Message ID | 20240207160833.3437779-5-chalapathi.v@linux.ibm.com |
---|---|
State | New |
Headers | show |
Series | hw/ppc: SPI model | expand |
On 2/7/24 11:08, Chalapathi V wrote: > This commit implements a Serial EEPROM utilizing the Serial Peripheral > Interface (SPI) compatible bus. > Currently implemented SEEPROM is Microchip's 25CSM04 which provides 4 Mbits > of Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible > bus. The device is organized as 524288 bytes of 8 bits each (512Kbyte) and > is optimized for use in consumer and industrial applications where reliable > and dependable nonvolatile memory storage is essential. > > Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com> > --- > include/hw/ppc/pnv_spi_seeprom.h | 70 +++ > hw/ppc/pnv_spi_seeprom.c | 989 +++++++++++++++++++++++++++++++ > hw/ppc/meson.build | 1 + > 3 files changed, 1060 insertions(+) > create mode 100644 include/hw/ppc/pnv_spi_seeprom.h > create mode 100644 hw/ppc/pnv_spi_seeprom.c > > diff --git a/include/hw/ppc/pnv_spi_seeprom.h b/include/hw/ppc/pnv_spi_seeprom.h > new file mode 100644 > index 0000000000..9739e411b5 > --- /dev/null > +++ b/include/hw/ppc/pnv_spi_seeprom.h > @@ -0,0 +1,70 @@ > +/* > + * QEMU PowerPC SPI SEEPROM model > + * > + * Copyright (c) 2024, IBM Corporation. > + * > + * SPDX-License-Identifier: GPL-2.0-or-later > + * > + * This model implements a Serial EEPROM utilizing the Serial Peripheral > + * Interface (SPI) compatible bus. > + * Currently supported variants: 25CSM04. > + * The Microchip Technology Inc. 25CSM04 provides 4 Mbits of Serial EEPROM > + * utilizing the Serial Peripheral Interface (SPI) compatible bus. The device > + * is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized > + * for use in consumer and industrial applications where reliable and > + * dependable nonvolatile memory storage is essential > + */ > + > +#ifndef PPC_PNV_SPI_SEEPROM_H > +#define PPC_PNV_SPI_SEEPROM_H > + > +#include "hw/ppc/pnv_spi_responder.h" > +#include "qom/object.h" > + > +#define TYPE_PNV_SPI_SEEPROM "pnv-spi-seeprom" > + > +OBJECT_DECLARE_SIMPLE_TYPE(PnvSpiSeeprom, PNV_SPI_SEEPROM) > + > +typedef struct xfer_buffer xfer_buffer; > + > +typedef struct PnvSpiSeeprom { > + PnvSpiResponder resp; > + > + char *file; /* SEEPROM image file */ > + uint8_t opcode; /* SEEPROM Opcode */ > + uint32_t addr; /* SEEPROM Command Address */ > + uint8_t rd_state; /* READ State Machine state variable */ > + bool locked; /* Security Register Locked */ > + bool controller_connected; /* Flag for master connection */ > + /* > + * Device registers > + * The 25CSM04 contains four types of registers that modulate device > + * operation and/or report on the current status of the device. These > + * registers are: > + * STATUS register > + * Security register > + * Memory Partition registers (eight total) > + * Identification register > + */ > + uint8_t status0; > + uint8_t status1; > + /* > + * The Security register is split into > + * 1. user-programmable lockable ID page section. > + * 2. The read-only section contains a preprogrammed, globally unique, > + * 128-bit serial number. > + */ > + uint8_t uplid[256]; > + uint8_t dsn[16]; > + uint8_t mpr[8]; > + uint8_t idr[5]; > +} PnvSpiSeeprom; > + > +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int last, > + int bits, xfer_buffer *payload); > +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port); > +void seeprom_disconnect_controller(PnvSpiResponder *resp); > +bool compute_addr(PnvSpiSeeprom *spi_resp, xfer_buffer *req_payload, > + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset); > +bool validate_addr(PnvSpiSeeprom *spi_resp); > +#endif /* PPC_PNV_SPI_SEEPROM_H */ > diff --git a/hw/ppc/pnv_spi_seeprom.c b/hw/ppc/pnv_spi_seeprom.c > new file mode 100644 > index 0000000000..ae46610045 > --- /dev/null > +++ b/hw/ppc/pnv_spi_seeprom.c > @@ -0,0 +1,989 @@ > +/* > + * QEMU PowerPC SPI SEEPROM model > + * > + * Copyright (c) 2024, IBM Corporation. > + * > + * SPDX-License-Identifier: GPL-2.0-or-later > + */ > + > +#include "qemu/osdep.h" > +#include "qemu/log.h" > +#include "hw/ppc/pnv_spi_seeprom.h" > +#include <math.h> > + > +#define SPI_DEBUG(x) > + > +/* > + * 2-byte STATUS register which is a combination of six nonvolatile bits of > + * EEPROM and five volatile latches. > + * > + * status 0: > + * bit 7 WPEN: Write-Protect Enable bit > + * 1 = Write-Protect pin is enabled, 0 = Write-Protect pin is ignored > + * > + * bit 3-2 BP<1:0>: Block Protection bits > + * 00 = No array write protection > + * 01 = Upper quarter memory array protection > + * 10 = Upper half memory array protection > + * 11 = Entire memory array protection > + * > + * bit 1 WEL: Write Enable Latch bit > + * 1 = WREN has been executed and device is enabled for writing > + * 0 = Device is not write-enabled > + * > + * bit 0 RDY/BSY: Ready/Busy Status Latch bit > + * 1 = Device is busy with an internal write cycle > + * 0 = Device is ready for a new sequence > + */ > +#define STATUS0_WPEN 0x7 > +#define STATUS0_BP 0x2 > +#define STATUS0_WEL 0x1 > +#define STATUS0_BUSY 0x0 > + > +/* > + * status 1: > + * bit 7 WPM: Write Protection Mode bit(1) > + * 1 = Enhanced Write Protection mode selected (factory default) > + * 0 = Legacy Write Protection mode selected > + * > + * bit 6 ECS: Error Correction State Latch bit > + * 1 = The previously executed read sequence did require the ECC > + * 0 = The previous executed read sequence did not require the ECC > + * > + * bit 5 FMPC: Freeze Memory Protection Configuration bit(2) > + * 1 = Memory Partition registers and write protection mode are permanently > + * frozen and cannot be modified > + * 0 = Memory Partition registers and write protection mode are not frozen > + * and are modifiable > + * > + * bit 4 PREL: Partition Register Write Enable Latch bit > + * 1 = PRWE has been executed and WMPR, FRZR and PPAB instructions are enabled > + * 0 = WMPR, FRZR and PPAB instructions are disabled > + * > + * bit 3 PABP: Partition Address Boundary Protection bit > + * 1 = Partition Address Endpoints set in Memory Partition registers > + * cannot be modified > + * 0 = Partition Address Endpoints set in Memory Partition registers > + * are modifiable > + * > + * bit 0 RDY/BSY: Ready/Busy Status Latch bit > + * 1 = Device is busy with an internal write cycle > + * 0 = Device is ready for a new sequence > + */ > +#define STATUS1_WPM 0x7 > +#define STATUS1_ECS 0x6 > +#define STATUS1_FMPC 0x5 > +#define STATUS1_PREL 0x4 > +#define STATUS1_PABP 0x3 > +#define STATUS1_BUSY 0x0 > + > +/* > + * MEMORY PARTITION REGISTERS > + * Note 1: The MPR cannot be written if the FMPC bit has been set. > + * 2: The Partition Endpoint Address bits cannot be written if the PABP > + * bit has been set. > + * > + * bits 7-6 PB<1:0>: Partition Behavior bits(1) > + * 00 = Partition is open and writing is permitted > + * factory default is unprotected. > + * 01 = Partition is always write-protected but can be reversed at a later > + * time (software write-protected). > + * 10 = Partition is write-protected only when WP pin is asserted > + * (hardware write-protected). > + * 11 = Partition is software write-protected and MPR is permanently locked > + * > + * bit 5-0 A<18:13>: Partition Endpoint Address bits(1, 2) > + * 000000 = Endpoint address of partition is set to 01FFFh. > + * 000001 = Endpoint address of partition is set to 03FFFh. > + * ---- > + * 111110 = Endpoint address of partition is set to 7DFFFh. > + * 111111 = Endpoint address of partition is set to 7FFFFh. > + */ > +#define MPR_PB 0x6 > +#define MPR_PEA 0x5 > + > +/* INSTRUCTION SET FOR 25CSM04 */ > +#define RDSR 0x05 > +#define WRBP 0x08 > +#define WREN 0x06 > +#define WRDI 0x04 > +#define WRSR 0x01 > +#define READ 0x03 > +#define WRITE 0x0 > +#define RDEX_CHLK 0x83 > +#define WREX_LOCK 0x82 > +#define RMPR 0x31 > +#define PRWE 0x07 > +#define PRWD 0x0A > +#define WMPR 0x32 > +#define PPAB 0x34 > +#define FRZR 0x37 > +#define SPID 0x9F > +#define SRST 0x7C > + > +/* READ FSM state */ > +#define ST_IDLE 0 > +#define ST_READ 1 > +#define ST_SEC_READ 2 > + > +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, > + int first, int last, int bits, xfer_buffer *payload) > +{ > + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); > + uint32_t data_offset = 0; > + int data_len = 0; > + xfer_buffer *rsp_payload = NULL; > + uint8_t *read_buf = NULL; > + uint8_t *buf = NULL; > + uint16_t idx; > + bool failed = false; Add empty line after variables declaration. > + SPI_DEBUG(qemu_log("Received SPI request, first=%d, last=%d, bits=%d, " > + "payload length=%d\n", first, last, bits, payload->len)); > + if (seeprom->controller_connected == false) { > + qemu_log_mask(LOG_GUEST_ERROR, "Controller is disconnected, invoke " > + "connect method of spi_responder interface\n"); > + return rsp_payload; > + } > + if (rsp_payload == NULL) { > + rsp_payload = xfer_buffer_new(); > + } > + buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len); > + memset(buf, 0xFF, payload->len); > + /* > + * SPI communication is always full-duplex, so the controller receives as > + * many bits as it sends, although often both the responder and controller > + * device ignores some incoming bits. To simulate half-duplex the controller > + * sends zeros to the responder when controller is receiving and ignores > + * incoming data when the controller transmitting. So, a SPI response should > + * always have the same length in bits as the corresponding request. > + */ > + if ((payload->len != ceil(bits / 8)) || (payload->len <= 0)) { len is a uint32 and can never be < 0. > + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Payload size bits(%d) " > + "Payload_len(%d bytes)\n", bits, payload->len); > + return rsp_payload; > + } > + if ((bits % 8) != 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "non-8bit aligned SPI transfer is " > + "unimplemented\n"); > + return rsp_payload; > + } > + /* > + * Different scenarios for first and last SPI interface method parameters > + * > + * first(1) and last(1) > + * SPI Controller can invoke spi_request with parameters first(1) and > + * last(1), which indicates this is first and last spi_request in this > + * transaction. This can be used when the valid data (excluding fake bytes) > + * transmitted or received over SPI is less than or equal to 8 Bytes > + * > + * first(1) and last(0), # (required) first request > + * first(0) and last(0), # (optional) in-between requests > + * first(0) and last(0), # (optional) in-between requests > + * .. > + * .. > + * first(0) and last(1), # (required) last request in the transaction > + * SPI Controller can invoke spi_request multiple times with parameters > + * first and last as shown in the sequence above for a transaction. This > + * can be used when the valid data(excluding fake bytes) transmitted or > + * received over SPI is more than 8 Bytes, SPI controller splits the > + * transaction into multiple requests, this is due to TDR and RDR size(8B) > + * restriction in SPI Controller. > + */ > + > + /* > + * check if first is "1", indicates a new incoming command sequence fetch > + * the opcode and address from payload. > + */ > + if (first == 1) { > + /* Fetch opcode from offset 0 of payload */ > + xfer_buffer_read_ptr(payload, &read_buf, 0, 1); > + seeprom->opcode = read_buf[0]; > + SPI_DEBUG(qemu_log("Command Opcode (0x%x)\n", seeprom->opcode)); > + /* > + * Check if device is busy with internal write cycle, During this > + * time, only the Read STATUS Register (RDSR) and the Write Ready/Busy > + * Poll (WRBP) instructions will be executed by the device. > + */ > + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1); > + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1); Variables should be declared at the top of the function or block. > + if (((status0_busy == 1) || (status1_busy == 1)) && > + ((seeprom->opcode != RDSR) || (seeprom->opcode != WRBP))) { > + qemu_log_mask(LOG_GUEST_ERROR, "Busy with Internal Write Cycle, " > + "opcode(0x%x) not executed\n", seeprom->opcode); > + return rsp_payload; > + } > + /* > + * Implement a state machine for READ sequence, to catch an error > + * scenario when controller generates a new command sequence, with out > + * properly terminating the READ sequence, as shown below > + * first(1) and last(0), # READ command > + * first(0) and last(0), # READ command continues > + * ... > + * first(1) and last(0,1), # New command sequence > + * Not required to implement a state machine for write sequence as > + * we can leverage status register for it > + */ > + if (seeprom->rd_state != ST_IDLE) { > + qemu_log_mask(LOG_GUEST_ERROR, "New Command Sequence with " > + "opcode(0x%x)is ignored Previous READ sequence is " > + "not terminated properly!!! Continuing the previous " > + "READ sequence\n", seeprom->opcode); > + seeprom->opcode = (seeprom->rd_state == ST_READ) ? READ : > + RDEX_CHLK; > + } else { > + /* > + * For a new command sequence compute Address and data offset in > + * xfer_buffer. > + */ > + failed = compute_addr(seeprom, payload, rsp_payload, bits, > + &data_offset); > + /* > + * Address computation failed, nothing to do further, just send > + * response and return from here. > + */ > + if (failed == true) { if (failed) { > + return rsp_payload; > + } > + } > + } /* end of branch if (first == 1) */ add empty line here > + switch (seeprom->opcode) { > + case READ: > + SPI_DEBUG(qemu_log("READ(0x%x), addr(0x%x)\n", > + seeprom->opcode, seeprom->addr)); > + seeprom->rd_state = ST_READ; > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " > + "should be at least 1 Byte\n", data_len); > + break; > + } > + /* Fill the buffer with the data read from image */ > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); > + FILE *f; Move variable decl to top of the block. > + if (seeprom->file) { > + f = fopen(seeprom->file, "rb+"); > + if (f) { > + fseek(f, seeprom->addr, SEEK_SET); Check return code. > + int read_len = fread(buf, sizeof(uint8_t), data_len, f); move variable declaration to top of block > + if (read_len == data_len) { > + SPI_DEBUG(qemu_log("Read %d bytes from seeprom\n", > + read_len)); > + } else { > + if (ferror(f)) { > + SPI_DEBUG(qemu_log("Error reading seeprom\n")); > + } > + } > + } > + fclose(f); > + } > + /* Check if last is 0 and increase address by data length */ > + if (last == 0) { > + seeprom->addr = (seeprom->addr & 0x7FFFF) + data_len; > + } else { > + seeprom->rd_state = ST_IDLE; > + } > + break; > + > + case RDSR: > + SPI_DEBUG(qemu_log("READ Status Register RDSR(0x%x)\n", > + seeprom->opcode)); > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " > + "should be at least 1 Byte\n", data_len); > + break; > + } > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); > + buf[0] = seeprom->status0; > + if (data_len == 2) { > + buf[1] = seeprom->status1; > + } > + break; > + > + case WRBP: > + SPI_DEBUG(qemu_log("Write Ready/Busy Poll WRBP(0x%x)\n", > + seeprom->opcode)); > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " > + "should be at least 1 Byte\n", data_len); > + break; > + } > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1); > + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1); > + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1); variable declaration > + if ((status0_busy == 1) || (status1_busy == 1)) { > + buf[0] = 0xFF; > + } else { > + buf[0] = 0x00; > + } > + break; > + > + case WREN: > + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WREN(0x%x)\n", > + seeprom->opcode)); > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 1); > + break; > + > + case WRDI: > + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WRDI(0x%x)\n", > + seeprom->opcode)); > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + break; > + > + case WRSR: > + SPI_DEBUG(qemu_log("Write STATUS Register WRSR(0x%x)\n", > + seeprom->opcode)); > + if (extract8(seeprom->status0, STATUS0_WEL, 1) == 1) { > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + /* Mask and update status0/1 bytes */ > + xfer_buffer_read_ptr(payload, &read_buf, 1, 2); > + seeprom->status0 = read_buf[0] & 0x8C; > + /* 2nd Status Byte is optional */ > + if (data_len == 2) { > + seeprom->status1 = read_buf[1] & 0x80; > + } > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Set Write Enable Latch (WEL) " > + "before doing WRSR\n"); > + } > + break; > + > + case SPID: > + SPI_DEBUG(qemu_log("READ IDENTIFICATION REGISTER, SPID(0x%x)\n", > + seeprom->opcode)); > + data_len = payload->len - data_offset; Missing check here for data_len <= 0? > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); > + for (idx = 0; idx < data_len; idx++) { > + buf[idx] = seeprom->idr[idx]; > + } Use memcpy(). > + break; > + > + case SRST: > + SPI_DEBUG(qemu_log("Software Device Reset, SRST(0x%x)\n", > + seeprom->opcode)); > + /* > + * Note: The SRST instruction cannot interrupt the device while it is > + * in a Busy state (Section 6.1.4 Ready/Busy Status Latch). > + * This is already taken care when the command opcode is fetched ... taken care of ... > + * > + * 1.2 Device Default State > + * 1.2.1 POWER-UP DEFAULT STATE > + * The 25CSM04 default state upon power-up consists of: > + * - Standby Power mode (CS = HIGH) > + * - A high-to-low level transition on CS is required to enter the > + * active state > + `* - WEL bit in the STATUS register = 0 stray '`' > + * - ECS bit in the STATUS register = 0 > + * - PREL bit in the STATUS register = 0 > + * - Ready/Busy (RDY/BUSY) bit in the STATUS register = 0, indicating > + * the device is ready to accept a new instruction. > + */ > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_ECS, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_BUSY, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_BUSY, 1, 0); > + break; > + > + case WRITE: > + SPI_DEBUG(qemu_log("WRITE(0x%x), addr(0x%x)\n", > + seeprom->opcode, seeprom->addr)); > + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) { > + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, " > + "ignoring WRITE instruction\n"); > + break; > + } > + /* Make sure data is at least 1 Byte */ You forgot to calculate data_len here it seems. > + if (data_len <= 0) { > + /* > + * first last comment > + * 0 0 data length cannot be 0 > + * 0 1 data length cannot be 0 > + * 1 0 data length can be 0, don't log error > + * 1 1 data length cannot be 0 > + */ > + if (!(first == 1 && (last == 0))) { (first == 1) so it looks like (last == 0) > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + } > + /* Write into SEEPROM Array */ > + SPI_DEBUG(qemu_log("(%d)%s Write sequence\n", data_len, > + (data_len == 1) ? "Byte" : "Bytes Page")); > + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len); > + if (seeprom->file) { > + f = fopen(seeprom->file, "rb+"); > + if (f) { > + fseek(f, seeprom->addr, SEEK_SET); check return code > + int write_len = fwrite(read_buf, sizeof(uint8_t), data_len, f); variable declaration > + if (write_len == data_len) { > + SPI_DEBUG(qemu_log("Write %d bytes to seeprom\n", > + write_len)); > + } else { > + SPI_DEBUG(qemu_log("Failed to write seeprom\n")); > + } > + } > + fclose(f); > + } > + /* Increase offset in the page */ > + seeprom->addr += data_len; > + /* Check if last is 1 and end the sequence */ > + if (last == 1) { > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + } > + break; > + > + case RMPR: > + SPI_DEBUG(qemu_log("RMPR(0x%x) for MPR[%d]\n", seeprom->opcode, > + extract8(seeprom->addr, 16, 2))); > + data_len = payload->len - data_offset It may be worth considering another switch statement before this one where you do this repetitive data_len handling just once: switch (seeprom->opcode) { case READ: ... case RMPR: case WMPR: case PPAB: data_len = payload->len - data_offset; if (data_len <= 0) { qem_log_mask(LOG_GUEST_ERROR, "%s: Insufficient number of bytes: %d", __func__, data_len);); return NULL; } break; default: /* does not access payload */ } > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1); > + buf[0] = seeprom->mpr[extract8(seeprom->addr, 16, 2)]; What is '16' in this case (used agaoin below also)? Add comment or define a constant? > + break; > + > + case PRWE: > + SPI_DEBUG(qemu_log("Set Memory Partition Write Enable Latch " > + "PRWE(0x%x)\n", seeprom->opcode)); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 1); > + break; > + > + case PRWD: > + SPI_DEBUG(qemu_log("Reset Memory Partition Write Enable Latch " > + "PRWD(0x%x)\n", seeprom->opcode)); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); > + break; > + > + case WMPR: > + SPI_DEBUG(qemu_log("Write Memory Partition Register[%d] WMPR(0x%x)\n", > + extract8(seeprom->addr, 16, 2), seeprom->opcode)); > + /* > + * Once the WEL and PREL bits in the STATUS register have been set to > + * 1, the Memory Partition registers can be programmed provided that > + * the FMPC bit in the STATUS register has not already been set to a > + * logic 1. > + */ > + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { > + qemu_log_mask(LOG_GUEST_ERROR, "ignoring Write to MPR\n"); > + break; > + } > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); > + if (extract8(seeprom->status1, STATUS1_PABP, 1) == 1) { > + /* Partition Address Boundaries Protected */ > + seeprom->mpr[extract8(seeprom->addr, 16, 2)] = > + ((read_buf[0] >> 6) & 0x3); > + } else { > + seeprom->mpr[extract8(seeprom->addr, 16, 2)] = read_buf[0]; > + } > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); > + break; > + > + case PPAB: > + SPI_DEBUG(qemu_log("Protect Partition Address Boundaries PPAB(0x%x)\n", > + seeprom->opcode)); > + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { > + qemu_log_mask(LOG_GUEST_ERROR, "Ignoring PPAB command\n"); > + break; > + } > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); > + if (read_buf[0] == 0xFF) { > + seeprom->status1 = deposit32(seeprom->status1, > + STATUS1_PABP, 1, 1); > + } else if (read_buf[0] == 0x0) { > + seeprom->status1 = deposit32(seeprom->status1, > + STATUS1_PABP, 1, 0); > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Data Byte(0x%x), " > + "should be 0x0 or 0xFF\n", read_buf[0]); > + } > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); > + break; > + > + case FRZR: > + SPI_DEBUG(qemu_log("Freeze Memory Protection Configuration " > + "FRZR(0x%x)\n", seeprom->opcode)); > + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || > + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { > + qemu_log_mask(LOG_GUEST_ERROR, "ignoring FRZR command\n"); > + break; > + } > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); > + if (read_buf[0] == 0xD2) { > + seeprom->status1 = deposit32(seeprom->status1, > + STATUS1_FMPC, 1, 1); > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid Confirmation Data " > + "byte(0x%x), expecting 0xD2", read_buf[0]); > + } > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); > + break; > + > + case RDEX_CHLK: > + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode)); > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ byte not Byte -- everywhere > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); > + if (extract8(seeprom->addr, 10, 1) == 0) { > + /* RDEX */ > + seeprom->rd_state = ST_SEC_READ; > + for (idx = 0; idx < data_len; idx++) { Probably the same and IMO easier to follow: sidx = seeprom->addr & 0x1ff; if (sidx <= 0xff) buf[idx] = seeprom->dsn[sidx] else buf[idx] = seeprom->uplid[sidx & 0xff]; > + if (extract32(seeprom->addr, 0, 9) <= 0xFF) { > + buf[idx] = seeprom->dsn[extract8(seeprom->addr, 0, 8)]; > + } else { > + buf[idx] = seeprom->uplid[extract8(seeprom->addr, 0, 8)]; > + } > + seeprom->addr = deposit32(seeprom->addr, 0, 9, > + ((extract32(seeprom->addr, 0, 9)) + 1)); I wonder what this is doing ... seeprom->addr = (seeprom->addr & ~0x1ff) | ((seeprom->addr + 1) & 0x1ff) > + } > + if (last == 1) { > + seeprom->rd_state = ST_IDLE; > + } else { > + /* CHLK */ > + if (seeprom->locked == true) { if (seeprom->locked) > + buf[0] = 0x01; > + } else { > + buf[0] = 0x00; > + } > + } > + } > + break; > + > + case WREX_LOCK: > + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode)); > + if (seeprom->locked == true) { if (seeprom->locked) > + qemu_log_mask(LOG_GUEST_ERROR, "Device is already Locked, " > + "command is ignored\n"); > + break; > + } > + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) { > + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, " > + "command is ignored\n"); > + break; > + } > + data_len = payload->len - data_offset; > + /* Make sure data is at least 1 Byte */ > + if (data_len <= 0) { > + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," > + " should be at least 1 Byte\n", data_len); > + break; > + } > + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len); > + if (extract8(seeprom->addr, 10, 1) == 0) { Can you add a comment why bit 10 must be 0? > + /* WREX */ > + for (idx = 0; idx < data_len; idx++) { > + seeprom->uplid[extract8(seeprom->addr, 0, 8)] = read_buf[idx]; > + /* Increase address with the page, and let it rool over */ you mean 'roll' over ? not sure what this means, though. > + seeprom->addr = deposit32(seeprom->addr, 0, 8, > + ((extract32(seeprom->addr, 0, 8)) + 1)); Are you just advancing the addr by '1' but then only modifying the lowest 9 bit and never touching bit 9? > + } > + } else { > + /* > + * LOCK (82h) instruction is clocked in on the SI line, followed > + * by a fake address where bits A[23:0] are don't care bits with > + * the exception that bit A10 must be set to 1. Finally, a > + * confirmation data byte of xxxx_xx1xb is sent > + */ > + if ((buf[0] & 0x02) == 0x2) { > + seeprom->locked = true; > + } > + } > + break; > + > + default: > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid instruction(0x%x)\n", > + seeprom->opcode); > + } /* end of switch */ > + return rsp_payload; > +} /* end of seeprom_spi_request */ > + > +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port) > +{ > + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); > + seeprom->controller_connected = true; > +} > + > +void seeprom_disconnect_controller(PnvSpiResponder *resp) > +{ > + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); > + /* This method is invoked when Controller wants to deslect responder */ This method is called when the controller wants to deselect the responder > + seeprom->controller_connected = false; > + seeprom->rd_state = ST_IDLE; /* Reset Read state */ > + if (seeprom->opcode == WRITE) { /* Reset Write enable */ > + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); > + } > +} > + > +/* > + * Method : compute_addr > + * This method is used to compute address and data offset for supported > + * opcodes and only invoked when a valid new command sequence starts aka > + * first is 1. > + */ > +bool compute_addr(PnvSpiSeeprom *seeprom, xfer_buffer *req_payload, > + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset) remove additional space: uint32_t *data_offset > +{ > + bool addr_wr_protected = false; > + uint8_t *read_buf = NULL; > + *data_offset = 0; move below variable declarations > + bool failed = false; > + > + xfer_buffer_read_ptr(req_payload, &read_buf, 1, 3); > + switch (seeprom->opcode) { > + case READ: > + case WRITE: > + SPI_DEBUG(qemu_log("Compute address and payload buffer data offset " > + "for %s\n", (seeprom->opcode == READ) ? "READ" : "WRITE")); > + /* command size is 4 bytes for READ/WRITE, data_offset is 4 */ > + *data_offset = 4; > + > + /* Make sure buffer length is at least 4 Bytes */ > + if (req_payload->len >= 4) { > + /* > + * Fetch address from size 24 bit from offset 1,2,3 of payload > + * and mask of higher 5 bits as valid memory array size is 512KB > + */ > + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); > + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]); > + seeprom->addr = deposit32(seeprom->addr, 16, 8, > + (read_buf[0] & 0x7)); seeprom->addr = ((read_buf[0] & 7) << 16) | (read_buf[1] << 8) | read_buf[2]; > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " > + "least 4Bytes to fetch Address\n", req_payload->len); > + failed = true; > + } > + if (seeprom->opcode == WRITE) { > + addr_wr_protected = validate_addr(seeprom); > + if (addr_wr_protected) { > + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is Write " > + "protected\n", seeprom->addr); > + failed = true; > + } > + } > + break; > + > + case RDSR: > + case WRBP: > + case WRSR: > + case SPID: > + /* > + * command size is 1 bytes for RDSR, WRBP, WRSR, SPID. So data_offset > + * is 1 > + */ > + *data_offset = 1; > + break; > + > + case RMPR: > + case WMPR: > + SPI_DEBUG(qemu_log("Compute MPR address for %s MPR\n", > + (seeprom->opcode == RMPR) ? "READ" : "WRITE")); > + /* command size is 4 bytes for WMPR/RMPR, data_offset is 4 */ > + *data_offset = 4; > + > + /* Make sure buffer length is at least 4 Bytes */ > + if (req_payload->len >= 4) { > + /* > + * The address for each Memory Partition register is embedded into > + * the first address byte sent to the device,in bit positions A18 > + * through A16. > + */ > + seeprom->addr = deposit32(seeprom->addr, 0, 15, 0); > + seeprom->addr = deposit32(seeprom->addr, 16, 8, > + (read_buf[0] & 0x7)); Imo the following would be better to read and understand: seeprom->addr = (read_buf[0] & 7) << 16; > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " > + "least 4Bytes to fetch Address\n", req_payload->len); > + failed = true; > + } > + break; > + > + case PPAB: > + case FRZR: > + SPI_DEBUG(qemu_log("Validate if addr[15:0] is %s\n", > + (seeprom->opcode == PPAB) ? "0xCCFF for PPAB" : > + "0xAA40 for FRZR")); > + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */ > + *data_offset = 4; > + /* Make sure buffer length is at least 4 Bytes */ > + if (req_payload->len >= 4) { > + /* Address bits A23-A16 are ignored. */ > + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); > + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]); > + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0); seeprom->addr = (read_buf[1] << 8) | read_buf[2]; > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " > + "least 4Bytes to fetch Address\n", req_payload->len); > + failed = true; > + break; > + } > + /* Address bits A15-A0 must be set to CC55h. */ > + if ((seeprom->opcode == PPAB) && > + (extract32(seeprom->addr, 0, 15) != 0xCC55)) { > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for " > + "PPAB\n", extract32(seeprom->addr, 0, 15)); > + failed = true; > + } > + /* Address bits A15-A0 must be set to AA40h. */ > + if ((seeprom->opcode == FRZR) && > + (extract32(seeprom->addr, 0, 15) != 0xAA40)) { > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for " > + "FRZR\n", extract32(seeprom->addr, 0, 15)); > + failed = true; > + } > + break; > + > + case RDEX_CHLK: > + case WREX_LOCK: > + SPI_DEBUG(qemu_log("Compute Address for Security reg command\n")); > + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */ > + *data_offset = 4; > + > + /* Make sure buffer length is at least 4 Bytes */ > + if (req_payload->len >= 4) { > + /* > + * RDEX : A[23:9] are don't care bits, except A10 which must be a > + * logic 0. > + * WREX : A[23:9] are don't care bits, except A10 which must be a > + * logic 0 and A8 which must be a logic 1 to address the > + * second Security register byte that is user programmable. > + * CHLK : A[23:0] are don't care bits, except A10 which must be a > + * logic 1. > + * LOCK : A[23:0] are don't care bits, except A10 which must be a > + * logic 1. > + */ > + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); > + seeprom->addr = deposit32(seeprom->addr, 8, 8, > + (read_buf[1] & 0x05)); > + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0); seeprom->addr = ((read_buf[1] & 0x5) << 8) | read_buf[2]; > + SPI_DEBUG(qemu_log("Received Command %s\n", > + (seeprom->opcode == RDEX_CHLK) > + ? (extract32(seeprom->addr, 10, 1) ? > + "CHLK : Check Lock Status of Security Register" : > + "RDEX : Read from the Security Register") > + : (extract32(seeprom->addr, 10, 1) ? > + "LOCK : Lock the Security Register (permanent)" : > + "WREX : Write to the Security Register"))); > + } else { > + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " > + "least 4Bytes to fetch Address\n", req_payload->len); > + failed = true; > + } > + > + if ((seeprom->opcode == WREX_LOCK) && > + (extract32(seeprom->addr, 10, 1) == 0)) { > + /* > + * WREX > + * In Legacy Write Protection mode, the Security register is > + * write-protected when the BP <1:0> bits (bits 3-2 byte0) of > + * the STATUS register = 11. > + */ > + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 0) { > + addr_wr_protected = validate_addr(seeprom); > + } else { > + if (extract32(seeprom->addr, 0, 9) <= 0xFF) { > + addr_wr_protected = true; > + } > + } > + if (addr_wr_protected) { > + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is " > + "Write protected\n", seeprom->addr); > + failed = true; > + } > + } > + break; > + } /* end of switch */ > + return failed; > +} /* end of method compute_addr */ > + > +/* > + * Method : validate_addr > + * This method validates whether SEEPROM address is write protected or not > + */ > + > +bool validate_addr(PnvSpiSeeprom *seeprom) > +{ > + bool addr_wr_protected = false; > + uint8_t mpr_idx = 0; > + > + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 1) { > + /* > + * enhanced write protection > + * Memory partition register Bit5 through bit0 contain the Partition > + * Endpoint Address of A18:A13, where A12:A0 are a logic "1". For > + * example, if the first partition of the memory array is desired to > + * stop after 128-Kbit of memory, that end point address is 03FFFh. The > + * corresponding A18:A13 address bits to be loaded into MPR0 are > + * therefore 000001b. The eight MPRs are each decoded sequentially by > + * the device, starting with MPR0. Each MPR should be set to a > + * Partition Endpoint Address greater than the ending address of the > + * previous MPR. If a higher order MPR sets a Partition Endpoint Address > + * less than or equal to the ending address of a lower order MPR, that > + * higher order MPR is ignored and no protection is set by it's > + * contents. > + */ > + for (mpr_idx = 0; mpr_idx < 8; mpr_idx++) { > + if ((extract32(seeprom->addr, 13, 6)) <= > + (extract8(seeprom->mpr[mpr_idx], MPR_PEA, 1))) { > + switch (extract8(seeprom->mpr[mpr_idx], MPR_PB, 1)) { Don't you have to extract 2 bits for the case values 0..3 below? > + case 0: > + /* > + * 0b00 = Partition is open and writing is permitted > + * (factory default is unprotected). > + */ > + addr_wr_protected = false; > + break; > + case 1: > + /* > + * 0b01 = Partition is always write-protected but can be > + * reversed at a later time (software write-protected). > + */ > + addr_wr_protected = true; > + break; > + case 2: > + /* > + * 0b10 = Partition is write-protected only when WP pin is > + * asserted (hardware write-protected). > + */ > + addr_wr_protected = false; > + break; > + case 3: > + /* > + * 0b11 = Partition is software write-protected and Memory > + * Partition register is permanently locked. > + */ > + addr_wr_protected = true; > + break; > + } /* end of switch */ > + break; /* break from for loop. */ > + } > + } /* end of for loop */ > + } else { > + /* Legacy write protection mode */ > + switch (extract8(seeprom->status0, STATUS0_BP, 2)) { 2 bits extracted -- good > + case 0: > + /* > + * 0b00 = No array write protection > + * EEPROM None > + * Security Register 00000h - 000FFh > + */ > + if ((seeprom->opcode == WREX_LOCK) && > + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { > + addr_wr_protected = true; > + } > + break; > + case 1: > + /* > + * 0b01 = Upper quarter memory array protection > + * EEPROM 60000h - 7FFFFh > + * Security Register 00000h - 000FFh > + */ > + if ((seeprom->opcode == WREX_LOCK) && > + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { > + addr_wr_protected = true; > + } else if ((seeprom->opcode == WRITE) && > + (extract32(seeprom->addr, 0, 19) <= 0x60000)) { > + addr_wr_protected = true; > + } > + break; > + case 2: > + /* > + * 0b10 = Upper half memory array protection > + * EEPROM 40000h - 7FFFFh > + * Security Register 00000h - 000FFh > + */ > + if ((seeprom->opcode == WREX_LOCK) && > + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { > + addr_wr_protected = true; > + } else if ((seeprom->opcode == WRITE) && > + (extract32(seeprom->addr, 0, 19) <= 0x40000)) { > + addr_wr_protected = true; > + } > + break; > + case 3: > + /* > + * 0b11 = Entire memory array protection > + * EEPROM 00000h - 7FFFFh > + * Security Register 00000h - 001FFh > + */ > + addr_wr_protected = true; > + break; > + } /* end of switch */ > + } > + return addr_wr_protected; > +} /* end of validate_addr */ > + > +static void pnv_spi_seeprom_class_init(ObjectClass *klass, void *data) > +{ > + DeviceClass *dc = DEVICE_CLASS(klass); > + PnvSpiResponderClass *resp_class = PNV_SPI_RESPONDER_CLASS(klass); > + > + resp_class->connect_controller = seeprom_connect_controller; > + resp_class->disconnect_controller = seeprom_disconnect_controller; > + resp_class->request = seeprom_spi_request; > + > + dc->desc = "PowerNV SPI SEEPROM"; > + dc->bus_type = TYPE_SPI_BUS; > +} > + > +static const TypeInfo pnv_spi_seeprom_info = { > + .name = TYPE_PNV_SPI_SEEPROM, > + .parent = TYPE_PNV_SPI_RESPONDER, > + .instance_size = sizeof(PnvSpiSeeprom), > + .class_init = pnv_spi_seeprom_class_init, > +}; > + > +static void pnv_spi_seeprom_register_types(void) > +{ > + type_register_static(&pnv_spi_seeprom_info); > +} > + > +type_init(pnv_spi_seeprom_register_types); > diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build > index de25cac763..2c1ef0c937 100644 > --- a/hw/ppc/meson.build > +++ b/hw/ppc/meson.build > @@ -55,6 +55,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files( > 'pnv_pnor.c', > 'pnv_spi_responder.c', > 'pnv_spi_controller.c', > + 'pnv_spi_seeprom.c', > )) > # PowerPC 4xx boards > ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
diff --git a/include/hw/ppc/pnv_spi_seeprom.h b/include/hw/ppc/pnv_spi_seeprom.h new file mode 100644 index 0000000000..9739e411b5 --- /dev/null +++ b/include/hw/ppc/pnv_spi_seeprom.h @@ -0,0 +1,70 @@ +/* + * QEMU PowerPC SPI SEEPROM model + * + * Copyright (c) 2024, IBM Corporation. + * + * SPDX-License-Identifier: GPL-2.0-or-later + * + * This model implements a Serial EEPROM utilizing the Serial Peripheral + * Interface (SPI) compatible bus. + * Currently supported variants: 25CSM04. + * The Microchip Technology Inc. 25CSM04 provides 4 Mbits of Serial EEPROM + * utilizing the Serial Peripheral Interface (SPI) compatible bus. The device + * is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized + * for use in consumer and industrial applications where reliable and + * dependable nonvolatile memory storage is essential + */ + +#ifndef PPC_PNV_SPI_SEEPROM_H +#define PPC_PNV_SPI_SEEPROM_H + +#include "hw/ppc/pnv_spi_responder.h" +#include "qom/object.h" + +#define TYPE_PNV_SPI_SEEPROM "pnv-spi-seeprom" + +OBJECT_DECLARE_SIMPLE_TYPE(PnvSpiSeeprom, PNV_SPI_SEEPROM) + +typedef struct xfer_buffer xfer_buffer; + +typedef struct PnvSpiSeeprom { + PnvSpiResponder resp; + + char *file; /* SEEPROM image file */ + uint8_t opcode; /* SEEPROM Opcode */ + uint32_t addr; /* SEEPROM Command Address */ + uint8_t rd_state; /* READ State Machine state variable */ + bool locked; /* Security Register Locked */ + bool controller_connected; /* Flag for master connection */ + /* + * Device registers + * The 25CSM04 contains four types of registers that modulate device + * operation and/or report on the current status of the device. These + * registers are: + * STATUS register + * Security register + * Memory Partition registers (eight total) + * Identification register + */ + uint8_t status0; + uint8_t status1; + /* + * The Security register is split into + * 1. user-programmable lockable ID page section. + * 2. The read-only section contains a preprogrammed, globally unique, + * 128-bit serial number. + */ + uint8_t uplid[256]; + uint8_t dsn[16]; + uint8_t mpr[8]; + uint8_t idr[5]; +} PnvSpiSeeprom; + +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int last, + int bits, xfer_buffer *payload); +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port); +void seeprom_disconnect_controller(PnvSpiResponder *resp); +bool compute_addr(PnvSpiSeeprom *spi_resp, xfer_buffer *req_payload, + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset); +bool validate_addr(PnvSpiSeeprom *spi_resp); +#endif /* PPC_PNV_SPI_SEEPROM_H */ diff --git a/hw/ppc/pnv_spi_seeprom.c b/hw/ppc/pnv_spi_seeprom.c new file mode 100644 index 0000000000..ae46610045 --- /dev/null +++ b/hw/ppc/pnv_spi_seeprom.c @@ -0,0 +1,989 @@ +/* + * QEMU PowerPC SPI SEEPROM model + * + * Copyright (c) 2024, IBM Corporation. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "hw/ppc/pnv_spi_seeprom.h" +#include <math.h> + +#define SPI_DEBUG(x) + +/* + * 2-byte STATUS register which is a combination of six nonvolatile bits of + * EEPROM and five volatile latches. + * + * status 0: + * bit 7 WPEN: Write-Protect Enable bit + * 1 = Write-Protect pin is enabled, 0 = Write-Protect pin is ignored + * + * bit 3-2 BP<1:0>: Block Protection bits + * 00 = No array write protection + * 01 = Upper quarter memory array protection + * 10 = Upper half memory array protection + * 11 = Entire memory array protection + * + * bit 1 WEL: Write Enable Latch bit + * 1 = WREN has been executed and device is enabled for writing + * 0 = Device is not write-enabled + * + * bit 0 RDY/BSY: Ready/Busy Status Latch bit + * 1 = Device is busy with an internal write cycle + * 0 = Device is ready for a new sequence + */ +#define STATUS0_WPEN 0x7 +#define STATUS0_BP 0x2 +#define STATUS0_WEL 0x1 +#define STATUS0_BUSY 0x0 + +/* + * status 1: + * bit 7 WPM: Write Protection Mode bit(1) + * 1 = Enhanced Write Protection mode selected (factory default) + * 0 = Legacy Write Protection mode selected + * + * bit 6 ECS: Error Correction State Latch bit + * 1 = The previously executed read sequence did require the ECC + * 0 = The previous executed read sequence did not require the ECC + * + * bit 5 FMPC: Freeze Memory Protection Configuration bit(2) + * 1 = Memory Partition registers and write protection mode are permanently + * frozen and cannot be modified + * 0 = Memory Partition registers and write protection mode are not frozen + * and are modifiable + * + * bit 4 PREL: Partition Register Write Enable Latch bit + * 1 = PRWE has been executed and WMPR, FRZR and PPAB instructions are enabled + * 0 = WMPR, FRZR and PPAB instructions are disabled + * + * bit 3 PABP: Partition Address Boundary Protection bit + * 1 = Partition Address Endpoints set in Memory Partition registers + * cannot be modified + * 0 = Partition Address Endpoints set in Memory Partition registers + * are modifiable + * + * bit 0 RDY/BSY: Ready/Busy Status Latch bit + * 1 = Device is busy with an internal write cycle + * 0 = Device is ready for a new sequence + */ +#define STATUS1_WPM 0x7 +#define STATUS1_ECS 0x6 +#define STATUS1_FMPC 0x5 +#define STATUS1_PREL 0x4 +#define STATUS1_PABP 0x3 +#define STATUS1_BUSY 0x0 + +/* + * MEMORY PARTITION REGISTERS + * Note 1: The MPR cannot be written if the FMPC bit has been set. + * 2: The Partition Endpoint Address bits cannot be written if the PABP + * bit has been set. + * + * bits 7-6 PB<1:0>: Partition Behavior bits(1) + * 00 = Partition is open and writing is permitted + * factory default is unprotected. + * 01 = Partition is always write-protected but can be reversed at a later + * time (software write-protected). + * 10 = Partition is write-protected only when WP pin is asserted + * (hardware write-protected). + * 11 = Partition is software write-protected and MPR is permanently locked + * + * bit 5-0 A<18:13>: Partition Endpoint Address bits(1, 2) + * 000000 = Endpoint address of partition is set to 01FFFh. + * 000001 = Endpoint address of partition is set to 03FFFh. + * ---- + * 111110 = Endpoint address of partition is set to 7DFFFh. + * 111111 = Endpoint address of partition is set to 7FFFFh. + */ +#define MPR_PB 0x6 +#define MPR_PEA 0x5 + +/* INSTRUCTION SET FOR 25CSM04 */ +#define RDSR 0x05 +#define WRBP 0x08 +#define WREN 0x06 +#define WRDI 0x04 +#define WRSR 0x01 +#define READ 0x03 +#define WRITE 0x0 +#define RDEX_CHLK 0x83 +#define WREX_LOCK 0x82 +#define RMPR 0x31 +#define PRWE 0x07 +#define PRWD 0x0A +#define WMPR 0x32 +#define PPAB 0x34 +#define FRZR 0x37 +#define SPID 0x9F +#define SRST 0x7C + +/* READ FSM state */ +#define ST_IDLE 0 +#define ST_READ 1 +#define ST_SEC_READ 2 + +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, + int first, int last, int bits, xfer_buffer *payload) +{ + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); + uint32_t data_offset = 0; + int data_len = 0; + xfer_buffer *rsp_payload = NULL; + uint8_t *read_buf = NULL; + uint8_t *buf = NULL; + uint16_t idx; + bool failed = false; + SPI_DEBUG(qemu_log("Received SPI request, first=%d, last=%d, bits=%d, " + "payload length=%d\n", first, last, bits, payload->len)); + if (seeprom->controller_connected == false) { + qemu_log_mask(LOG_GUEST_ERROR, "Controller is disconnected, invoke " + "connect method of spi_responder interface\n"); + return rsp_payload; + } + if (rsp_payload == NULL) { + rsp_payload = xfer_buffer_new(); + } + buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len); + memset(buf, 0xFF, payload->len); + /* + * SPI communication is always full-duplex, so the controller receives as + * many bits as it sends, although often both the responder and controller + * device ignores some incoming bits. To simulate half-duplex the controller + * sends zeros to the responder when controller is receiving and ignores + * incoming data when the controller transmitting. So, a SPI response should + * always have the same length in bits as the corresponding request. + */ + if ((payload->len != ceil(bits / 8)) || (payload->len <= 0)) { + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Payload size bits(%d) " + "Payload_len(%d bytes)\n", bits, payload->len); + return rsp_payload; + } + if ((bits % 8) != 0) { + qemu_log_mask(LOG_GUEST_ERROR, "non-8bit aligned SPI transfer is " + "unimplemented\n"); + return rsp_payload; + } + /* + * Different scenarios for first and last SPI interface method parameters + * + * first(1) and last(1) + * SPI Controller can invoke spi_request with parameters first(1) and + * last(1), which indicates this is first and last spi_request in this + * transaction. This can be used when the valid data (excluding fake bytes) + * transmitted or received over SPI is less than or equal to 8 Bytes + * + * first(1) and last(0), # (required) first request + * first(0) and last(0), # (optional) in-between requests + * first(0) and last(0), # (optional) in-between requests + * .. + * .. + * first(0) and last(1), # (required) last request in the transaction + * SPI Controller can invoke spi_request multiple times with parameters + * first and last as shown in the sequence above for a transaction. This + * can be used when the valid data(excluding fake bytes) transmitted or + * received over SPI is more than 8 Bytes, SPI controller splits the + * transaction into multiple requests, this is due to TDR and RDR size(8B) + * restriction in SPI Controller. + */ + + /* + * check if first is "1", indicates a new incoming command sequence fetch + * the opcode and address from payload. + */ + if (first == 1) { + /* Fetch opcode from offset 0 of payload */ + xfer_buffer_read_ptr(payload, &read_buf, 0, 1); + seeprom->opcode = read_buf[0]; + SPI_DEBUG(qemu_log("Command Opcode (0x%x)\n", seeprom->opcode)); + /* + * Check if device is busy with internal write cycle, During this + * time, only the Read STATUS Register (RDSR) and the Write Ready/Busy + * Poll (WRBP) instructions will be executed by the device. + */ + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1); + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1); + if (((status0_busy == 1) || (status1_busy == 1)) && + ((seeprom->opcode != RDSR) || (seeprom->opcode != WRBP))) { + qemu_log_mask(LOG_GUEST_ERROR, "Busy with Internal Write Cycle, " + "opcode(0x%x) not executed\n", seeprom->opcode); + return rsp_payload; + } + /* + * Implement a state machine for READ sequence, to catch an error + * scenario when controller generates a new command sequence, with out + * properly terminating the READ sequence, as shown below + * first(1) and last(0), # READ command + * first(0) and last(0), # READ command continues + * ... + * first(1) and last(0,1), # New command sequence + * Not required to implement a state machine for write sequence as + * we can leverage status register for it + */ + if (seeprom->rd_state != ST_IDLE) { + qemu_log_mask(LOG_GUEST_ERROR, "New Command Sequence with " + "opcode(0x%x)is ignored Previous READ sequence is " + "not terminated properly!!! Continuing the previous " + "READ sequence\n", seeprom->opcode); + seeprom->opcode = (seeprom->rd_state == ST_READ) ? READ : + RDEX_CHLK; + } else { + /* + * For a new command sequence compute Address and data offset in + * xfer_buffer. + */ + failed = compute_addr(seeprom, payload, rsp_payload, bits, + &data_offset); + /* + * Address computation failed, nothing to do further, just send + * response and return from here. + */ + if (failed == true) { + return rsp_payload; + } + } + } /* end of branch if (first == 1) */ + switch (seeprom->opcode) { + case READ: + SPI_DEBUG(qemu_log("READ(0x%x), addr(0x%x)\n", + seeprom->opcode, seeprom->addr)); + seeprom->rd_state = ST_READ; + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " + "should be at least 1 Byte\n", data_len); + break; + } + /* Fill the buffer with the data read from image */ + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); + FILE *f; + if (seeprom->file) { + f = fopen(seeprom->file, "rb+"); + if (f) { + fseek(f, seeprom->addr, SEEK_SET); + int read_len = fread(buf, sizeof(uint8_t), data_len, f); + if (read_len == data_len) { + SPI_DEBUG(qemu_log("Read %d bytes from seeprom\n", + read_len)); + } else { + if (ferror(f)) { + SPI_DEBUG(qemu_log("Error reading seeprom\n")); + } + } + } + fclose(f); + } + /* Check if last is 0 and increase address by data length */ + if (last == 0) { + seeprom->addr = (seeprom->addr & 0x7FFFF) + data_len; + } else { + seeprom->rd_state = ST_IDLE; + } + break; + + case RDSR: + SPI_DEBUG(qemu_log("READ Status Register RDSR(0x%x)\n", + seeprom->opcode)); + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " + "should be at least 1 Byte\n", data_len); + break; + } + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); + buf[0] = seeprom->status0; + if (data_len == 2) { + buf[1] = seeprom->status1; + } + break; + + case WRBP: + SPI_DEBUG(qemu_log("Write Ready/Busy Poll WRBP(0x%x)\n", + seeprom->opcode)); + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), " + "should be at least 1 Byte\n", data_len); + break; + } + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1); + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1); + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1); + if ((status0_busy == 1) || (status1_busy == 1)) { + buf[0] = 0xFF; + } else { + buf[0] = 0x00; + } + break; + + case WREN: + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WREN(0x%x)\n", + seeprom->opcode)); + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 1); + break; + + case WRDI: + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WRDI(0x%x)\n", + seeprom->opcode)); + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + break; + + case WRSR: + SPI_DEBUG(qemu_log("Write STATUS Register WRSR(0x%x)\n", + seeprom->opcode)); + if (extract8(seeprom->status0, STATUS0_WEL, 1) == 1) { + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + /* Mask and update status0/1 bytes */ + xfer_buffer_read_ptr(payload, &read_buf, 1, 2); + seeprom->status0 = read_buf[0] & 0x8C; + /* 2nd Status Byte is optional */ + if (data_len == 2) { + seeprom->status1 = read_buf[1] & 0x80; + } + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Set Write Enable Latch (WEL) " + "before doing WRSR\n"); + } + break; + + case SPID: + SPI_DEBUG(qemu_log("READ IDENTIFICATION REGISTER, SPID(0x%x)\n", + seeprom->opcode)); + data_len = payload->len - data_offset; + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); + for (idx = 0; idx < data_len; idx++) { + buf[idx] = seeprom->idr[idx]; + } + break; + + case SRST: + SPI_DEBUG(qemu_log("Software Device Reset, SRST(0x%x)\n", + seeprom->opcode)); + /* + * Note: The SRST instruction cannot interrupt the device while it is + * in a Busy state (Section 6.1.4 Ready/Busy Status Latch). + * This is already taken care when the command opcode is fetched + * + * 1.2 Device Default State + * 1.2.1 POWER-UP DEFAULT STATE + * The 25CSM04 default state upon power-up consists of: + * - Standby Power mode (CS = HIGH) + * - A high-to-low level transition on CS is required to enter the + * active state + `* - WEL bit in the STATUS register = 0 + * - ECS bit in the STATUS register = 0 + * - PREL bit in the STATUS register = 0 + * - Ready/Busy (RDY/BUSY) bit in the STATUS register = 0, indicating + * the device is ready to accept a new instruction. + */ + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_ECS, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); + seeprom->status0 = deposit32(seeprom->status0, STATUS0_BUSY, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_BUSY, 1, 0); + break; + + case WRITE: + SPI_DEBUG(qemu_log("WRITE(0x%x), addr(0x%x)\n", + seeprom->opcode, seeprom->addr)); + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) { + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, " + "ignoring WRITE instruction\n"); + break; + } + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + /* + * first last comment + * 0 0 data length cannot be 0 + * 0 1 data length cannot be 0 + * 1 0 data length can be 0, don't log error + * 1 1 data length cannot be 0 + */ + if (!(first == 1 && (last == 0))) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + } + /* Write into SEEPROM Array */ + SPI_DEBUG(qemu_log("(%d)%s Write sequence\n", data_len, + (data_len == 1) ? "Byte" : "Bytes Page")); + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len); + if (seeprom->file) { + f = fopen(seeprom->file, "rb+"); + if (f) { + fseek(f, seeprom->addr, SEEK_SET); + int write_len = fwrite(read_buf, sizeof(uint8_t), data_len, f); + if (write_len == data_len) { + SPI_DEBUG(qemu_log("Write %d bytes to seeprom\n", + write_len)); + } else { + SPI_DEBUG(qemu_log("Failed to write seeprom\n")); + } + } + fclose(f); + } + /* Increase offset in the page */ + seeprom->addr += data_len; + /* Check if last is 1 and end the sequence */ + if (last == 1) { + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + } + break; + + case RMPR: + SPI_DEBUG(qemu_log("RMPR(0x%x) for MPR[%d]\n", seeprom->opcode, + extract8(seeprom->addr, 16, 2))); + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1); + buf[0] = seeprom->mpr[extract8(seeprom->addr, 16, 2)]; + break; + + case PRWE: + SPI_DEBUG(qemu_log("Set Memory Partition Write Enable Latch " + "PRWE(0x%x)\n", seeprom->opcode)); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 1); + break; + + case PRWD: + SPI_DEBUG(qemu_log("Reset Memory Partition Write Enable Latch " + "PRWD(0x%x)\n", seeprom->opcode)); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); + break; + + case WMPR: + SPI_DEBUG(qemu_log("Write Memory Partition Register[%d] WMPR(0x%x)\n", + extract8(seeprom->addr, 16, 2), seeprom->opcode)); + /* + * Once the WEL and PREL bits in the STATUS register have been set to + * 1, the Memory Partition registers can be programmed provided that + * the FMPC bit in the STATUS register has not already been set to a + * logic 1. + */ + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { + qemu_log_mask(LOG_GUEST_ERROR, "ignoring Write to MPR\n"); + break; + } + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); + if (extract8(seeprom->status1, STATUS1_PABP, 1) == 1) { + /* Partition Address Boundaries Protected */ + seeprom->mpr[extract8(seeprom->addr, 16, 2)] = + ((read_buf[0] >> 6) & 0x3); + } else { + seeprom->mpr[extract8(seeprom->addr, 16, 2)] = read_buf[0]; + } + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); + break; + + case PPAB: + SPI_DEBUG(qemu_log("Protect Partition Address Boundaries PPAB(0x%x)\n", + seeprom->opcode)); + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { + qemu_log_mask(LOG_GUEST_ERROR, "Ignoring PPAB command\n"); + break; + } + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); + if (read_buf[0] == 0xFF) { + seeprom->status1 = deposit32(seeprom->status1, + STATUS1_PABP, 1, 1); + } else if (read_buf[0] == 0x0) { + seeprom->status1 = deposit32(seeprom->status1, + STATUS1_PABP, 1, 0); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Data Byte(0x%x), " + "should be 0x0 or 0xFF\n", read_buf[0]); + } + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); + break; + + case FRZR: + SPI_DEBUG(qemu_log("Freeze Memory Protection Configuration " + "FRZR(0x%x)\n", seeprom->opcode)); + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) || + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) { + qemu_log_mask(LOG_GUEST_ERROR, "ignoring FRZR command\n"); + break; + } + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1); + if (read_buf[0] == 0xD2) { + seeprom->status1 = deposit32(seeprom->status1, + STATUS1_FMPC, 1, 1); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Invalid Confirmation Data " + "byte(0x%x), expecting 0xD2", read_buf[0]); + } + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0); + break; + + case RDEX_CHLK: + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode)); + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len); + if (extract8(seeprom->addr, 10, 1) == 0) { + /* RDEX */ + seeprom->rd_state = ST_SEC_READ; + for (idx = 0; idx < data_len; idx++) { + if (extract32(seeprom->addr, 0, 9) <= 0xFF) { + buf[idx] = seeprom->dsn[extract8(seeprom->addr, 0, 8)]; + } else { + buf[idx] = seeprom->uplid[extract8(seeprom->addr, 0, 8)]; + } + seeprom->addr = deposit32(seeprom->addr, 0, 9, + ((extract32(seeprom->addr, 0, 9)) + 1)); + } + if (last == 1) { + seeprom->rd_state = ST_IDLE; + } else { + /* CHLK */ + if (seeprom->locked == true) { + buf[0] = 0x01; + } else { + buf[0] = 0x00; + } + } + } + break; + + case WREX_LOCK: + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode)); + if (seeprom->locked == true) { + qemu_log_mask(LOG_GUEST_ERROR, "Device is already Locked, " + "command is ignored\n"); + break; + } + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) { + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, " + "command is ignored\n"); + break; + } + data_len = payload->len - data_offset; + /* Make sure data is at least 1 Byte */ + if (data_len <= 0) { + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB)," + " should be at least 1 Byte\n", data_len); + break; + } + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len); + if (extract8(seeprom->addr, 10, 1) == 0) { + /* WREX */ + for (idx = 0; idx < data_len; idx++) { + seeprom->uplid[extract8(seeprom->addr, 0, 8)] = read_buf[idx]; + /* Increase address with the page, and let it rool over */ + seeprom->addr = deposit32(seeprom->addr, 0, 8, + ((extract32(seeprom->addr, 0, 8)) + 1)); + } + } else { + /* + * LOCK (82h) instruction is clocked in on the SI line, followed + * by a fake address where bits A[23:0] are don't care bits with + * the exception that bit A10 must be set to 1. Finally, a + * confirmation data byte of xxxx_xx1xb is sent + */ + if ((buf[0] & 0x02) == 0x2) { + seeprom->locked = true; + } + } + break; + + default: + qemu_log_mask(LOG_GUEST_ERROR, "Invalid instruction(0x%x)\n", + seeprom->opcode); + } /* end of switch */ + return rsp_payload; +} /* end of seeprom_spi_request */ + +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port) +{ + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); + seeprom->controller_connected = true; +} + +void seeprom_disconnect_controller(PnvSpiResponder *resp) +{ + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp); + /* This method is invoked when Controller wants to deslect responder */ + seeprom->controller_connected = false; + seeprom->rd_state = ST_IDLE; /* Reset Read state */ + if (seeprom->opcode == WRITE) { /* Reset Write enable */ + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0); + } +} + +/* + * Method : compute_addr + * This method is used to compute address and data offset for supported + * opcodes and only invoked when a valid new command sequence starts aka + * first is 1. + */ +bool compute_addr(PnvSpiSeeprom *seeprom, xfer_buffer *req_payload, + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset) +{ + bool addr_wr_protected = false; + uint8_t *read_buf = NULL; + *data_offset = 0; + bool failed = false; + + xfer_buffer_read_ptr(req_payload, &read_buf, 1, 3); + switch (seeprom->opcode) { + case READ: + case WRITE: + SPI_DEBUG(qemu_log("Compute address and payload buffer data offset " + "for %s\n", (seeprom->opcode == READ) ? "READ" : "WRITE")); + /* command size is 4 bytes for READ/WRITE, data_offset is 4 */ + *data_offset = 4; + + /* Make sure buffer length is at least 4 Bytes */ + if (req_payload->len >= 4) { + /* + * Fetch address from size 24 bit from offset 1,2,3 of payload + * and mask of higher 5 bits as valid memory array size is 512KB + */ + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]); + seeprom->addr = deposit32(seeprom->addr, 16, 8, + (read_buf[0] & 0x7)); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " + "least 4Bytes to fetch Address\n", req_payload->len); + failed = true; + } + if (seeprom->opcode == WRITE) { + addr_wr_protected = validate_addr(seeprom); + if (addr_wr_protected) { + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is Write " + "protected\n", seeprom->addr); + failed = true; + } + } + break; + + case RDSR: + case WRBP: + case WRSR: + case SPID: + /* + * command size is 1 bytes for RDSR, WRBP, WRSR, SPID. So data_offset + * is 1 + */ + *data_offset = 1; + break; + + case RMPR: + case WMPR: + SPI_DEBUG(qemu_log("Compute MPR address for %s MPR\n", + (seeprom->opcode == RMPR) ? "READ" : "WRITE")); + /* command size is 4 bytes for WMPR/RMPR, data_offset is 4 */ + *data_offset = 4; + + /* Make sure buffer length is at least 4 Bytes */ + if (req_payload->len >= 4) { + /* + * The address for each Memory Partition register is embedded into + * the first address byte sent to the device,in bit positions A18 + * through A16. + */ + seeprom->addr = deposit32(seeprom->addr, 0, 15, 0); + seeprom->addr = deposit32(seeprom->addr, 16, 8, + (read_buf[0] & 0x7)); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " + "least 4Bytes to fetch Address\n", req_payload->len); + failed = true; + } + break; + + case PPAB: + case FRZR: + SPI_DEBUG(qemu_log("Validate if addr[15:0] is %s\n", + (seeprom->opcode == PPAB) ? "0xCCFF for PPAB" : + "0xAA40 for FRZR")); + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */ + *data_offset = 4; + /* Make sure buffer length is at least 4 Bytes */ + if (req_payload->len >= 4) { + /* Address bits A23-A16 are ignored. */ + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]); + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " + "least 4Bytes to fetch Address\n", req_payload->len); + failed = true; + break; + } + /* Address bits A15-A0 must be set to CC55h. */ + if ((seeprom->opcode == PPAB) && + (extract32(seeprom->addr, 0, 15) != 0xCC55)) { + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for " + "PPAB\n", extract32(seeprom->addr, 0, 15)); + failed = true; + } + /* Address bits A15-A0 must be set to AA40h. */ + if ((seeprom->opcode == FRZR) && + (extract32(seeprom->addr, 0, 15) != 0xAA40)) { + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for " + "FRZR\n", extract32(seeprom->addr, 0, 15)); + failed = true; + } + break; + + case RDEX_CHLK: + case WREX_LOCK: + SPI_DEBUG(qemu_log("Compute Address for Security reg command\n")); + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */ + *data_offset = 4; + + /* Make sure buffer length is at least 4 Bytes */ + if (req_payload->len >= 4) { + /* + * RDEX : A[23:9] are don't care bits, except A10 which must be a + * logic 0. + * WREX : A[23:9] are don't care bits, except A10 which must be a + * logic 0 and A8 which must be a logic 1 to address the + * second Security register byte that is user programmable. + * CHLK : A[23:0] are don't care bits, except A10 which must be a + * logic 1. + * LOCK : A[23:0] are don't care bits, except A10 which must be a + * logic 1. + */ + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]); + seeprom->addr = deposit32(seeprom->addr, 8, 8, + (read_buf[1] & 0x05)); + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0); + SPI_DEBUG(qemu_log("Received Command %s\n", + (seeprom->opcode == RDEX_CHLK) + ? (extract32(seeprom->addr, 10, 1) ? + "CHLK : Check Lock Status of Security Register" : + "RDEX : Read from the Security Register") + : (extract32(seeprom->addr, 10, 1) ? + "LOCK : Lock the Security Register (permanent)" : + "WREX : Write to the Security Register"))); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at " + "least 4Bytes to fetch Address\n", req_payload->len); + failed = true; + } + + if ((seeprom->opcode == WREX_LOCK) && + (extract32(seeprom->addr, 10, 1) == 0)) { + /* + * WREX + * In Legacy Write Protection mode, the Security register is + * write-protected when the BP <1:0> bits (bits 3-2 byte0) of + * the STATUS register = 11. + */ + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 0) { + addr_wr_protected = validate_addr(seeprom); + } else { + if (extract32(seeprom->addr, 0, 9) <= 0xFF) { + addr_wr_protected = true; + } + } + if (addr_wr_protected) { + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is " + "Write protected\n", seeprom->addr); + failed = true; + } + } + break; + } /* end of switch */ + return failed; +} /* end of method compute_addr */ + +/* + * Method : validate_addr + * This method validates whether SEEPROM address is write protected or not + */ + +bool validate_addr(PnvSpiSeeprom *seeprom) +{ + bool addr_wr_protected = false; + uint8_t mpr_idx = 0; + + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 1) { + /* + * enhanced write protection + * Memory partition register Bit5 through bit0 contain the Partition + * Endpoint Address of A18:A13, where A12:A0 are a logic "1". For + * example, if the first partition of the memory array is desired to + * stop after 128-Kbit of memory, that end point address is 03FFFh. The + * corresponding A18:A13 address bits to be loaded into MPR0 are + * therefore 000001b. The eight MPRs are each decoded sequentially by + * the device, starting with MPR0. Each MPR should be set to a + * Partition Endpoint Address greater than the ending address of the + * previous MPR. If a higher order MPR sets a Partition Endpoint Address + * less than or equal to the ending address of a lower order MPR, that + * higher order MPR is ignored and no protection is set by it's + * contents. + */ + for (mpr_idx = 0; mpr_idx < 8; mpr_idx++) { + if ((extract32(seeprom->addr, 13, 6)) <= + (extract8(seeprom->mpr[mpr_idx], MPR_PEA, 1))) { + switch (extract8(seeprom->mpr[mpr_idx], MPR_PB, 1)) { + case 0: + /* + * 0b00 = Partition is open and writing is permitted + * (factory default is unprotected). + */ + addr_wr_protected = false; + break; + case 1: + /* + * 0b01 = Partition is always write-protected but can be + * reversed at a later time (software write-protected). + */ + addr_wr_protected = true; + break; + case 2: + /* + * 0b10 = Partition is write-protected only when WP pin is + * asserted (hardware write-protected). + */ + addr_wr_protected = false; + break; + case 3: + /* + * 0b11 = Partition is software write-protected and Memory + * Partition register is permanently locked. + */ + addr_wr_protected = true; + break; + } /* end of switch */ + break; /* break from for loop. */ + } + } /* end of for loop */ + } else { + /* Legacy write protection mode */ + switch (extract8(seeprom->status0, STATUS0_BP, 2)) { + case 0: + /* + * 0b00 = No array write protection + * EEPROM None + * Security Register 00000h - 000FFh + */ + if ((seeprom->opcode == WREX_LOCK) && + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { + addr_wr_protected = true; + } + break; + case 1: + /* + * 0b01 = Upper quarter memory array protection + * EEPROM 60000h - 7FFFFh + * Security Register 00000h - 000FFh + */ + if ((seeprom->opcode == WREX_LOCK) && + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { + addr_wr_protected = true; + } else if ((seeprom->opcode == WRITE) && + (extract32(seeprom->addr, 0, 19) <= 0x60000)) { + addr_wr_protected = true; + } + break; + case 2: + /* + * 0b10 = Upper half memory array protection + * EEPROM 40000h - 7FFFFh + * Security Register 00000h - 000FFh + */ + if ((seeprom->opcode == WREX_LOCK) && + (extract32(seeprom->addr, 0, 9) <= 0xFF)) { + addr_wr_protected = true; + } else if ((seeprom->opcode == WRITE) && + (extract32(seeprom->addr, 0, 19) <= 0x40000)) { + addr_wr_protected = true; + } + break; + case 3: + /* + * 0b11 = Entire memory array protection + * EEPROM 00000h - 7FFFFh + * Security Register 00000h - 001FFh + */ + addr_wr_protected = true; + break; + } /* end of switch */ + } + return addr_wr_protected; +} /* end of validate_addr */ + +static void pnv_spi_seeprom_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + PnvSpiResponderClass *resp_class = PNV_SPI_RESPONDER_CLASS(klass); + + resp_class->connect_controller = seeprom_connect_controller; + resp_class->disconnect_controller = seeprom_disconnect_controller; + resp_class->request = seeprom_spi_request; + + dc->desc = "PowerNV SPI SEEPROM"; + dc->bus_type = TYPE_SPI_BUS; +} + +static const TypeInfo pnv_spi_seeprom_info = { + .name = TYPE_PNV_SPI_SEEPROM, + .parent = TYPE_PNV_SPI_RESPONDER, + .instance_size = sizeof(PnvSpiSeeprom), + .class_init = pnv_spi_seeprom_class_init, +}; + +static void pnv_spi_seeprom_register_types(void) +{ + type_register_static(&pnv_spi_seeprom_info); +} + +type_init(pnv_spi_seeprom_register_types); diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build index de25cac763..2c1ef0c937 100644 --- a/hw/ppc/meson.build +++ b/hw/ppc/meson.build @@ -55,6 +55,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files( 'pnv_pnor.c', 'pnv_spi_responder.c', 'pnv_spi_controller.c', + 'pnv_spi_seeprom.c', )) # PowerPC 4xx boards ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
This commit implements a Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible bus. Currently implemented SEEPROM is Microchip's 25CSM04 which provides 4 Mbits of Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible bus. The device is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized for use in consumer and industrial applications where reliable and dependable nonvolatile memory storage is essential. Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com> --- include/hw/ppc/pnv_spi_seeprom.h | 70 +++ hw/ppc/pnv_spi_seeprom.c | 989 +++++++++++++++++++++++++++++++ hw/ppc/meson.build | 1 + 3 files changed, 1060 insertions(+) create mode 100644 include/hw/ppc/pnv_spi_seeprom.h create mode 100644 hw/ppc/pnv_spi_seeprom.c