@@ -686,16 +686,17 @@ bool ppc_decr_clear_on_delivery(CPUPPCState *env)
static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
{
ppc_tb_t *tb_env = env->tb_env;
- int64_t decr, diff;
+ uint64_t now, n;
+ int64_t decr;
- diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- if (diff >= 0) {
- decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
- } else if (tb_env->flags & PPC_TIMER_BOOKE) {
+ now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ n = muldiv64(now, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
+ if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
decr = 0;
- } else {
- decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
+ } else {
+ decr = next - n;
}
+
trace_ppc_decr_load(decr);
return decr;
@@ -834,11 +835,11 @@ static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
/* Calculate the next timer event */
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
- *nextp = next;
+ next = muldiv64(now, tb_env->decr_freq, NANOSECONDS_PER_SECOND) + value;
+ *nextp = next; /* nextp is in timebase units */
/* Adjust timer */
- timer_mod(timer, next);
+ timer_mod(timer, muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq));
}
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
@@ -1153,14 +1154,20 @@ static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
} else {
trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- next = now + muldiv64(ppc40x_timer->pit_reload,
- NANOSECONDS_PER_SECOND, tb_env->decr_freq);
- if (is_excp)
- next += tb_env->decr_next - now;
- if (next == now)
- next++;
+
+ if (is_excp) {
+ tb_env->decr_next += ppc40x_timer->pit_reload;
+ } else {
+ tb_env->decr_next = muldiv64(now, tb_env->decr_freq,
+ NANOSECONDS_PER_SECOND)
+ + ppc40x_timer->pit_reload;
+ }
+ next = muldiv64(tb_env->decr_next, NANOSECONDS_PER_SECOND,
+ tb_env->decr_freq);
+ if (next <= now) {
+ next = now + 1;
+ }
timer_mod(tb_env->decr_timer, next);
- tb_env->decr_next = next;
}
}
The decrementer register contains a relative time in timebase units. When writing to DECR this is converted and stored as an absolute value in nanosecond units, reading DECR converts back to relative timebase. The tb<->ns conversion of the relative part can cause rounding such that a value writen to the decrementer can read back a different, with time held constant. This is a particular problem for a deterministic icount and record-replay trace. Fix this by storing the absolute value in timebase units rather than nanoseconds. The math before: store: decr_next = now_ns + decr * ns_per_sec / tb_per_sec load: decr = (decr_next - now_ns) * tb_per_sec / ns_per_sec load(store): decr = decr * ns_per_sec / tb_per_sec * tb_per_sec / ns_per_sec After: store: decr_next = now_ns * tb_per_sec / ns_per_sec + decr load: decr = decr_next - now_ns * tb_per_sec / ns_per_sec load(store): decr = decr Fixes: 9fddaa0c0cab ("PowerPC merge: real time TB and decrementer - faster and simpler exception handling (Jocelyn Mayer)") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> --- hw/ppc/ppc.c | 41 ++++++++++++++++++++++++----------------- 1 file changed, 24 insertions(+), 17 deletions(-)