error* in a reply message indicates the command being acknowledged had + an error. In this case, the *Error* field will be valid. + +* *Error* in a reply message is an optional UNIX errno value. It may be zero + even if the Error bit is set in Flags. It is reserved in a command message. + +Each command message in Commands_ must be replied to with a reply message, +unless the message sets the *No_Reply* bit. The reply consists of the header +with the *Reply* bit set, plus any additional data. + +If an error occurs, the reply message must only include the reply header. + +As the header is standard in both requests and replies, it is not included in +the command-specific specifications below; each message definition should be +appended to the standard header, and the offsets are given from the end of the +standard header. + +``VFIO_USER_VERSION`` +--------------------- + +.. _Version: + +This is the initial message sent by the client after the socket connection is +established; the same format is used for the server's reply. + +Upon establishing a connection, the client must send a ``VFIO_USER_VERSION`` +message proposing a protocol version and a set of capabilities. The server +compares these with the versions and capabilities it supports and sends a +``VFIO_USER_VERSION`` reply according to the following rules. + +* The major version in the reply must be the same as proposed. If the client + does not support the proposed major, it closes the connection. +* The minor version in the reply must be equal to or less than the minor + version proposed. +* The capability list must be a subset of those proposed. If the server + requires a capability the client did not include, it closes the connection. + +The protocol major version will only change when incompatible protocol changes +are made, such as changing the message format. The minor version may change +when compatible changes are made, such as adding new messages or capabilities, +Both the client and server must support all minor versions less than the +maximum minor version it supports. E.g., an implementation that supports +version 1.3 must also support 1.0 through 1.2. + +When making a change to this specification, the protocol version number must +be included in the form "added in version X.Y" + +Request +^^^^^^^ + +============== ====== ==== +Name Offset Size +============== ====== ==== +version major 0 2 +version minor 2 2 +version data 4 variable (including terminating NUL). Optional. +============== ====== ==== + +The version data is an optional UTF-8 encoded JSON byte array with the following +format: + ++--------------+--------+-----------------------------------+ +| Name | Type | Description | ++==============+========+===================================+ +| capabilities | object | Contains common capabilities that | +| | | the sender supports. Optional. | ++--------------+--------+-----------------------------------+ + +Capabilities: + ++--------------------+---------+------------------------------------------------+ +| Name | Type | Description | ++====================+=========+================================================+ +| max_msg_fds | number | Maximum number of file descriptors that can be | +| | | received by the sender in one message. | +| | | Optional. If not specified then the receiver | +| | | must assume a value of ``1``. | ++--------------------+---------+------------------------------------------------+ +| max_data_xfer_size | number | Maximum ``count`` for data transfer messages; | +| | | see `Read and Write Operations`_. Optional, | +| | | with a default value of 1048576 bytes. | ++--------------------+---------+------------------------------------------------+ +| pgsizes | number | Page sizes supported in DMA map operations | +| | | or'ed together. Optional, with a default value | +| | | of supporting only 4k pages. | ++--------------------+---------+------------------------------------------------+ +| max_dma_maps | number | Maximum number DMA map windows that can be | +| | | valid simultaneously. Optional, with a | +| | | value of 65535 (64k-1). | ++--------------------+---------+------------------------------------------------+ +| migration | object | Migration capability parameters. If missing | +| | | then migration is not supported by the sender. | ++--------------------+---------+------------------------------------------------+ +| write_multiple | boolean | ``VFIO_USER_REGION_WRITE_MULTI`` messages | +| | | are supported if the value is ``true``. | ++--------------------+---------+------------------------------------------------+ + +The migration capability contains the following name/value pairs: + ++-----------------+--------+--------------------------------------------------+ +| Name | Type | Description | ++=================+========+==================================================+ +| pgsize | number | Page size of dirty pages bitmap. The smallest | +| | | between the client and the server is used. | ++-----------------+--------+--------------------------------------------------+ +| max_bitmap_size | number | Maximum bitmap size in ``VFIO_USER_DIRTY_PAGES`` | +| | | and ``VFIO_DMA_UNMAP`` messages. Optional, | +| | | with a default value of 256MB. | ++-----------------+--------+--------------------------------------------------+ + +Reply +^^^^^ + +The same message format is used in the server's reply with the semantics +described above. + +``VFIO_USER_DMA_MAP`` +--------------------- + +This command message is sent by the client to the server to inform it of the +memory regions the server can access. It must be sent before the server can +perform any DMA to the client. It is normally sent directly after the version +handshake is completed, but may also occur when memory is added to the client, +or if the client uses a vIOMMU. + +Request +^^^^^^^ + +The request payload for this message is a structure of the following format: + ++-------------+--------+-------------+ +| Name | Offset | Size | ++=============+========+=============+ +| argsz | 0 | 4 | ++-------------+--------+-------------+ +| flags | 4 | 4 | ++-------------+--------+-------------+ +| | +-----+------------+ | +| | | Bit | Definition | | +| | +=====+============+ | +| | | 0 | readable | | +| | +-----+------------+ | +| | | 1 | writeable | | +| | +-----+------------+ | ++-------------+--------+-------------+ +| offset | 8 | 8 | ++-------------+--------+-------------+ +| address | 16 | 8 | ++-------------+--------+-------------+ +| size | 24 | 8 | ++-------------+--------+-------------+ + +* *argsz* is the size of the above structure. Note there is no reply payload, + so this field differs from other message types. +* *flags* contains the following region attributes: + + * *readable* indicates that the region can be read from. + + * *writeable* indicates that the region can be written to. + +* *offset* is the file offset of the region with respect to the associated file + descriptor, or zero if the region is not mappable +* *address* is the base DMA address of the region. +* *size* is the size of the region. + +This structure is 32 bytes in size, so the message size is 16 + 32 bytes. + +If the DMA region being added can be directly mapped by the server, a file +descriptor must be sent as part of the message meta-data. The region can be +mapped via the mmap() system call. On ``AF_UNIX`` sockets, the file descriptor +must be passed as ``SCM_RIGHTS`` type ancillary data. Otherwise, if the DMA +region cannot be directly mapped by the server, no file descriptor must be sent +as part of the message meta-data and the DMA region can be accessed by the +server using ``VFIO_USER_DMA_READ`` and ``VFIO_USER_DMA_WRITE`` messages, +explained in `Read and Write Operations`_. A command to map over an existing +region must be failed by the server with ``EEXIST`` set in error field in the +reply. + +Reply +^^^^^ + +There is no payload in the reply message. + +``VFIO_USER_DMA_UNMAP`` +----------------------- + +This command message is sent by the client to the server to inform it that a +DMA region, previously made available via a ``VFIO_USER_DMA_MAP`` command +message, is no longer available for DMA. It typically occurs when memory is +subtracted from the client or if the client uses a vIOMMU. The DMA region is +described by the following structure: + +Request +^^^^^^^ + +The request payload for this message is a structure of the following format: + ++--------------+--------+------------------------+ +| Name | Offset | Size | ++==============+========+========================+ +| argsz | 0 | 4 | ++--------------+--------+------------------------+ +| flags | 4 | 4 | ++--------------+--------+------------------------+ +| address | 8 | 8 | ++--------------+--------+------------------------+ +| size | 16 | 8 | ++--------------+--------+------------------------+ + +* *argsz* is the maximum size of the reply payload. +* *flags* is unused in this version. +* *address* is the base DMA address of the DMA region. +* *size* is the size of the DMA region. + +The address and size of the DMA region being unmapped must match exactly a +previous mapping. + +Reply +^^^^^ + +Upon receiving a ``VFIO_USER_DMA_UNMAP`` command, if the file descriptor is +mapped then the server must release all references to that DMA region before +replying, which potentially includes in-flight DMA transactions. + +The server responds with the original DMA entry in the request. + + +``VFIO_USER_DEVICE_GET_INFO`` +----------------------------- + +This command message is sent by the client to the server to query for basic +information about the device. + +Request +^^^^^^^ + ++-------------+--------+--------------------------+ +| Name | Offset | Size | ++=============+========+==========================+ +| argsz | 0 | 4 | ++-------------+--------+--------------------------+ +| flags | 4 | 4 | ++-------------+--------+--------------------------+ +| | +-----+-------------------------+ | +| | | Bit | Definition | | +| | +=====+=========================+ | +| | | 0 | VFIO_DEVICE_FLAGS_RESET | | +| | +-----+-------------------------+ | +| | | 1 | VFIO_DEVICE_FLAGS_PCI | | +| | +-----+-------------------------+ | ++-------------+--------+--------------------------+ +| num_regions | 8 | 4 | ++-------------+--------+--------------------------+ +| num_irqs | 12 | 4 | ++-------------+--------+--------------------------+ + +* *argsz* is the maximum size of the reply payload +* all other fields must be zero. + +Reply +^^^^^ + ++-------------+--------+--------------------------+ +| Name | Offset | Size | ++=============+========+==========================+ +| argsz | 0 | 4 | ++-------------+--------+--------------------------+ +| flags | 4 | 4 | ++-------------+--------+--------------------------+ +| | +-----+-------------------------+ | +| | | Bit | Definition | | +| | +=====+=========================+ | +| | | 0 | VFIO_DEVICE_FLAGS_RESET | | +| | +-----+-------------------------+ | +| | | 1 | VFIO_DEVICE_FLAGS_PCI | | +| | +-----+-------------------------+ | ++-------------+--------+--------------------------+ +| num_regions | 8 | 4 | ++-------------+--------+--------------------------+ +| num_irqs | 12 | 4 | ++-------------+--------+--------------------------+ + +* *argsz* is the size required for the full reply payload (16 bytes today) +* *flags* contains the following device attributes. + + * ``VFIO_DEVICE_FLAGS_RESET`` indicates that the device supports the + ``VFIO_USER_DEVICE_RESET`` message. + * ``VFIO_DEVICE_FLAGS_PCI`` indicates that the device is a PCI device. + +* *num_regions* is the number of memory regions that the device exposes. +* *num_irqs* is the number of distinct interrupt types that the device supports. + +This version of the protocol only supports PCI devices. Additional devices may +be supported in future versions. + +``VFIO_USER_DEVICE_GET_REGION_INFO`` +------------------------------------ + +This command message is sent by the client to the server to query for +information about device regions. The VFIO region info structure is defined in +```` (``struct vfio_region_info``). + +Request +^^^^^^^ + ++------------+--------+------------------------------+ +| Name | Offset | Size | ++============+========+==============================+ +| argsz | 0 | 4 | ++------------+--------+------------------------------+ +| flags | 4 | 4 | ++------------+--------+------------------------------+ +| index | 8 | 4 | ++------------+--------+------------------------------+ +| cap_offset | 12 | 4 | ++------------+--------+------------------------------+ +| size | 16 | 8 | ++------------+--------+------------------------------+ +| offset | 24 | 8 | ++------------+--------+------------------------------+ + +* *argsz* the maximum size of the reply payload +* *index* is the index of memory region being queried, it is the only field + that is required to be set in the command message. +* all other fields must be zero. + +Reply +^^^^^ + ++------------+--------+------------------------------+ +| Name | Offset | Size | ++============+========+==============================+ +| argsz | 0 | 4 | ++------------+--------+------------------------------+ +| flags | 4 | 4 | ++------------+--------+------------------------------+ +| | +-----+-----------------------------+ | +| | | Bit | Definition | | +| | +=====+=============================+ | +| | | 0 | VFIO_REGION_INFO_FLAG_READ | | +| | +-----+-----------------------------+ | +| | | 1 | VFIO_REGION_INFO_FLAG_WRITE | | +| | +-----+-----------------------------+ | +| | | 2 | VFIO_REGION_INFO_FLAG_MMAP | | +| | +-----+-----------------------------+ | +| | | 3 | VFIO_REGION_INFO_FLAG_CAPS | | +| | +-----+-----------------------------+ | ++------------+--------+------------------------------+ ++------------+--------+------------------------------+ +| index | 8 | 4 | ++------------+--------+------------------------------+ +| cap_offset | 12 | 4 | ++------------+--------+------------------------------+ +| size | 16 | 8 | ++------------+--------+------------------------------+ +| offset | 24 | 8 | ++------------+--------+------------------------------+ + +* *argsz* is the size required for the full reply payload (region info structure + plus the size of any region capabilities) +* *flags* are attributes of the region: + + * ``VFIO_REGION_INFO_FLAG_READ`` allows client read access to the region. + * ``VFIO_REGION_INFO_FLAG_WRITE`` allows client write access to the region. + * ``VFIO_REGION_INFO_FLAG_MMAP`` specifies the client can mmap() the region. + When this flag is set, the reply will include a file descriptor in its + meta-data. On ``AF_UNIX`` sockets, the file descriptors will be passed as + ``SCM_RIGHTS`` type ancillary data. + * ``VFIO_REGION_INFO_FLAG_CAPS`` indicates additional capabilities found in the + reply. + +* *index* is the index of memory region being queried, it is the only field + that is required to be set in the command message. +* *cap_offset* describes where additional region capabilities can be found. + cap_offset is relative to the beginning of the VFIO region info structure. + The data structure it points is a VFIO cap header defined in + ````. +* *size* is the size of the region. +* *offset* is the offset that should be given to the mmap() system call for + regions with the MMAP attribute. It is also used as the base offset when + mapping a VFIO sparse mmap area, described below. + +VFIO region capabilities +"""""""""""""""""""""""" + +The VFIO region information can also include a capabilities list. This list is +similar to a PCI capability list - each entry has a common header that +identifies a capability and where the next capability in the list can be found. +The VFIO capability header format is defined in ```` (``struct +vfio_info_cap_header``). + +VFIO cap header format +"""""""""""""""""""""" + ++---------+--------+------+ +| Name | Offset | Size | ++=========+========+======+ +| id | 0 | 2 | ++---------+--------+------+ +| version | 2 | 2 | ++---------+--------+------+ +| next | 4 | 4 | ++---------+--------+------+ + +* *id* is the capability identity. +* *version* is a capability-specific version number. +* *next* specifies the offset of the next capability in the capability list. It + is relative to the beginning of the VFIO region info structure. + +VFIO sparse mmap cap header +""""""""""""""""""""""""""" + ++------------------+----------------------------------+ +| Name | Value | ++==================+==================================+ +| id | VFIO_REGION_INFO_CAP_SPARSE_MMAP | ++------------------+----------------------------------+ +| version | 0x1 | ++------------------+----------------------------------+ +| next | | ++------------------+----------------------------------+ +| sparse mmap info | VFIO region info sparse mmap | ++------------------+----------------------------------+ + +This capability is defined when only a subrange of the region supports +direct access by the client via mmap(). The VFIO sparse mmap area is defined in +```` (``struct vfio_region_sparse_mmap_area`` and ``struct +vfio_region_info_cap_sparse_mmap``). + +VFIO region info cap sparse mmap +"""""""""""""""""""""""""""""""" + ++----------+--------+------+ +| Name | Offset | Size | ++==========+========+======+ +| nr_areas | 0 | 4 | ++----------+--------+------+ +| reserved | 4 | 4 | ++----------+--------+------+ +| offset | 8 | 8 | ++----------+--------+------+ +| size | 16 | 8 | ++----------+--------+------+ +| ... | | | ++----------+--------+------+ + +* *nr_areas* is the number of sparse mmap areas in the region. +* *offset* and size describe a single area that can be mapped by the client. + There will be *nr_areas* pairs of offset and size. The offset will be added to + the base offset given in the ``VFIO_USER_DEVICE_GET_REGION_INFO`` to form the + offset argument of the subsequent mmap() call. + +The VFIO sparse mmap area is defined in ```` (``struct +vfio_region_info_cap_sparse_mmap``). + + +``VFIO_USER_DEVICE_GET_REGION_IO_FDS`` +-------------------------------------- + +Clients can access regions via ``VFIO_USER_REGION_READ/WRITE`` or, if provided, by +``mmap()`` of a file descriptor provided by the server. + +``VFIO_USER_DEVICE_GET_REGION_IO_FDS`` provides an alternative access mechanism via +file descriptors. This is an optional feature intended for performance +improvements where an underlying sub-system (such as KVM) supports communication +across such file descriptors to the vfio-user server, without needing to +round-trip through the client. + +The server returns an array of sub-regions for the requested region. Each +sub-region describes a span (offset and size) of a region, along with the +requested file descriptor notification mechanism to use. Each sub-region in the +response message may choose to use a different method, as defined below. The +two mechanisms supported in this specification are ioeventfds and ioregionfds. + +The server in addition returns a file descriptor in the ancillary data; clients +are expected to configure each sub-region's file descriptor with the requested +notification method. For example, a client could configure KVM with the +requested ioeventfd via a ``KVM_IOEVENTFD`` ``ioctl()``. + +Request +^^^^^^^ + ++-------------+--------+------+ +| Name | Offset | Size | ++=============+========+======+ +| argsz | 0 | 4 | ++-------------+--------+------+ +| flags | 4 | 4 | ++-------------+--------+------+ +| index | 8 | 4 | ++-------------+--------+------+ +| count | 12 | 4 | ++-------------+--------+------+ + +* *argsz* the maximum size of the reply payload +* *index* is the index of memory region being queried +* all other fields must be zero + +The client must set ``flags`` to zero and specify the region being queried in +the ``index``. + +Reply +^^^^^ + ++-------------+--------+------+ +| Name | Offset | Size | ++=============+========+======+ +| argsz | 0 | 4 | ++-------------+--------+------+ +| flags | 4 | 4 | ++-------------+--------+------+ +| index | 8 | 4 | ++-------------+--------+------+ +| count | 12 | 4 | ++-------------+--------+------+ +| sub-regions | 16 | ... | ++-------------+--------+------+ + +* *argsz* is the size of the region IO FD info structure plus the + total size of the sub-region array. Thus, each array entry "i" is at offset + i * ((argsz - 32) / count). Note that currently this is 40 bytes for both IO + FD types, but this is not to be relied on. As elsewhere, this indicates the + full reply payload size needed. +* *flags* must be zero +* *index* is the index of memory region being queried +* *count* is the number of sub-regions in the array +* *sub-regions* is the array of Sub-Region IO FD info structures + +The reply message will additionally include at least one file descriptor in the +ancillary data. Note that more than one sub-region may share the same file +descriptor. + +Note that it is the client's responsibility to verify the requested values (for +example, that the requested offset does not exceed the region's bounds). + +Each sub-region given in the response has one of two possible structures, +depending whether *type* is ``VFIO_USER_IO_FD_TYPE_IOEVENTFD`` or +``VFIO_USER_IO_FD_TYPE_IOREGIONFD``: + +Sub-Region IO FD info format (ioeventfd) +"""""""""""""""""""""""""""""""""""""""" + ++-----------+--------+------+ +| Name | Offset | Size | ++===========+========+======+ +| offset | 0 | 8 | ++-----------+--------+------+ +| size | 8 | 8 | ++-----------+--------+------+ +| fd_index | 16 | 4 | ++-----------+--------+------+ +| type | 20 | 4 | ++-----------+--------+------+ +| flags | 24 | 4 | ++-----------+--------+------+ +| padding | 28 | 4 | ++-----------+--------+------+ +| datamatch | 32 | 8 | ++-----------+--------+------+ + +* *offset* is the offset of the start of the sub-region within the region + requested ("physical address offset" for the region) +* *size* is the length of the sub-region. This may be zero if the access size is + not relevant, which may allow for optimizations +* *fd_index* is the index in the ancillary data of the FD to use for ioeventfd + notification; it may be shared. +* *type* is ``VFIO_USER_IO_FD_TYPE_IOEVENTFD`` +* *flags* is any of: + + * ``KVM_IOEVENTFD_FLAG_DATAMATCH`` + * ``KVM_IOEVENTFD_FLAG_PIO`` + * ``KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY`` (FIXME: makes sense?) + +* *datamatch* is the datamatch value if needed + +See https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt, *4.59 +KVM_IOEVENTFD* for further context on the ioeventfd-specific fields. + +Sub-Region IO FD info format (ioregionfd) +""""""""""""""""""""""""""""""""""""""""" + ++-----------+--------+------+ +| Name | Offset | Size | ++===========+========+======+ +| offset | 0 | 8 | ++-----------+--------+------+ +| size | 8 | 8 | ++-----------+--------+------+ +| fd_index | 16 | 4 | ++-----------+--------+------+ +| type | 20 | 4 | ++-----------+--------+------+ +| flags | 24 | 4 | ++-----------+--------+------+ +| padding | 28 | 4 | ++-----------+--------+------+ +| user_data | 32 | 8 | ++-----------+--------+------+ + +* *offset* is the offset of the start of the sub-region within the region + requested ("physical address offset" for the region) +* *size* is the length of the sub-region. This may be zero if the access size is + not relevant, which may allow for optimizations; ``KVM_IOREGION_POSTED_WRITES`` + must be set in *flags* in this case +* *fd_index* is the index in the ancillary data of the FD to use for ioregionfd + messages; it may be shared +* *type* is ``VFIO_USER_IO_FD_TYPE_IOREGIONFD`` +* *flags* is any of: + + * ``KVM_IOREGION_PIO`` + * ``KVM_IOREGION_POSTED_WRITES`` + +* *user_data* is an opaque value passed back to the server via a message on the + file descriptor + +For further information on the ioregionfd-specific fields, see: +https://lore.kernel.org/kvm/cover.1613828726.git.eafanasova@gmail.com/ + +(FIXME: update with final API docs.) + +``VFIO_USER_DEVICE_GET_IRQ_INFO`` +--------------------------------- + +This command message is sent by the client to the server to query for +information about device interrupt types. The VFIO IRQ info structure is +defined in ```` (``struct vfio_irq_info``). + +Request +^^^^^^^ + ++-------+--------+---------------------------+ +| Name | Offset | Size | ++=======+========+===========================+ +| argsz | 0 | 4 | ++-------+--------+---------------------------+ +| flags | 4 | 4 | ++-------+--------+---------------------------+ +| | +-----+--------------------------+ | +| | | Bit | Definition | | +| | +=====+==========================+ | +| | | 0 | VFIO_IRQ_INFO_EVENTFD | | +| | +-----+--------------------------+ | +| | | 1 | VFIO_IRQ_INFO_MASKABLE | | +| | +-----+--------------------------+ | +| | | 2 | VFIO_IRQ_INFO_AUTOMASKED | | +| | +-----+--------------------------+ | +| | | 3 | VFIO_IRQ_INFO_NORESIZE | | +| | +-----+--------------------------+ | ++-------+--------+---------------------------+ +| index | 8 | 4 | ++-------+--------+---------------------------+ +| count | 12 | 4 | ++-------+--------+---------------------------+ + +* *argsz* is the maximum size of the reply payload (16 bytes today) +* index is the index of IRQ type being queried (e.g. ``VFIO_PCI_MSIX_IRQ_INDEX``) +* all other fields must be zero + +Reply +^^^^^ + ++-------+--------+---------------------------+ +| Name | Offset | Size | ++=======+========+===========================+ +| argsz | 0 | 4 | ++-------+--------+---------------------------+ +| flags | 4 | 4 | ++-------+--------+---------------------------+ +| | +-----+--------------------------+ | +| | | Bit | Definition | | +| | +=====+==========================+ | +| | | 0 | VFIO_IRQ_INFO_EVENTFD | | +| | +-----+--------------------------+ | +| | | 1 | VFIO_IRQ_INFO_MASKABLE | | +| | +-----+--------------------------+ | +| | | 2 | VFIO_IRQ_INFO_AUTOMASKED | | +| | +-----+--------------------------+ | +| | | 3 | VFIO_IRQ_INFO_NORESIZE | | +| | +-----+--------------------------+ | ++-------+--------+---------------------------+ +| index | 8 | 4 | ++-------+--------+---------------------------+ +| count | 12 | 4 | ++-------+--------+---------------------------+ + +* *argsz* is the size required for the full reply payload (16 bytes today) +* *flags* defines IRQ attributes: + + * ``VFIO_IRQ_INFO_EVENTFD`` indicates the IRQ type can support server eventfd + signalling. + * ``VFIO_IRQ_INFO_MASKABLE`` indicates that the IRQ type supports the ``MASK`` + and ``UNMASK`` actions in a ``VFIO_USER_DEVICE_SET_IRQS`` message. + * ``VFIO_IRQ_INFO_AUTOMASKED`` indicates the IRQ type masks itself after being + triggered, and the client must send an ``UNMASK`` action to receive new + interrupts. + * ``VFIO_IRQ_INFO_NORESIZE`` indicates ``VFIO_USER_SET_IRQS`` operations setup + interrupts as a set, and new sub-indexes cannot be enabled without disabling + the entire type. +* index is the index of IRQ type being queried +* count describes the number of interrupts of the queried type. + +``VFIO_USER_DEVICE_SET_IRQS`` +----------------------------- + +This command message is sent by the client to the server to set actions for +device interrupt types. The VFIO IRQ set structure is defined in +```` (``struct vfio_irq_set``). + +Request +^^^^^^^ + ++-------+--------+------------------------------+ +| Name | Offset | Size | ++=======+========+==============================+ +| argsz | 0 | 4 | ++-------+--------+------------------------------+ +| flags | 4 | 4 | ++-------+--------+------------------------------+ +| | +-----+-----------------------------+ | +| | | Bit | Definition | | +| | +=====+=============================+ | +| | | 0 | VFIO_IRQ_SET_DATA_NONE | | +| | +-----+-----------------------------+ | +| | | 1 | VFIO_IRQ_SET_DATA_BOOL | | +| | +-----+-----------------------------+ | +| | | 2 | VFIO_IRQ_SET_DATA_EVENTFD | | +| | +-----+-----------------------------+ | +| | | 3 | VFIO_IRQ_SET_ACTION_MASK | | +| | +-----+-----------------------------+ | +| | | 4 | VFIO_IRQ_SET_ACTION_UNMASK | | +| | +-----+-----------------------------+ | +| | | 5 | VFIO_IRQ_SET_ACTION_TRIGGER | | +| | +-----+-----------------------------+ | ++-------+--------+------------------------------+ +| index | 8 | 4 | ++-------+--------+------------------------------+ +| start | 12 | 4 | ++-------+--------+------------------------------+ +| count | 16 | 4 | ++-------+--------+------------------------------+ +| data | 20 | variable | ++-------+--------+------------------------------+ + +* *argsz* is the size of the VFIO IRQ set request payload, including any *data* + field. Note there is no reply payload, so this field differs from other + message types. +* *flags* defines the action performed on the interrupt range. The ``DATA`` + flags describe the data field sent in the message; the ``ACTION`` flags + describe the action to be performed. The flags are mutually exclusive for + both sets. + + * ``VFIO_IRQ_SET_DATA_NONE`` indicates there is no data field in the command. + The action is performed unconditionally. + * ``VFIO_IRQ_SET_DATA_BOOL`` indicates the data field is an array of boolean + bytes. The action is performed if the corresponding boolean is true. + * ``VFIO_IRQ_SET_DATA_EVENTFD`` indicates an array of event file descriptors + was sent in the message meta-data. These descriptors will be signalled when + the action defined by the action flags occurs. In ``AF_UNIX`` sockets, the + descriptors are sent as ``SCM_RIGHTS`` type ancillary data. + If no file descriptors are provided, this de-assigns the specified + previously configured interrupts. + * ``VFIO_IRQ_SET_ACTION_MASK`` indicates a masking event. It can be used with + ``VFIO_IRQ_SET_DATA_BOOL`` or ``VFIO_IRQ_SET_DATA_NONE`` to mask an interrupt, + or with ``VFIO_IRQ_SET_DATA_EVENTFD`` to generate an event when the guest masks + the interrupt. + * ``VFIO_IRQ_SET_ACTION_UNMASK`` indicates an unmasking event. It can be used + with ``VFIO_IRQ_SET_DATA_BOOL`` or ``VFIO_IRQ_SET_DATA_NONE`` to unmask an + interrupt, or with ``VFIO_IRQ_SET_DATA_EVENTFD`` to generate an event when the + guest unmasks the interrupt. + * ``VFIO_IRQ_SET_ACTION_TRIGGER`` indicates a triggering event. It can be used + with ``VFIO_IRQ_SET_DATA_BOOL`` or ``VFIO_IRQ_SET_DATA_NONE`` to trigger an + interrupt, or with ``VFIO_IRQ_SET_DATA_EVENTFD`` to generate an event when the + server triggers the interrupt. + +* *index* is the index of IRQ type being setup. +* *start* is the start of the sub-index being set. +* *count* describes the number of sub-indexes being set. As a special case, a + count (and start) of 0, with data flags of ``VFIO_IRQ_SET_DATA_NONE`` disables + all interrupts of the index. +* *data* is an optional field included when the + ``VFIO_IRQ_SET_DATA_BOOL`` flag is present. It contains an array of booleans + that specify whether the action is to be performed on the corresponding + index. It's used when the action is only performed on a subset of the range + specified. + +Not all interrupt types support every combination of data and action flags. +The client must know the capabilities of the device and IRQ index before it +sends a ``VFIO_USER_DEVICE_SET_IRQ`` message. + +In typical operation, a specific IRQ may operate as follows: + +1. The client sends a ``VFIO_USER_DEVICE_SET_IRQ`` message with + ``flags=(VFIO_IRQ_SET_DATA_EVENTFD|VFIO_IRQ_SET_ACTION_TRIGGER)`` along + with an eventfd. This associates the IRQ with a particular eventfd on the + server side. + +#. The client may send a ``VFIO_USER_DEVICE_SET_IRQ`` message with + ``flags=(VFIO_IRQ_SET_DATA_EVENTFD|VFIO_IRQ_SET_ACTION_MASK/UNMASK)`` along + with another eventfd. This associates the given eventfd with the + mask/unmask state on the server side. + +#. The server may trigger the IRQ by writing 1 to the eventfd. + +#. The server may mask/unmask an IRQ which will write 1 to the corresponding + mask/unmask eventfd, if there is one. + +5. A client may trigger a device IRQ itself, by sending a + ``VFIO_USER_DEVICE_SET_IRQ`` message with + ``flags=(VFIO_IRQ_SET_DATA_NONE/BOOL|VFIO_IRQ_SET_ACTION_TRIGGER)``. + +6. A client may mask or unmask the IRQ, by sending a + ``VFIO_USER_DEVICE_SET_IRQ`` message with + ``flags=(VFIO_IRQ_SET_DATA_NONE/BOOL|VFIO_IRQ_SET_ACTION_MASK/UNMASK)``. + +Reply +^^^^^ + +There is no payload in the reply. + +.. _Read and Write Operations: + +Note that all of these operations must be supported by the client and/or server, +even if the corresponding memory or device region has been shared as mappable. + +The ``count`` field must not exceed the value of ``max_data_xfer_size`` of the +peer, for both reads and writes. + +``VFIO_USER_REGION_READ`` +------------------------- + +If a device region is not mappable, it's not directly accessible by the client +via ``mmap()`` of the underlying file descriptor. In this case, a client can +read from a device region with this message. + +Request +^^^^^^^ + ++--------+--------+----------+ +| Name | Offset | Size | ++========+========+==========+ +| offset | 0 | 8 | ++--------+--------+----------+ +| region | 8 | 4 | ++--------+--------+----------+ +| count | 12 | 4 | ++--------+--------+----------+ + +* *offset* into the region being accessed. +* *region* is the index of the region being accessed. +* *count* is the size of the data to be transferred. + +Reply +^^^^^ + ++--------+--------+----------+ +| Name | Offset | Size | ++========+========+==========+ +| offset | 0 | 8 | ++--------+--------+----------+ +| region | 8 | 4 | ++--------+--------+----------+ +| count | 12 | 4 | ++--------+--------+----------+ +| data | 16 | variable | ++--------+--------+----------+ + +* *offset* into the region accessed. +* *region* is the index of the region accessed. +* *count* is the size of the data transferred. +* *data* is the data that was read from the device region. + +``VFIO_USER_REGION_WRITE`` +-------------------------- + +If a device region is not mappable, it's not directly accessible by the client +via mmap() of the underlying fd. In this case, a client can write to a device +region with this message. + +Request +^^^^^^^ + ++--------+--------+----------+ +| Name | Offset | Size | ++========+========+==========+ +| offset | 0 | 8 | ++--------+--------+----------+ +| region | 8 | 4 | ++--------+--------+----------+ +| count | 12 | 4 | ++--------+--------+----------+ +| data | 16 | variable | ++--------+--------+----------+ + +* *offset* into the region being accessed. +* *region* is the index of the region being accessed. +* *count* is the size of the data to be transferred. +* *data* is the data to write + +Reply +^^^^^ + ++--------+--------+----------+ +| Name | Offset | Size | ++========+========+==========+ +| offset | 0 | 8 | ++--------+--------+----------+ +| region | 8 | 4 | ++--------+--------+----------+ +| count | 12 | 4 | ++--------+--------+----------+ + +* *offset* into the region accessed. +* *region* is the index of the region accessed. +* *count* is the size of the data transferred. + +``VFIO_USER_DMA_READ`` +----------------------- + +If the client has not shared mappable memory, the server can use this message to +read from guest memory. + +Request +^^^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| address | 0 | 8 | ++---------+--------+----------+ +| count | 8 | 8 | ++---------+--------+----------+ + +* *address* is the client DMA memory address being accessed. This address must have + been previously exported to the server with a ``VFIO_USER_DMA_MAP`` message. +* *count* is the size of the data to be transferred. + +Reply +^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| address | 0 | 8 | ++---------+--------+----------+ +| count | 8 | 8 | ++---------+--------+----------+ +| data | 16 | variable | ++---------+--------+----------+ + +* *address* is the client DMA memory address being accessed. +* *count* is the size of the data transferred. +* *data* is the data read. + +``VFIO_USER_DMA_WRITE`` +----------------------- + +If the client has not shared mappable memory, the server can use this message to +write to guest memory. + +Request +^^^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| address | 0 | 8 | ++---------+--------+----------+ +| count | 8 | 8 | ++---------+--------+----------+ +| data | 16 | variable | ++---------+--------+----------+ + +* *address* is the client DMA memory address being accessed. This address must have + been previously exported to the server with a ``VFIO_USER_DMA_MAP`` message. +* *count* is the size of the data to be transferred. +* *data* is the data to write + +Reply +^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| address | 0 | 8 | ++---------+--------+----------+ +| count | 8 | 4 | ++---------+--------+----------+ + +* *address* is the client DMA memory address being accessed. +* *count* is the size of the data transferred. + +``VFIO_USER_DEVICE_RESET`` +-------------------------- + +This command message is sent from the client to the server to reset the device. +Neither the request or reply have a payload. + +``VFIO_USER_REGION_WRITE_MULTI`` +-------------------------------- + +This message can be used to coalesce multiple device write operations +into a single messgage. It is only used as an optimization when the +outgoing message queue is relatively full. + +Request +^^^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| wr_cnt | 0 | 8 | ++---------+--------+----------+ +| wrs | 8 | variable | ++---------+--------+----------+ + +* *wr_cnt* is the number of device writes coalesced in the message +* *wrs* is an array of device writes defined below + +Single Device Write Format +"""""""""""""""""""""""""" + ++--------+--------+----------+ +| Name | Offset | Size | ++========+========+==========+ +| offset | 0 | 8 | ++--------+--------+----------+ +| region | 8 | 4 | ++--------+--------+----------+ +| count | 12 | 4 | ++--------+--------+----------+ +| data | 16 | 8 | ++--------+--------+----------+ + +* *offset* into the region being accessed. +* *region* is the index of the region being accessed. +* *count* is the size of the data to be transferred. This format can + only describe writes of 8 bytes or less. +* *data* is the data to write. + +Reply +^^^^^ + ++---------+--------+----------+ +| Name | Offset | Size | ++=========+========+==========+ +| wr_cnt | 0 | 8 | ++---------+--------+----------+ + +* *wr_cnt* is the number of device writes completed. + + +Appendices +========== + +Unused VFIO ``ioctl()`` commands +-------------------------------- + +The following VFIO commands do not have an equivalent vfio-user command: + +* ``VFIO_GET_API_VERSION`` +* ``VFIO_CHECK_EXTENSION`` +* ``VFIO_SET_IOMMU`` +* ``VFIO_GROUP_GET_STATUS`` +* ``VFIO_GROUP_SET_CONTAINER`` +* ``VFIO_GROUP_UNSET_CONTAINER`` +* ``VFIO_GROUP_GET_DEVICE_FD`` +* ``VFIO_IOMMU_GET_INFO`` + +However, once support for live migration for VFIO devices is finalized some +of the above commands may have to be handled by the client in their +corresponding vfio-user form. This will be addressed in a future protocol +version. + +VFIO groups and containers +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The current VFIO implementation includes group and container idioms that +describe how a device relates to the host IOMMU. In the vfio-user +implementation, the IOMMU is implemented in SW by the client, and is not +visible to the server. The simplest idea would be that the client put each +device into its own group and container. + +Backend Program Conventions +--------------------------- + +vfio-user backend program conventions are based on the vhost-user ones. + +* The backend program must not daemonize itself. +* No assumptions must be made as to what access the backend program has on the + system. +* File descriptors 0, 1 and 2 must exist, must have regular + stdin/stdout/stderr semantics, and can be redirected. +* The backend program must honor the SIGTERM signal. +* The backend program must accept the following commands line options: + + * ``--socket-path=PATH``: path to UNIX domain socket, + * ``--fd=FDNUM``: file descriptor for UNIX domain socket, incompatible with + ``--socket-path`` +* The backend program must be accompanied with a JSON file stored under + ``/usr/share/vfio-user``. + +TODO add schema similar to docs/interop/vhost-user.json.