new file mode 100644
@@ -0,0 +1,9090 @@
+/*
+ * ARM CP registers
+ *
+ * This code is licensed under the GNU GPL v2 or later.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "trace.h"
+#include "cpu.h"
+#include "internals.h"
+#include "exec/helper-proto.h"
+#include "qemu/main-loop.h"
+#include "exec/exec-all.h"
+#include "hw/irq.h"
+#include "sysemu/cpu-timers.h"
+#include "qapi/error.h"
+#include "qemu/guest-random.h"
+#include "cpregs.h"
+
+#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
+
+static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ assert(ri->fieldoffset);
+ if (cpreg_field_is_64bit(ri)) {
+ return CPREG_FIELD64(env, ri);
+ } else {
+ return CPREG_FIELD32(env, ri);
+ }
+}
+
+void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ assert(ri->fieldoffset);
+ if (cpreg_field_is_64bit(ri)) {
+ CPREG_FIELD64(env, ri) = value;
+ } else {
+ CPREG_FIELD32(env, ri) = value;
+ }
+}
+
+static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return (char *)env + ri->fieldoffset;
+}
+
+uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* Raw read of a coprocessor register (as needed for migration, etc). */
+ if (ri->type & ARM_CP_CONST) {
+ return ri->resetvalue;
+ } else if (ri->raw_readfn) {
+ return ri->raw_readfn(env, ri);
+ } else if (ri->readfn) {
+ return ri->readfn(env, ri);
+ } else {
+ return raw_read(env, ri);
+ }
+}
+
+static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t v)
+{
+ /*
+ * Raw write of a coprocessor register (as needed for migration, etc).
+ * Note that constant registers are treated as write-ignored; the
+ * caller should check for success by whether a readback gives the
+ * value written.
+ */
+ if (ri->type & ARM_CP_CONST) {
+ return;
+ } else if (ri->raw_writefn) {
+ ri->raw_writefn(env, ri, v);
+ } else if (ri->writefn) {
+ ri->writefn(env, ri, v);
+ } else {
+ raw_write(env, ri, v);
+ }
+}
+
+static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
+{
+ /*
+ * Return true if the regdef would cause an assertion if you called
+ * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
+ * program bug for it not to have the NO_RAW flag).
+ * NB that returning false here doesn't necessarily mean that calling
+ * read/write_raw_cp_reg() is safe, because we can't distinguish "has
+ * read/write access functions which are safe for raw use" from "has
+ * read/write access functions which have side effects but has forgotten
+ * to provide raw access functions".
+ * The tests here line up with the conditions in read/write_raw_cp_reg()
+ * and assertions in raw_read()/raw_write().
+ */
+ if ((ri->type & ARM_CP_CONST) ||
+ ri->fieldoffset ||
+ ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
+ return false;
+ }
+ return true;
+}
+
+bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
+{
+ /* Write the coprocessor state from cpu->env to the (index,value) list. */
+ int i;
+ bool ok = true;
+
+ for (i = 0; i < cpu->cpreg_array_len; i++) {
+ uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
+ const ARMCPRegInfo *ri;
+ uint64_t newval;
+
+ ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+ if (!ri) {
+ ok = false;
+ continue;
+ }
+ if (ri->type & ARM_CP_NO_RAW) {
+ continue;
+ }
+
+ newval = read_raw_cp_reg(&cpu->env, ri);
+ if (kvm_sync) {
+ /*
+ * Only sync if the previous list->cpustate sync succeeded.
+ * Rather than tracking the success/failure state for every
+ * item in the list, we just recheck "does the raw write we must
+ * have made in write_list_to_cpustate() read back OK" here.
+ */
+ uint64_t oldval = cpu->cpreg_values[i];
+
+ if (oldval == newval) {
+ continue;
+ }
+
+ write_raw_cp_reg(&cpu->env, ri, oldval);
+ if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
+ continue;
+ }
+
+ write_raw_cp_reg(&cpu->env, ri, newval);
+ }
+ cpu->cpreg_values[i] = newval;
+ }
+ return ok;
+}
+
+bool write_list_to_cpustate(ARMCPU *cpu)
+{
+ int i;
+ bool ok = true;
+
+ for (i = 0; i < cpu->cpreg_array_len; i++) {
+ uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
+ uint64_t v = cpu->cpreg_values[i];
+ const ARMCPRegInfo *ri;
+
+ ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+ if (!ri) {
+ ok = false;
+ continue;
+ }
+ if (ri->type & ARM_CP_NO_RAW) {
+ continue;
+ }
+ /*
+ * Write value and confirm it reads back as written
+ * (to catch read-only registers and partially read-only
+ * registers where the incoming migration value doesn't match)
+ */
+ write_raw_cp_reg(&cpu->env, ri, v);
+ if (read_raw_cp_reg(&cpu->env, ri) != v) {
+ ok = false;
+ }
+ }
+ return ok;
+}
+
+static void add_cpreg_to_list(gpointer key, gpointer opaque)
+{
+ ARMCPU *cpu = opaque;
+ uint32_t regidx = (uintptr_t)key;
+ const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
+
+ if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
+ cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
+ /* The value array need not be initialized at this point */
+ cpu->cpreg_array_len++;
+ }
+}
+
+static void count_cpreg(gpointer key, gpointer opaque)
+{
+ ARMCPU *cpu = opaque;
+ const ARMCPRegInfo *ri;
+
+ ri = g_hash_table_lookup(cpu->cp_regs, key);
+
+ if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
+ cpu->cpreg_array_len++;
+ }
+}
+
+static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
+{
+ uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
+ uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
+
+ if (aidx > bidx) {
+ return 1;
+ }
+ if (aidx < bidx) {
+ return -1;
+ }
+ return 0;
+}
+
+void init_cpreg_list(ARMCPU *cpu)
+{
+ /*
+ * Initialise the cpreg_tuples[] array based on the cp_regs hash.
+ * Note that we require cpreg_tuples[] to be sorted by key ID.
+ */
+ GList *keys;
+ int arraylen;
+
+ keys = g_hash_table_get_keys(cpu->cp_regs);
+ keys = g_list_sort(keys, cpreg_key_compare);
+
+ cpu->cpreg_array_len = 0;
+
+ g_list_foreach(keys, count_cpreg, cpu);
+
+ arraylen = cpu->cpreg_array_len;
+ cpu->cpreg_indexes = g_new(uint64_t, arraylen);
+ cpu->cpreg_values = g_new(uint64_t, arraylen);
+ cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
+ cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
+ cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
+ cpu->cpreg_array_len = 0;
+
+ g_list_foreach(keys, add_cpreg_to_list, cpu);
+
+ assert(cpu->cpreg_array_len == arraylen);
+
+ g_list_free(keys);
+}
+
+/*
+ * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
+ */
+static CPAccessResult access_el3_aa32ns(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (!is_a64(env) && arm_current_el(env) == 3 &&
+ arm_is_secure_below_el3(env)) {
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+ }
+ return CP_ACCESS_OK;
+}
+
+/*
+ * Some secure-only AArch32 registers trap to EL3 if used from
+ * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
+ * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
+ * We assume that the .access field is set to PL1_RW.
+ */
+static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 3) {
+ return CP_ACCESS_OK;
+ }
+ if (arm_is_secure_below_el3(env)) {
+ if (env->cp15.scr_el3 & SCR_EEL2) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_TRAP_EL3;
+ }
+ /* This will be EL1 NS and EL2 NS, which just UNDEF */
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+}
+
+/*
+ * Check for traps to performance monitor registers, which are controlled
+ * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
+ */
+static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+
+ if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
+static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1) {
+ uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
+ if (arm_hcr_el2_eff(env) & trap) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ return CP_ACCESS_OK;
+}
+
+/* Check for traps from EL1 due to HCR_EL2.TSW. */
+static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+/* Check for traps from EL1 due to HCR_EL2.TACR. */
+static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+/* Check for traps from EL1 due to HCR_EL2.TTLB. */
+static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
+static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 &&
+ (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+#ifdef TARGET_AARCH64
+/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
+static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 &&
+ (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+#endif
+
+static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ raw_write(env, ri, value);
+ tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
+}
+
+static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ if (raw_read(env, ri) != value) {
+ /*
+ * Unlike real hardware the qemu TLB uses virtual addresses,
+ * not modified virtual addresses, so this causes a TLB flush.
+ */
+ tlb_flush(CPU(cpu));
+ raw_write(env, ri, value);
+ }
+}
+
+static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
+ && !extended_addresses_enabled(env)) {
+ /*
+ * For VMSA (when not using the LPAE long descriptor page table
+ * format) this register includes the ASID, so do a TLB flush.
+ * For PMSA it is purely a process ID and no action is needed.
+ */
+ tlb_flush(CPU(cpu));
+ }
+ raw_write(env, ri, value);
+}
+
+static int alle1_tlbmask(CPUARMState *env)
+{
+ /*
+ * Note that the 'ALL' scope must invalidate both stage 1 and
+ * stage 2 translations, whereas most other scopes only invalidate
+ * stage 1 translations.
+ */
+ return (ARMMMUIdxBit_E10_1 |
+ ARMMMUIdxBit_E10_1_PAN |
+ ARMMMUIdxBit_E10_0 |
+ ARMMMUIdxBit_Stage2 |
+ ARMMMUIdxBit_Stage2_S);
+}
+
+
+/* IS variants of TLB operations must affect all cores */
+static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_all_cpus_synced(cs);
+}
+
+static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_all_cpus_synced(cs);
+}
+
+static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
+}
+
+static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
+}
+
+/*
+ * Non-IS variants of TLB operations are upgraded to
+ * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
+ * force broadcast of these operations.
+ */
+static bool tlb_force_broadcast(CPUARMState *env)
+{
+ return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
+}
+
+static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate all (TLBIALL) */
+ CPUState *cs = env_cpu(env);
+
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_all_cpus_synced(cs);
+ } else {
+ tlb_flush(cs);
+ }
+}
+
+static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
+ CPUState *cs = env_cpu(env);
+
+ value &= TARGET_PAGE_MASK;
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_page_all_cpus_synced(cs, value);
+ } else {
+ tlb_flush_page(cs, value);
+ }
+}
+
+static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate by ASID (TLBIASID) */
+ CPUState *cs = env_cpu(env);
+
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_all_cpus_synced(cs);
+ } else {
+ tlb_flush(cs);
+ }
+}
+
+static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
+ CPUState *cs = env_cpu(env);
+
+ value &= TARGET_PAGE_MASK;
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_page_all_cpus_synced(cs, value);
+ } else {
+ tlb_flush_page(cs, value);
+ }
+}
+
+static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
+}
+
+static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
+}
+
+
+static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
+}
+
+static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
+}
+
+static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
+
+ tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
+}
+
+static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
+
+ tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
+ ARMMMUIdxBit_E2);
+}
+
+static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
+
+ tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
+}
+
+static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
+
+ tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
+}
+
+static const ARMCPRegInfo cp_reginfo[] = {
+ /*
+ * Define the secure and non-secure FCSE identifier CP registers
+ * separately because there is no secure bank in V8 (no _EL3). This allows
+ * the secure register to be properly reset and migrated. There is also no
+ * v8 EL1 version of the register so the non-secure instance stands alone.
+ */
+ { .name = "FCSEIDR",
+ .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
+ .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
+ .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
+ { .name = "FCSEIDR_S",
+ .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
+ .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
+ .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
+ /*
+ * Define the secure and non-secure context identifier CP registers
+ * separately because there is no secure bank in V8 (no _EL3). This allows
+ * the secure register to be properly reset and migrated. In the
+ * non-secure case, the 32-bit register will have reset and migration
+ * disabled during registration as it is handled by the 64-bit instance.
+ */
+ { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .secure = ARM_CP_SECSTATE_NS,
+ .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
+ .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
+ { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .secure = ARM_CP_SECSTATE_S,
+ .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
+ .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
+};
+
+static const ARMCPRegInfo not_v8_cp_reginfo[] = {
+ /*
+ * NB: Some of these registers exist in v8 but with more precise
+ * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
+ */
+ /* MMU Domain access control / MPU write buffer control */
+ { .name = "DACR",
+ .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
+ .writefn = dacr_write, .raw_writefn = raw_write,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
+ offsetoflow32(CPUARMState, cp15.dacr_ns) } },
+ /*
+ * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
+ * For v6 and v5, these mappings are overly broad.
+ */
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ /* Cache maintenance ops; some of this space may be overridden later. */
+ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
+};
+
+static const ARMCPRegInfo not_v6_cp_reginfo[] = {
+ /*
+ * Not all pre-v6 cores implemented this WFI, so this is slightly
+ * over-broad.
+ */
+ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
+ .access = PL1_W, .type = ARM_CP_WFI },
+};
+
+static const ARMCPRegInfo not_v7_cp_reginfo[] = {
+ /*
+ * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+ * is UNPREDICTABLE; we choose to NOP as most implementations do).
+ */
+ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_WFI },
+ /*
+ * L1 cache lockdown. Not architectural in v6 and earlier but in practice
+ * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
+ * OMAPCP will override this space.
+ */
+ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
+ .resetvalue = 0 },
+ { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
+ .resetvalue = 0 },
+ /* v6 doesn't have the cache ID registers but Linux reads them anyway */
+ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+ .resetvalue = 0 },
+ /*
+ * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
+ * implementing it as RAZ means the "debug architecture version" bits
+ * will read as a reserved value, which should cause Linux to not try
+ * to use the debug hardware.
+ */
+ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /*
+ * MMU TLB control. Note that the wildcarding means we cover not just
+ * the unified TLB ops but also the dside/iside/inner-shareable variants.
+ */
+ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
+ .type = ARM_CP_NO_RAW },
+ { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
+ .type = ARM_CP_NO_RAW },
+ { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
+ .type = ARM_CP_NO_RAW },
+ { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
+ .type = ARM_CP_NO_RAW },
+ { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
+ .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
+ .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
+};
+
+static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint32_t mask = 0;
+
+ /* In ARMv8 most bits of CPACR_EL1 are RES0. */
+ if (!arm_feature(env, ARM_FEATURE_V8)) {
+ /*
+ * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
+ * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
+ * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
+ */
+ if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
+ /* VFP coprocessor: cp10 & cp11 [23:20] */
+ mask |= R_CPACR_ASEDIS_MASK |
+ R_CPACR_D32DIS_MASK |
+ R_CPACR_CP11_MASK |
+ R_CPACR_CP10_MASK;
+
+ if (!arm_feature(env, ARM_FEATURE_NEON)) {
+ /* ASEDIS [31] bit is RAO/WI */
+ value |= R_CPACR_ASEDIS_MASK;
+ }
+
+ /*
+ * VFPv3 and upwards with NEON implement 32 double precision
+ * registers (D0-D31).
+ */
+ if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
+ /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
+ value |= R_CPACR_D32DIS_MASK;
+ }
+ }
+ value &= mask;
+ }
+
+ /*
+ * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
+ * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
+ !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
+ mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
+ value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
+ }
+
+ env->cp15.cpacr_el1 = value;
+}
+
+static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /*
+ * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
+ * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
+ */
+ uint64_t value = env->cp15.cpacr_el1;
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
+ !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
+ value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
+ }
+ return value;
+}
+
+
+static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /*
+ * Call cpacr_write() so that we reset with the correct RAO bits set
+ * for our CPU features.
+ */
+ cpacr_write(env, ri, 0);
+}
+
+static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ /* Check if CPACR accesses are to be trapped to EL2 */
+ if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
+ FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
+ return CP_ACCESS_TRAP_EL2;
+ /* Check if CPACR accesses are to be trapped to EL3 */
+ } else if (arm_current_el(env) < 3 &&
+ FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* Check if CPTR accesses are set to trap to EL3 */
+ if (arm_current_el(env) == 2 &&
+ FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo v6_cp_reginfo[] = {
+ /* prefetch by MVA in v6, NOP in v7 */
+ { .name = "MVA_prefetch",
+ .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ /*
+ * We need to break the TB after ISB to execute self-modifying code
+ * correctly and also to take any pending interrupts immediately.
+ * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
+ */
+ { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
+ { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
+ offsetof(CPUARMState, cp15.ifar_ns) },
+ .resetvalue = 0, },
+ /*
+ * Watchpoint Fault Address Register : should actually only be present
+ * for 1136, 1176, 11MPCore.
+ */
+ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
+ { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
+ .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
+ .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
+};
+
+typedef struct pm_event {
+ uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
+ /* If the event is supported on this CPU (used to generate PMCEID[01]) */
+ bool (*supported)(CPUARMState *);
+ /*
+ * Retrieve the current count of the underlying event. The programmed
+ * counters hold a difference from the return value from this function
+ */
+ uint64_t (*get_count)(CPUARMState *);
+ /*
+ * Return how many nanoseconds it will take (at a minimum) for count events
+ * to occur. A negative value indicates the counter will never overflow, or
+ * that the counter has otherwise arranged for the overflow bit to be set
+ * and the PMU interrupt to be raised on overflow.
+ */
+ int64_t (*ns_per_count)(uint64_t);
+} pm_event;
+
+static bool event_always_supported(CPUARMState *env)
+{
+ return true;
+}
+
+static uint64_t swinc_get_count(CPUARMState *env)
+{
+ /*
+ * SW_INCR events are written directly to the pmevcntr's by writes to
+ * PMSWINC, so there is no underlying count maintained by the PMU itself
+ */
+ return 0;
+}
+
+static int64_t swinc_ns_per(uint64_t ignored)
+{
+ return -1;
+}
+
+/*
+ * Return the underlying cycle count for the PMU cycle counters. If we're in
+ * usermode, simply return 0.
+ */
+static uint64_t cycles_get_count(CPUARMState *env)
+{
+#ifndef CONFIG_USER_ONLY
+ return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
+#else
+ return cpu_get_host_ticks();
+#endif
+}
+
+#ifndef CONFIG_USER_ONLY
+static int64_t cycles_ns_per(uint64_t cycles)
+{
+ return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
+}
+
+static bool instructions_supported(CPUARMState *env)
+{
+ return icount_enabled() == 1; /* Precise instruction counting */
+}
+
+static uint64_t instructions_get_count(CPUARMState *env)
+{
+ return (uint64_t)icount_get_raw();
+}
+
+static int64_t instructions_ns_per(uint64_t icount)
+{
+ return icount_to_ns((int64_t)icount);
+}
+#endif
+
+static bool pmuv3p1_events_supported(CPUARMState *env)
+{
+ /* For events which are supported in any v8.1 PMU */
+ return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
+}
+
+static bool pmuv3p4_events_supported(CPUARMState *env)
+{
+ /* For events which are supported in any v8.1 PMU */
+ return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
+}
+
+static uint64_t zero_event_get_count(CPUARMState *env)
+{
+ /* For events which on QEMU never fire, so their count is always zero */
+ return 0;
+}
+
+static int64_t zero_event_ns_per(uint64_t cycles)
+{
+ /* An event which never fires can never overflow */
+ return -1;
+}
+
+static const pm_event pm_events[] = {
+ { .number = 0x000, /* SW_INCR */
+ .supported = event_always_supported,
+ .get_count = swinc_get_count,
+ .ns_per_count = swinc_ns_per,
+ },
+#ifndef CONFIG_USER_ONLY
+ { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
+ .supported = instructions_supported,
+ .get_count = instructions_get_count,
+ .ns_per_count = instructions_ns_per,
+ },
+ { .number = 0x011, /* CPU_CYCLES, Cycle */
+ .supported = event_always_supported,
+ .get_count = cycles_get_count,
+ .ns_per_count = cycles_ns_per,
+ },
+#endif
+ { .number = 0x023, /* STALL_FRONTEND */
+ .supported = pmuv3p1_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+ { .number = 0x024, /* STALL_BACKEND */
+ .supported = pmuv3p1_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+ { .number = 0x03c, /* STALL */
+ .supported = pmuv3p4_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+};
+
+/*
+ * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
+ * events (i.e. the statistical profiling extension), this implementation
+ * should first be updated to something sparse instead of the current
+ * supported_event_map[] array.
+ */
+#define MAX_EVENT_ID 0x3c
+#define UNSUPPORTED_EVENT UINT16_MAX
+static uint16_t supported_event_map[MAX_EVENT_ID + 1];
+
+/*
+ * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
+ * of ARM event numbers to indices in our pm_events array.
+ *
+ * Note: Events in the 0x40XX range are not currently supported.
+ */
+void pmu_init(ARMCPU *cpu)
+{
+ unsigned int i;
+
+ /*
+ * Empty supported_event_map and cpu->pmceid[01] before adding supported
+ * events to them
+ */
+ for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
+ supported_event_map[i] = UNSUPPORTED_EVENT;
+ }
+ cpu->pmceid0 = 0;
+ cpu->pmceid1 = 0;
+
+ for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
+ const pm_event *cnt = &pm_events[i];
+ assert(cnt->number <= MAX_EVENT_ID);
+ /* We do not currently support events in the 0x40xx range */
+ assert(cnt->number <= 0x3f);
+
+ if (cnt->supported(&cpu->env)) {
+ supported_event_map[cnt->number] = i;
+ uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
+ if (cnt->number & 0x20) {
+ cpu->pmceid1 |= event_mask;
+ } else {
+ cpu->pmceid0 |= event_mask;
+ }
+ }
+ }
+}
+
+/*
+ * Check at runtime whether a PMU event is supported for the current machine
+ */
+static bool event_supported(uint16_t number)
+{
+ if (number > MAX_EVENT_ID) {
+ return false;
+ }
+ return supported_event_map[number] != UNSUPPORTED_EVENT;
+}
+
+static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * Performance monitor registers user accessibility is controlled
+ * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
+ * trapping to EL2 or EL3 for other accesses.
+ */
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+
+ if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
+ return CP_ACCESS_TRAP;
+ }
+ if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* ER: event counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
+ && isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_swinc(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* SW: software increment write trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
+ && !isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_selr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* ER: event counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* CR: cycle counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
+ && isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+/*
+ * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
+ * We use these to decide whether we need to wrap a write to MDCR_EL2
+ * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
+ */
+#define MDCR_EL2_PMU_ENABLE_BITS \
+ (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
+#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
+
+/*
+ * Returns true if the counter (pass 31 for PMCCNTR) should count events using
+ * the current EL, security state, and register configuration.
+ */
+static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
+{
+ uint64_t filter;
+ bool e, p, u, nsk, nsu, nsh, m;
+ bool enabled, prohibited = false, filtered;
+ bool secure = arm_is_secure(env);
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+ uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
+
+ if (!arm_feature(env, ARM_FEATURE_PMU)) {
+ return false;
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_EL2) ||
+ (counter < hpmn || counter == 31)) {
+ e = env->cp15.c9_pmcr & PMCRE;
+ } else {
+ e = mdcr_el2 & MDCR_HPME;
+ }
+ enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
+
+ /* Is event counting prohibited? */
+ if (el == 2 && (counter < hpmn || counter == 31)) {
+ prohibited = mdcr_el2 & MDCR_HPMD;
+ }
+ if (secure) {
+ prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
+ }
+
+ if (counter == 31) {
+ /*
+ * The cycle counter defaults to running. PMCR.DP says "disable
+ * the cycle counter when event counting is prohibited".
+ * Some MDCR bits disable the cycle counter specifically.
+ */
+ prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
+ if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ if (secure) {
+ prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
+ }
+ if (el == 2) {
+ prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
+ }
+ }
+ }
+
+ if (counter == 31) {
+ filter = env->cp15.pmccfiltr_el0;
+ } else {
+ filter = env->cp15.c14_pmevtyper[counter];
+ }
+
+ p = filter & PMXEVTYPER_P;
+ u = filter & PMXEVTYPER_U;
+ nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
+ nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
+ nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
+ m = arm_el_is_aa64(env, 1) &&
+ arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
+
+ if (el == 0) {
+ filtered = secure ? u : u != nsu;
+ } else if (el == 1) {
+ filtered = secure ? p : p != nsk;
+ } else if (el == 2) {
+ filtered = !nsh;
+ } else { /* EL3 */
+ filtered = m != p;
+ }
+
+ if (counter != 31) {
+ /*
+ * If not checking PMCCNTR, ensure the counter is setup to an event we
+ * support
+ */
+ uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
+ if (!event_supported(event)) {
+ return false;
+ }
+ }
+
+ return enabled && !prohibited && !filtered;
+}
+
+static void pmu_update_irq(CPUARMState *env)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
+ (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
+}
+
+static bool pmccntr_clockdiv_enabled(CPUARMState *env)
+{
+ /*
+ * Return true if the clock divider is enabled and the cycle counter
+ * is supposed to tick only once every 64 clock cycles. This is
+ * controlled by PMCR.D, but if PMCR.LC is set to enable the long
+ * (64-bit) cycle counter PMCR.D has no effect.
+ */
+ return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
+}
+
+static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
+{
+ /* Return true if the specified event counter is configured to be 64 bit */
+
+ /* This isn't intended to be used with the cycle counter */
+ assert(counter < 31);
+
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ return false;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ /*
+ * MDCR_EL2.HLP still applies even when EL2 is disabled in the
+ * current security state, so we don't use arm_mdcr_el2_eff() here.
+ */
+ bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
+ int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
+
+ if (hpmn != 0 && counter >= hpmn) {
+ return hlp;
+ }
+ }
+ return env->cp15.c9_pmcr & PMCRLP;
+}
+
+/*
+ * Ensure c15_ccnt is the guest-visible count so that operations such as
+ * enabling/disabling the counter or filtering, modifying the count itself,
+ * etc. can be done logically. This is essentially a no-op if the counter is
+ * not enabled at the time of the call.
+ */
+static void pmccntr_op_start(CPUARMState *env)
+{
+ uint64_t cycles = cycles_get_count(env);
+
+ if (pmu_counter_enabled(env, 31)) {
+ uint64_t eff_cycles = cycles;
+ if (pmccntr_clockdiv_enabled(env)) {
+ eff_cycles /= 64;
+ }
+
+ uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
+
+ uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
+ 1ull << 63 : 1ull << 31;
+ if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1ULL << 31);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c15_ccnt = new_pmccntr;
+ }
+ env->cp15.c15_ccnt_delta = cycles;
+}
+
+/*
+ * If PMCCNTR is enabled, recalculate the delta between the clock and the
+ * guest-visible count. A call to pmccntr_op_finish should follow every call to
+ * pmccntr_op_start.
+ */
+static void pmccntr_op_finish(CPUARMState *env)
+{
+ if (pmu_counter_enabled(env, 31)) {
+#ifndef CONFIG_USER_ONLY
+ /* Calculate when the counter will next overflow */
+ uint64_t remaining_cycles = -env->cp15.c15_ccnt;
+ if (!(env->cp15.c9_pmcr & PMCRLC)) {
+ remaining_cycles = (uint32_t)remaining_cycles;
+ }
+ int64_t overflow_in = cycles_ns_per(remaining_cycles);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at;
+
+ if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ overflow_in, &overflow_at)) {
+ ARMCPU *cpu = env_archcpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+ }
+#endif
+
+ uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
+ if (pmccntr_clockdiv_enabled(env)) {
+ prev_cycles /= 64;
+ }
+ env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
+ }
+}
+
+static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
+{
+
+ uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
+ uint64_t count = 0;
+ if (event_supported(event)) {
+ uint16_t event_idx = supported_event_map[event];
+ count = pm_events[event_idx].get_count(env);
+ }
+
+ if (pmu_counter_enabled(env, counter)) {
+ uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
+ uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
+ 1ULL << 63 : 1ULL << 31;
+
+ if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1 << counter);
+ pmu_update_irq(env);
+ }
+ env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
+ }
+ env->cp15.c14_pmevcntr_delta[counter] = count;
+}
+
+static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
+{
+ if (pmu_counter_enabled(env, counter)) {
+#ifndef CONFIG_USER_ONLY
+ uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
+ uint16_t event_idx = supported_event_map[event];
+ uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
+ int64_t overflow_in;
+
+ if (!pmevcntr_is_64_bit(env, counter)) {
+ delta = (uint32_t)delta;
+ }
+ overflow_in = pm_events[event_idx].ns_per_count(delta);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at;
+
+ if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ overflow_in, &overflow_at)) {
+ ARMCPU *cpu = env_archcpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+ }
+#endif
+
+ env->cp15.c14_pmevcntr_delta[counter] -=
+ env->cp15.c14_pmevcntr[counter];
+ }
+}
+
+void pmu_op_start(CPUARMState *env)
+{
+ unsigned int i;
+ pmccntr_op_start(env);
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ pmevcntr_op_start(env, i);
+ }
+}
+
+void pmu_op_finish(CPUARMState *env)
+{
+ unsigned int i;
+ pmccntr_op_finish(env);
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ pmevcntr_op_finish(env, i);
+ }
+}
+
+void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
+{
+ pmu_op_start(&cpu->env);
+}
+
+void pmu_post_el_change(ARMCPU *cpu, void *ignored)
+{
+ pmu_op_finish(&cpu->env);
+}
+
+void arm_pmu_timer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ /*
+ * Update all the counter values based on the current underlying counts,
+ * triggering interrupts to be raised, if necessary. pmu_op_finish() also
+ * has the effect of setting the cpu->pmu_timer to the next earliest time a
+ * counter may expire.
+ */
+ pmu_op_start(&cpu->env);
+ pmu_op_finish(&cpu->env);
+}
+
+static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+
+ if (value & PMCRC) {
+ /* The counter has been reset */
+ env->cp15.c15_ccnt = 0;
+ }
+
+ if (value & PMCRP) {
+ unsigned int i;
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ env->cp15.c14_pmevcntr[i] = 0;
+ }
+ }
+
+ env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
+ env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
+
+ pmu_op_finish(env);
+}
+
+static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ unsigned int i;
+ uint64_t overflow_mask, new_pmswinc;
+
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ /* Increment a counter's count iff: */
+ if ((value & (1 << i)) && /* counter's bit is set */
+ /* counter is enabled and not filtered */
+ pmu_counter_enabled(env, i) &&
+ /* counter is SW_INCR */
+ (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
+ pmevcntr_op_start(env, i);
+
+ /*
+ * Detect if this write causes an overflow since we can't predict
+ * PMSWINC overflows like we can for other events
+ */
+ new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
+
+ overflow_mask = pmevcntr_is_64_bit(env, i) ?
+ 1ULL << 63 : 1ULL << 31;
+
+ if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1 << i);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c14_pmevcntr[i] = new_pmswinc;
+
+ pmevcntr_op_finish(env, i);
+ }
+ }
+}
+
+static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint64_t ret;
+ pmccntr_op_start(env);
+ ret = env->cp15.c15_ccnt;
+ pmccntr_op_finish(env);
+ return ret;
+}
+
+static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
+ * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
+ * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
+ * accessed.
+ */
+ env->cp15.c9_pmselr = value & 0x1f;
+}
+
+static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ env->cp15.c15_ccnt = value;
+ pmccntr_op_finish(env);
+}
+
+static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint64_t cur_val = pmccntr_read(env, NULL);
+
+ pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
+}
+
+static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
+ pmccntr_op_finish(env);
+}
+
+static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ /* M is not accessible from AArch32 */
+ env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
+ (value & PMCCFILTR);
+ pmccntr_op_finish(env);
+}
+
+static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* M is not visible in AArch32 */
+ return env->cp15.pmccfiltr_el0 & PMCCFILTR;
+}
+
+static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmcnten |= value;
+ pmu_op_finish(env);
+}
+
+static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmcnten &= ~value;
+ pmu_op_finish(env);
+}
+
+static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmovsr &= ~value;
+ pmu_update_irq(env);
+}
+
+static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmovsr |= value;
+ pmu_update_irq(env);
+}
+
+static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value, const uint8_t counter)
+{
+ if (counter == 31) {
+ pmccfiltr_write(env, ri, value);
+ } else if (counter < pmu_num_counters(env)) {
+ pmevcntr_op_start(env, counter);
+
+ /*
+ * If this counter's event type is changing, store the current
+ * underlying count for the new type in c14_pmevcntr_delta[counter] so
+ * pmevcntr_op_finish has the correct baseline when it converts back to
+ * a delta.
+ */
+ uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
+ PMXEVTYPER_EVTCOUNT;
+ uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
+ if (old_event != new_event) {
+ uint64_t count = 0;
+ if (event_supported(new_event)) {
+ uint16_t event_idx = supported_event_map[new_event];
+ count = pm_events[event_idx].get_count(env);
+ }
+ env->cp15.c14_pmevcntr_delta[counter] = count;
+ }
+
+ env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
+ pmevcntr_op_finish(env, counter);
+ }
+ /*
+ * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
+ * PMSELR value is equal to or greater than the number of implemented
+ * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
+ */
+}
+
+static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ const uint8_t counter)
+{
+ if (counter == 31) {
+ return env->cp15.pmccfiltr_el0;
+ } else if (counter < pmu_num_counters(env)) {
+ return env->cp15.c14_pmevtyper[counter];
+ } else {
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
+ * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
+ */
+ return 0;
+ }
+}
+
+static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ pmevtyper_write(env, ri, value, counter);
+}
+
+static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ env->cp15.c14_pmevtyper[counter] = value;
+
+ /*
+ * pmevtyper_rawwrite is called between a pair of pmu_op_start and
+ * pmu_op_finish calls when loading saved state for a migration. Because
+ * we're potentially updating the type of event here, the value written to
+ * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
+ * different counter type. Therefore, we need to set this value to the
+ * current count for the counter type we're writing so that pmu_op_finish
+ * has the correct count for its calculation.
+ */
+ uint16_t event = value & PMXEVTYPER_EVTCOUNT;
+ if (event_supported(event)) {
+ uint16_t event_idx = supported_event_map[event];
+ env->cp15.c14_pmevcntr_delta[counter] =
+ pm_events[event_idx].get_count(env);
+ }
+}
+
+static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ return pmevtyper_read(env, ri, counter);
+}
+
+static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
+}
+
+static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
+}
+
+static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value, uint8_t counter)
+{
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
+ value &= MAKE_64BIT_MASK(0, 32);
+ }
+ if (counter < pmu_num_counters(env)) {
+ pmevcntr_op_start(env, counter);
+ env->cp15.c14_pmevcntr[counter] = value;
+ pmevcntr_op_finish(env, counter);
+ }
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
+ * are CONSTRAINED UNPREDICTABLE.
+ */
+}
+
+static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint8_t counter)
+{
+ if (counter < pmu_num_counters(env)) {
+ uint64_t ret;
+ pmevcntr_op_start(env, counter);
+ ret = env->cp15.c14_pmevcntr[counter];
+ pmevcntr_op_finish(env, counter);
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
+ ret &= MAKE_64BIT_MASK(0, 32);
+ }
+ return ret;
+ } else {
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
+ * are CONSTRAINED UNPREDICTABLE.
+ */
+ return 0;
+ }
+}
+
+static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ pmevcntr_write(env, ri, value, counter);
+}
+
+static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ return pmevcntr_read(env, ri, counter);
+}
+
+static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ assert(counter < pmu_num_counters(env));
+ env->cp15.c14_pmevcntr[counter] = value;
+ pmevcntr_write(env, ri, value, counter);
+}
+
+static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ assert(counter < pmu_num_counters(env));
+ return env->cp15.c14_pmevcntr[counter];
+}
+
+static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
+}
+
+static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
+}
+
+static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ env->cp15.c9_pmuserenr = value & 0xf;
+ } else {
+ env->cp15.c9_pmuserenr = value & 1;
+ }
+}
+
+static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* We have no event counters so only the C bit can be changed */
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pminten |= value;
+ pmu_update_irq(env);
+}
+
+static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pminten &= ~value;
+ pmu_update_irq(env);
+}
+
+static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Note that even though the AArch64 view of this register has bits
+ * [10:0] all RES0 we can only mask the bottom 5, to comply with the
+ * architectural requirements for bits which are RES0 only in some
+ * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
+ * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
+ */
+ raw_write(env, ri, value & ~0x1FULL);
+}
+
+static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ /* Begin with base v8.0 state. */
+ uint64_t valid_mask = 0x3fff;
+ ARMCPU *cpu = env_archcpu(env);
+ uint64_t changed;
+
+ /*
+ * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
+ * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
+ * Instead, choose the format based on the mode of EL3.
+ */
+ if (arm_el_is_aa64(env, 3)) {
+ value |= SCR_FW | SCR_AW; /* RES1 */
+ valid_mask &= ~SCR_NET; /* RES0 */
+
+ if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
+ !cpu_isar_feature(aa64_aa32_el2, cpu)) {
+ value |= SCR_RW; /* RAO/WI */
+ }
+ if (cpu_isar_feature(aa64_ras, cpu)) {
+ valid_mask |= SCR_TERR;
+ }
+ if (cpu_isar_feature(aa64_lor, cpu)) {
+ valid_mask |= SCR_TLOR;
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ valid_mask |= SCR_API | SCR_APK;
+ }
+ if (cpu_isar_feature(aa64_sel2, cpu)) {
+ valid_mask |= SCR_EEL2;
+ }
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ valid_mask |= SCR_ATA;
+ }
+ if (cpu_isar_feature(aa64_scxtnum, cpu)) {
+ valid_mask |= SCR_ENSCXT;
+ }
+ if (cpu_isar_feature(aa64_doublefault, cpu)) {
+ valid_mask |= SCR_EASE | SCR_NMEA;
+ }
+ if (cpu_isar_feature(aa64_sme, cpu)) {
+ valid_mask |= SCR_ENTP2;
+ }
+ if (cpu_isar_feature(aa64_hcx, cpu)) {
+ valid_mask |= SCR_HXEN;
+ }
+ } else {
+ valid_mask &= ~(SCR_RW | SCR_ST);
+ if (cpu_isar_feature(aa32_ras, cpu)) {
+ valid_mask |= SCR_TERR;
+ }
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_EL2)) {
+ valid_mask &= ~SCR_HCE;
+
+ /*
+ * On ARMv7, SMD (or SCD as it is called in v7) is only
+ * supported if EL2 exists. The bit is UNK/SBZP when
+ * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
+ * when EL2 is unavailable.
+ * On ARMv8, this bit is always available.
+ */
+ if (arm_feature(env, ARM_FEATURE_V7) &&
+ !arm_feature(env, ARM_FEATURE_V8)) {
+ valid_mask &= ~SCR_SMD;
+ }
+ }
+
+ /* Clear all-context RES0 bits. */
+ value &= valid_mask;
+ changed = env->cp15.scr_el3 ^ value;
+ env->cp15.scr_el3 = value;
+
+ /*
+ * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
+ * we must invalidate all TLBs below EL3.
+ */
+ if (changed & SCR_NS) {
+ tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
+ ARMMMUIdxBit_E20_0 |
+ ARMMMUIdxBit_E10_1 |
+ ARMMMUIdxBit_E20_2 |
+ ARMMMUIdxBit_E10_1_PAN |
+ ARMMMUIdxBit_E20_2_PAN |
+ ARMMMUIdxBit_E2));
+ }
+}
+
+static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /*
+ * scr_write will set the RES1 bits on an AArch64-only CPU.
+ * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
+ */
+ scr_write(env, ri, 0);
+}
+
+static CPAccessResult access_tid4(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 &&
+ (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /*
+ * Acquire the CSSELR index from the bank corresponding to the CCSIDR
+ * bank
+ */
+ uint32_t index = A32_BANKED_REG_GET(env, csselr,
+ ri->secure & ARM_CP_SECSTATE_S);
+
+ return cpu->ccsidr[index];
+}
+
+static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ raw_write(env, ri, value & 0xf);
+}
+
+static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ CPUState *cs = env_cpu(env);
+ bool el1 = arm_current_el(env) == 1;
+ uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
+ uint64_t ret = 0;
+
+ if (hcr_el2 & HCR_IMO) {
+ if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
+ ret |= CPSR_I;
+ }
+ } else {
+ if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
+ ret |= CPSR_I;
+ }
+ }
+
+ if (hcr_el2 & HCR_FMO) {
+ if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
+ ret |= CPSR_F;
+ }
+ } else {
+ if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
+ ret |= CPSR_F;
+ }
+ }
+
+ if (hcr_el2 & HCR_AMO) {
+ if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
+ ret |= CPSR_A;
+ }
+ }
+
+ return ret;
+}
+
+static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ return access_aa64_tid1(env, ri, isread);
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo v7_cp_reginfo[] = {
+ /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
+ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ /*
+ * Performance monitors are implementation defined in v7,
+ * but with an ARM recommended set of registers, which we
+ * follow.
+ *
+ * Performance registers fall into three categories:
+ * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
+ * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
+ * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
+ * For the cases controlled by PMUSERENR we must set .access to PL0_RW
+ * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
+ */
+ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+ .writefn = pmcntenset_write,
+ .accessfn = pmreg_access,
+ .raw_writefn = raw_write },
+ { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
+ .writefn = pmcntenset_write, .raw_writefn = raw_write },
+ { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+ .accessfn = pmreg_access,
+ .writefn = pmcntenclr_write,
+ .type = ARM_CP_ALIAS | ARM_CP_IO },
+ { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .writefn = pmcntenclr_write },
+ { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
+ .access = PL0_RW, .type = ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
+ .accessfn = pmreg_access,
+ .writefn = pmovsr_write,
+ .raw_writefn = raw_write },
+ { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsr_write,
+ .raw_writefn = raw_write },
+ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .writefn = pmswinc_write },
+ { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .writefn = pmswinc_write },
+ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
+ .access = PL0_RW, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
+ .accessfn = pmreg_access_selr, .writefn = pmselr_write,
+ .raw_writefn = raw_write},
+ { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
+ .access = PL0_RW, .accessfn = pmreg_access_selr,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
+ .writefn = pmselr_write, .raw_writefn = raw_write, },
+ { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .readfn = pmccntr_read, .writefn = pmccntr_write32,
+ .accessfn = pmreg_access_ccntr },
+ { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
+ .access = PL0_RW, .accessfn = pmreg_access_ccntr,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
+ .readfn = pmccntr_read, .writefn = pmccntr_write,
+ .raw_readfn = raw_read, .raw_writefn = raw_write, },
+ { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
+ .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .resetvalue = 0, },
+ { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
+ .writefn = pmccfiltr_write, .raw_writefn = raw_write,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
+ .resetvalue = 0, },
+ { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access,
+ .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
+ { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access,
+ .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
+ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access_xevcntr,
+ .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
+ { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access_xevcntr,
+ .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
+ { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R | PL1_RW, .accessfn = access_tpm,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write, .raw_writefn = raw_write },
+ { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
+ .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write, .raw_writefn = raw_write },
+ { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenset_write, .raw_writefn = raw_write },
+ { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenset_write, .raw_writefn = raw_write,
+ .resetvalue = 0x0 },
+ { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenclr_write, },
+ { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenclr_write },
+ { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
+ .access = PL1_R,
+ .accessfn = access_tid4,
+ .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
+ { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
+ .access = PL1_RW,
+ .accessfn = access_tid4,
+ .writefn = csselr_write, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
+ offsetof(CPUARMState, cp15.csselr_ns) } },
+ /*
+ * Auxiliary ID register: this actually has an IMPDEF value but for now
+ * just RAZ for all cores:
+ */
+ { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid1,
+ .resetvalue = 0 },
+ /*
+ * Auxiliary fault status registers: these also are IMPDEF, and we
+ * choose to RAZ/WI for all cores.
+ */
+ { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /*
+ * MAIR can just read-as-written because we don't implement caches
+ * and so don't need to care about memory attributes.
+ */
+ { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
+ .resetvalue = 0 },
+ { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
+ .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
+ .resetvalue = 0 },
+ /*
+ * For non-long-descriptor page tables these are PRRR and NMRR;
+ * regardless they still act as reads-as-written for QEMU.
+ */
+ /*
+ * MAIR0/1 are defined separately from their 64-bit counterpart which
+ * allows them to assign the correct fieldoffset based on the endianness
+ * handled in the field definitions.
+ */
+ { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
+ offsetof(CPUARMState, cp15.mair0_ns) },
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
+ offsetof(CPUARMState, cp15.mair1_ns) },
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
+ /* 32 bit ITLB invalidates */
+ { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiall_write },
+ { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimva_write },
+ { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiasid_write },
+ /* 32 bit DTLB invalidates */
+ { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiall_write },
+ { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimva_write },
+ { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiasid_write },
+ /* 32 bit TLB invalidates */
+ { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiall_write },
+ { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimva_write },
+ { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbiasid_write },
+ { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimvaa_write },
+};
+
+static const ARMCPRegInfo v7mp_cp_reginfo[] = {
+ /* 32 bit TLB invalidates, Inner Shareable */
+ { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbiall_is_write },
+ { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbimva_is_write },
+ { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbiasid_is_write },
+ { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbimvaa_is_write },
+};
+
+static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
+ /* PMOVSSET is not implemented in v7 before v7ve */
+ { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsset_write,
+ .raw_writefn = raw_write },
+ { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsset_write,
+ .raw_writefn = raw_write },
+};
+
+static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= 1;
+ env->teecr = value;
+}
+
+static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
+ * at all, so we don't need to check whether we're v8A.
+ */
+ if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
+ (env->cp15.hstr_el2 & HSTR_TTEE)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 0 && (env->teecr & 1)) {
+ return CP_ACCESS_TRAP;
+ }
+ return teecr_access(env, ri, isread);
+}
+
+static const ARMCPRegInfo t2ee_cp_reginfo[] = {
+ { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
+ .resetvalue = 0,
+ .writefn = teecr_write, .accessfn = teecr_access },
+ { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
+ .accessfn = teehbr_access, .resetvalue = 0 },
+};
+
+static const ARMCPRegInfo v6k_cp_reginfo[] = {
+ { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
+ .access = PL0_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
+ { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
+ offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
+ .access = PL0_R | PL1_W,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
+ .resetvalue = 0},
+ { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R | PL1_W,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
+ offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
+ { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
+ .access = PL1_RW,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
+ offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
+ .resetvalue = 0 },
+};
+
+#ifndef CONFIG_USER_ONLY
+
+static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
+ * Writable only at the highest implemented exception level.
+ */
+ int el = arm_current_el(env);
+ uint64_t hcr;
+ uint32_t cntkctl;
+
+ switch (el) {
+ case 0:
+ hcr = arm_hcr_el2_eff(env);
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ cntkctl = env->cp15.cnthctl_el2;
+ } else {
+ cntkctl = env->cp15.c14_cntkctl;
+ }
+ if (!extract32(cntkctl, 0, 2)) {
+ return CP_ACCESS_TRAP;
+ }
+ break;
+ case 1:
+ if (!isread && ri->state == ARM_CP_STATE_AA32 &&
+ arm_is_secure_below_el3(env)) {
+ /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+ }
+ break;
+ case 2:
+ case 3:
+ break;
+ }
+
+ if (!isread && el < arm_highest_el(env)) {
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
+ bool isread)
+{
+ unsigned int cur_el = arm_current_el(env);
+ bool has_el2 = arm_is_el2_enabled(env);
+ uint64_t hcr = arm_hcr_el2_eff(env);
+
+ switch (cur_el) {
+ case 0:
+ /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
+ ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
+ }
+
+ /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
+ if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
+ return CP_ACCESS_TRAP;
+ }
+
+ /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
+ if (hcr & HCR_E2H) {
+ if (timeridx == GTIMER_PHYS &&
+ !extract32(env->cp15.cnthctl_el2, 10, 1)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ } else {
+ /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
+ if (has_el2 && timeridx == GTIMER_PHYS &&
+ !extract32(env->cp15.cnthctl_el2, 1, 1)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ break;
+
+ case 1:
+ /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
+ if (has_el2 && timeridx == GTIMER_PHYS &&
+ (hcr & HCR_E2H
+ ? !extract32(env->cp15.cnthctl_el2, 10, 1)
+ : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ break;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
+ bool isread)
+{
+ unsigned int cur_el = arm_current_el(env);
+ bool has_el2 = arm_is_el2_enabled(env);
+ uint64_t hcr = arm_hcr_el2_eff(env);
+
+ switch (cur_el) {
+ case 0:
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
+ return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
+ ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
+ }
+
+ /*
+ * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
+ * EL0 if EL0[PV]TEN is zero.
+ */
+ if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
+ return CP_ACCESS_TRAP;
+ }
+ /* fall through */
+
+ case 1:
+ if (has_el2 && timeridx == GTIMER_PHYS) {
+ if (hcr & HCR_E2H) {
+ /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
+ if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ } else {
+ /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
+ if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ }
+ break;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult gt_pct_access(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return gt_counter_access(env, GTIMER_PHYS, isread);
+}
+
+static CPAccessResult gt_vct_access(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return gt_counter_access(env, GTIMER_VIRT, isread);
+}
+
+static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return gt_timer_access(env, GTIMER_PHYS, isread);
+}
+
+static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return gt_timer_access(env, GTIMER_VIRT, isread);
+}
+
+static CPAccessResult gt_stimer_access(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * The AArch64 register view of the secure physical timer is
+ * always accessible from EL3, and configurably accessible from
+ * Secure EL1.
+ */
+ switch (arm_current_el(env)) {
+ case 1:
+ if (!arm_is_secure(env)) {
+ return CP_ACCESS_TRAP;
+ }
+ if (!(env->cp15.scr_el3 & SCR_ST)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+ case 0:
+ case 2:
+ return CP_ACCESS_TRAP;
+ case 3:
+ return CP_ACCESS_OK;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static uint64_t gt_get_countervalue(CPUARMState *env)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
+}
+
+static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
+{
+ ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
+
+ if (gt->ctl & 1) {
+ /*
+ * Timer enabled: calculate and set current ISTATUS, irq, and
+ * reset timer to when ISTATUS next has to change
+ */
+ uint64_t offset = timeridx == GTIMER_VIRT ?
+ cpu->env.cp15.cntvoff_el2 : 0;
+ uint64_t count = gt_get_countervalue(&cpu->env);
+ /* Note that this must be unsigned 64 bit arithmetic: */
+ int istatus = count - offset >= gt->cval;
+ uint64_t nexttick;
+ int irqstate;
+
+ gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
+
+ irqstate = (istatus && !(gt->ctl & 2));
+ qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
+
+ if (istatus) {
+ /* Next transition is when count rolls back over to zero */
+ nexttick = UINT64_MAX;
+ } else {
+ /* Next transition is when we hit cval */
+ nexttick = gt->cval + offset;
+ }
+ /*
+ * Note that the desired next expiry time might be beyond the
+ * signed-64-bit range of a QEMUTimer -- in this case we just
+ * set the timer for as far in the future as possible. When the
+ * timer expires we will reset the timer for any remaining period.
+ */
+ if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
+ timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
+ } else {
+ timer_mod(cpu->gt_timer[timeridx], nexttick);
+ }
+ trace_arm_gt_recalc(timeridx, irqstate, nexttick);
+ } else {
+ /* Timer disabled: ISTATUS and timer output always clear */
+ gt->ctl &= ~4;
+ qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
+ timer_del(cpu->gt_timer[timeridx]);
+ trace_arm_gt_recalc_disabled(timeridx);
+ }
+}
+
+static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
+ int timeridx)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ timer_del(cpu->gt_timer[timeridx]);
+}
+
+static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_get_countervalue(env);
+}
+
+static uint64_t gt_virt_cnt_offset(CPUARMState *env)
+{
+ uint64_t hcr;
+
+ switch (arm_current_el(env)) {
+ case 2:
+ hcr = arm_hcr_el2_eff(env);
+ if (hcr & HCR_E2H) {
+ return 0;
+ }
+ break;
+ case 0:
+ hcr = arm_hcr_el2_eff(env);
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ return 0;
+ }
+ break;
+ }
+
+ return env->cp15.cntvoff_el2;
+}
+
+static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
+}
+
+static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ int timeridx,
+ uint64_t value)
+{
+ trace_arm_gt_cval_write(timeridx, value);
+ env->cp15.c14_timer[timeridx].cval = value;
+ gt_recalc_timer(env_archcpu(env), timeridx);
+}
+
+static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ int timeridx)
+{
+ uint64_t offset = 0;
+
+ switch (timeridx) {
+ case GTIMER_VIRT:
+ case GTIMER_HYPVIRT:
+ offset = gt_virt_cnt_offset(env);
+ break;
+ }
+
+ return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
+ (gt_get_countervalue(env) - offset));
+}
+
+static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ int timeridx,
+ uint64_t value)
+{
+ uint64_t offset = 0;
+
+ switch (timeridx) {
+ case GTIMER_VIRT:
+ case GTIMER_HYPVIRT:
+ offset = gt_virt_cnt_offset(env);
+ break;
+ }
+
+ trace_arm_gt_tval_write(timeridx, value);
+ env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
+ sextract64(value, 0, 32);
+ gt_recalc_timer(env_archcpu(env), timeridx);
+}
+
+static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ int timeridx,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
+
+ trace_arm_gt_ctl_write(timeridx, value);
+ env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
+ if ((oldval ^ value) & 1) {
+ /* Enable toggled */
+ gt_recalc_timer(cpu, timeridx);
+ } else if ((oldval ^ value) & 2) {
+ /*
+ * IMASK toggled: don't need to recalculate,
+ * just set the interrupt line based on ISTATUS
+ */
+ int irqstate = (oldval & 4) && !(value & 2);
+
+ trace_arm_gt_imask_toggle(timeridx, irqstate);
+ qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
+ }
+}
+
+static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ gt_timer_reset(env, ri, GTIMER_PHYS);
+}
+
+static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_cval_write(env, ri, GTIMER_PHYS, value);
+}
+
+static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_tval_read(env, ri, GTIMER_PHYS);
+}
+
+static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_tval_write(env, ri, GTIMER_PHYS, value);
+}
+
+static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_ctl_write(env, ri, GTIMER_PHYS, value);
+}
+
+static int gt_phys_redir_timeridx(CPUARMState *env)
+{
+ switch (arm_mmu_idx(env)) {
+ case ARMMMUIdx_E20_0:
+ case ARMMMUIdx_E20_2:
+ case ARMMMUIdx_E20_2_PAN:
+ return GTIMER_HYP;
+ default:
+ return GTIMER_PHYS;
+ }
+}
+
+static int gt_virt_redir_timeridx(CPUARMState *env)
+{
+ switch (arm_mmu_idx(env)) {
+ case ARMMMUIdx_E20_0:
+ case ARMMMUIdx_E20_2:
+ case ARMMMUIdx_E20_2_PAN:
+ return GTIMER_HYPVIRT;
+ default:
+ return GTIMER_VIRT;
+ }
+}
+
+static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ return env->cp15.c14_timer[timeridx].cval;
+}
+
+static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ gt_cval_write(env, ri, timeridx, value);
+}
+
+static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ return gt_tval_read(env, ri, timeridx);
+}
+
+static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ gt_tval_write(env, ri, timeridx, value);
+}
+
+static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ return env->cp15.c14_timer[timeridx].ctl;
+}
+
+static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_phys_redir_timeridx(env);
+ gt_ctl_write(env, ri, timeridx, value);
+}
+
+static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ gt_timer_reset(env, ri, GTIMER_VIRT);
+}
+
+static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_cval_write(env, ri, GTIMER_VIRT, value);
+}
+
+static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_tval_read(env, ri, GTIMER_VIRT);
+}
+
+static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_tval_write(env, ri, GTIMER_VIRT, value);
+}
+
+static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_ctl_write(env, ri, GTIMER_VIRT, value);
+}
+
+static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ trace_arm_gt_cntvoff_write(value);
+ raw_write(env, ri, value);
+ gt_recalc_timer(cpu, GTIMER_VIRT);
+}
+
+static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ return env->cp15.c14_timer[timeridx].cval;
+}
+
+static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ gt_cval_write(env, ri, timeridx, value);
+}
+
+static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ return gt_tval_read(env, ri, timeridx);
+}
+
+static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ gt_tval_write(env, ri, timeridx, value);
+}
+
+static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
+ const ARMCPRegInfo *ri)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ return env->cp15.c14_timer[timeridx].ctl;
+}
+
+static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int timeridx = gt_virt_redir_timeridx(env);
+ gt_ctl_write(env, ri, timeridx, value);
+}
+
+static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ gt_timer_reset(env, ri, GTIMER_HYP);
+}
+
+static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_cval_write(env, ri, GTIMER_HYP, value);
+}
+
+static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_tval_read(env, ri, GTIMER_HYP);
+}
+
+static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_tval_write(env, ri, GTIMER_HYP, value);
+}
+
+static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_ctl_write(env, ri, GTIMER_HYP, value);
+}
+
+static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ gt_timer_reset(env, ri, GTIMER_SEC);
+}
+
+static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_cval_write(env, ri, GTIMER_SEC, value);
+}
+
+static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_tval_read(env, ri, GTIMER_SEC);
+}
+
+static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_tval_write(env, ri, GTIMER_SEC, value);
+}
+
+static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_ctl_write(env, ri, GTIMER_SEC, value);
+}
+
+static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ gt_timer_reset(env, ri, GTIMER_HYPVIRT);
+}
+
+static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
+}
+
+static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return gt_tval_read(env, ri, GTIMER_HYPVIRT);
+}
+
+static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
+}
+
+static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
+}
+
+void arm_gt_ptimer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ gt_recalc_timer(cpu, GTIMER_PHYS);
+}
+
+void arm_gt_vtimer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ gt_recalc_timer(cpu, GTIMER_VIRT);
+}
+
+void arm_gt_htimer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ gt_recalc_timer(cpu, GTIMER_HYP);
+}
+
+void arm_gt_stimer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ gt_recalc_timer(cpu, GTIMER_SEC);
+}
+
+void arm_gt_hvtimer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ gt_recalc_timer(cpu, GTIMER_HYPVIRT);
+}
+
+static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
+}
+
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+ /*
+ * Note that CNTFRQ is purely reads-as-written for the benefit
+ * of software; writing it doesn't actually change the timer frequency.
+ * Our reset value matches the fixed frequency we implement the timer at.
+ */
+ { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .type = ARM_CP_ALIAS,
+ .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
+ },
+ { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
+ .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
+ .resetfn = arm_gt_cntfrq_reset,
+ },
+ /* overall control: mostly access permissions */
+ { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
+ .resetvalue = 0,
+ },
+ /* per-timer control */
+ { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
+ .secure = ARM_CP_SECSTATE_NS,
+ .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
+ .accessfn = gt_ptimer_access,
+ .fieldoffset = offsetoflow32(CPUARMState,
+ cp15.c14_timer[GTIMER_PHYS].ctl),
+ .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
+ .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTP_CTL_S",
+ .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
+ .secure = ARM_CP_SECSTATE_S,
+ .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
+ .accessfn = gt_ptimer_access,
+ .fieldoffset = offsetoflow32(CPUARMState,
+ cp15.c14_timer[GTIMER_SEC].ctl),
+ .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
+ .type = ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_ptimer_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
+ .resetvalue = 0,
+ .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
+ .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
+ .accessfn = gt_vtimer_access,
+ .fieldoffset = offsetoflow32(CPUARMState,
+ cp15.c14_timer[GTIMER_VIRT].ctl),
+ .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
+ .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
+ .type = ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_vtimer_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
+ .resetvalue = 0,
+ .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
+ .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
+ },
+ /* TimerValue views: a 32 bit downcounting view of the underlying state */
+ { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .secure = ARM_CP_SECSTATE_NS,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_ptimer_access,
+ .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
+ },
+ { .name = "CNTP_TVAL_S",
+ .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .secure = ARM_CP_SECSTATE_S,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_ptimer_access,
+ .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
+ },
+ { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
+ .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
+ },
+ { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_vtimer_access,
+ .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
+ },
+ { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
+ .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
+ .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
+ },
+ /* The counter itself */
+ { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = gt_pct_access,
+ .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
+ },
+ { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
+ .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = gt_pct_access, .readfn = gt_cnt_read,
+ },
+ { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
+ .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = gt_vct_access,
+ .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
+ },
+ { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
+ .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
+ },
+ /* Comparison value, indicating when the timer goes off */
+ { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
+ .secure = ARM_CP_SECSTATE_NS,
+ .access = PL0_RW,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+ .accessfn = gt_ptimer_access,
+ .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
+ .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
+ .secure = ARM_CP_SECSTATE_S,
+ .access = PL0_RW,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
+ .accessfn = gt_ptimer_access,
+ .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
+ .access = PL0_RW,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+ .resetvalue = 0, .accessfn = gt_ptimer_access,
+ .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
+ .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
+ .access = PL0_RW,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
+ .accessfn = gt_vtimer_access,
+ .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
+ .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
+ .access = PL0_RW,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
+ .resetvalue = 0, .accessfn = gt_vtimer_access,
+ .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
+ .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
+ },
+ /*
+ * Secure timer -- this is actually restricted to only EL3
+ * and configurably Secure-EL1 via the accessfn.
+ */
+ { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
+ .accessfn = gt_stimer_access,
+ .readfn = gt_sec_tval_read,
+ .writefn = gt_sec_tval_write,
+ .resetfn = gt_sec_timer_reset,
+ },
+ { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
+ .type = ARM_CP_IO, .access = PL1_RW,
+ .accessfn = gt_stimer_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
+ .resetvalue = 0,
+ .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
+ },
+ { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
+ .type = ARM_CP_IO, .access = PL1_RW,
+ .accessfn = gt_stimer_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
+ .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
+ },
+};
+
+static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
+ return CP_ACCESS_TRAP;
+ }
+ return CP_ACCESS_OK;
+}
+
+#else
+
+/*
+ * In user-mode most of the generic timer registers are inaccessible
+ * however modern kernels (4.12+) allow access to cntvct_el0
+ */
+
+static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /*
+ * Currently we have no support for QEMUTimer in linux-user so we
+ * can't call gt_get_countervalue(env), instead we directly
+ * call the lower level functions.
+ */
+ return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
+}
+
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+ { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
+ .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
+ .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
+ },
+ { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
+ .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .readfn = gt_virt_cnt_read,
+ },
+};
+
+#endif
+
+static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ raw_write(env, ri, value);
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ raw_write(env, ri, value & 0xfffff6ff);
+ } else {
+ raw_write(env, ri, value & 0xfffff1ff);
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+/* get_phys_addr() isn't present for user-mode-only targets */
+
+static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (ri->opc2 & 4) {
+ /*
+ * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
+ * Secure EL1 (which can only happen if EL3 is AArch64).
+ * They are simply UNDEF if executed from NS EL1.
+ * They function normally from EL2 or EL3.
+ */
+ if (arm_current_el(env) == 1) {
+ if (arm_is_secure_below_el3(env)) {
+ if (env->cp15.scr_el3 & SCR_EEL2) {
+ return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
+ }
+ return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
+ }
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+ }
+ }
+ return CP_ACCESS_OK;
+}
+
+#ifdef CONFIG_TCG
+static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
+ MMUAccessType access_type, ARMMMUIdx mmu_idx,
+ bool is_secure)
+{
+ bool ret;
+ uint64_t par64;
+ bool format64 = false;
+ ARMMMUFaultInfo fi = {};
+ GetPhysAddrResult res = {};
+
+ ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
+ is_secure, &res, &fi);
+
+ /*
+ * ATS operations only do S1 or S1+S2 translations, so we never
+ * have to deal with the ARMCacheAttrs format for S2 only.
+ */
+ assert(!res.cacheattrs.is_s2_format);
+
+ if (ret) {
+ /*
+ * Some kinds of translation fault must cause exceptions rather
+ * than being reported in the PAR.
+ */
+ int current_el = arm_current_el(env);
+ int target_el;
+ uint32_t syn, fsr, fsc;
+ bool take_exc = false;
+
+ if (fi.s1ptw && current_el == 1
+ && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
+ /*
+ * Synchronous stage 2 fault on an access made as part of the
+ * translation table walk for AT S1E0* or AT S1E1* insn
+ * executed from NS EL1. If this is a synchronous external abort
+ * and SCR_EL3.EA == 1, then we take a synchronous external abort
+ * to EL3. Otherwise the fault is taken as an exception to EL2,
+ * and HPFAR_EL2 holds the faulting IPA.
+ */
+ if (fi.type == ARMFault_SyncExternalOnWalk &&
+ (env->cp15.scr_el3 & SCR_EA)) {
+ target_el = 3;
+ } else {
+ env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
+ if (arm_is_secure_below_el3(env) && fi.s1ns) {
+ env->cp15.hpfar_el2 |= HPFAR_NS;
+ }
+ target_el = 2;
+ }
+ take_exc = true;
+ } else if (fi.type == ARMFault_SyncExternalOnWalk) {
+ /*
+ * Synchronous external aborts during a translation table walk
+ * are taken as Data Abort exceptions.
+ */
+ if (fi.stage2) {
+ if (current_el == 3) {
+ target_el = 3;
+ } else {
+ target_el = 2;
+ }
+ } else {
+ target_el = exception_target_el(env);
+ }
+ take_exc = true;
+ }
+
+ if (take_exc) {
+ /* Construct FSR and FSC using same logic as arm_deliver_fault() */
+ if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
+ arm_s1_regime_using_lpae_format(env, mmu_idx)) {
+ fsr = arm_fi_to_lfsc(&fi);
+ fsc = extract32(fsr, 0, 6);
+ } else {
+ fsr = arm_fi_to_sfsc(&fi);
+ fsc = 0x3f;
+ }
+ /*
+ * Report exception with ESR indicating a fault due to a
+ * translation table walk for a cache maintenance instruction.
+ */
+ syn = syn_data_abort_no_iss(current_el == target_el, 0,
+ fi.ea, 1, fi.s1ptw, 1, fsc);
+ env->exception.vaddress = value;
+ env->exception.fsr = fsr;
+ raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
+ }
+ }
+
+ if (is_a64(env)) {
+ format64 = true;
+ } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ /*
+ * ATS1Cxx:
+ * * TTBCR.EAE determines whether the result is returned using the
+ * 32-bit or the 64-bit PAR format
+ * * Instructions executed in Hyp mode always use the 64bit format
+ *
+ * ATS1S2NSOxx uses the 64bit format if any of the following is true:
+ * * The Non-secure TTBCR.EAE bit is set to 1
+ * * The implementation includes EL2, and the value of HCR.VM is 1
+ *
+ * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
+ *
+ * ATS1Hx always uses the 64bit format.
+ */
+ format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
+
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ if (mmu_idx == ARMMMUIdx_E10_0 ||
+ mmu_idx == ARMMMUIdx_E10_1 ||
+ mmu_idx == ARMMMUIdx_E10_1_PAN) {
+ format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
+ } else {
+ format64 |= arm_current_el(env) == 2;
+ }
+ }
+ }
+
+ if (format64) {
+ /* Create a 64-bit PAR */
+ par64 = (1 << 11); /* LPAE bit always set */
+ if (!ret) {
+ par64 |= res.f.phys_addr & ~0xfffULL;
+ if (!res.f.attrs.secure) {
+ par64 |= (1 << 9); /* NS */
+ }
+ par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
+ par64 |= res.cacheattrs.shareability << 7; /* SH */
+ } else {
+ uint32_t fsr = arm_fi_to_lfsc(&fi);
+
+ par64 |= 1; /* F */
+ par64 |= (fsr & 0x3f) << 1; /* FS */
+ if (fi.stage2) {
+ par64 |= (1 << 9); /* S */
+ }
+ if (fi.s1ptw) {
+ par64 |= (1 << 8); /* PTW */
+ }
+ }
+ } else {
+ /*
+ * fsr is a DFSR/IFSR value for the short descriptor
+ * translation table format (with WnR always clear).
+ * Convert it to a 32-bit PAR.
+ */
+ if (!ret) {
+ /* We do not set any attribute bits in the PAR */
+ if (res.f.lg_page_size == 24
+ && arm_feature(env, ARM_FEATURE_V7)) {
+ par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
+ } else {
+ par64 = res.f.phys_addr & 0xfffff000;
+ }
+ if (!res.f.attrs.secure) {
+ par64 |= (1 << 9); /* NS */
+ }
+ } else {
+ uint32_t fsr = arm_fi_to_sfsc(&fi);
+
+ par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
+ ((fsr & 0xf) << 1) | 1;
+ }
+ }
+ return par64;
+}
+#endif /* CONFIG_TCG */
+
+static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+#ifdef CONFIG_TCG
+ MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
+ uint64_t par64;
+ ARMMMUIdx mmu_idx;
+ int el = arm_current_el(env);
+ bool secure = arm_is_secure_below_el3(env);
+
+ switch (ri->opc2 & 6) {
+ case 0:
+ /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
+ switch (el) {
+ case 3:
+ mmu_idx = ARMMMUIdx_E3;
+ secure = true;
+ break;
+ case 2:
+ g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
+ /* fall through */
+ case 1:
+ if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
+ mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
+ } else {
+ mmu_idx = ARMMMUIdx_Stage1_E1;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ break;
+ case 2:
+ /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
+ switch (el) {
+ case 3:
+ mmu_idx = ARMMMUIdx_E10_0;
+ secure = true;
+ break;
+ case 2:
+ g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
+ mmu_idx = ARMMMUIdx_Stage1_E0;
+ break;
+ case 1:
+ mmu_idx = ARMMMUIdx_Stage1_E0;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ break;
+ case 4:
+ /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
+ mmu_idx = ARMMMUIdx_E10_1;
+ secure = false;
+ break;
+ case 6:
+ /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
+ mmu_idx = ARMMMUIdx_E10_0;
+ secure = false;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
+
+ A32_BANKED_CURRENT_REG_SET(env, par, par64);
+#else
+ /* Handled by hardware accelerator. */
+ g_assert_not_reached();
+#endif /* CONFIG_TCG */
+}
+
+static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+#ifdef CONFIG_TCG
+ MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
+ uint64_t par64;
+
+ /* There is no SecureEL2 for AArch32. */
+ par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
+
+ A32_BANKED_CURRENT_REG_SET(env, par, par64);
+#else
+ /* Handled by hardware accelerator. */
+ g_assert_not_reached();
+#endif /* CONFIG_TCG */
+}
+
+static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 3 &&
+ !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
+ return CP_ACCESS_TRAP;
+ }
+ return CP_ACCESS_OK;
+}
+
+static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+#ifdef CONFIG_TCG
+ MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
+ ARMMMUIdx mmu_idx;
+ int secure = arm_is_secure_below_el3(env);
+ uint64_t hcr_el2 = arm_hcr_el2_eff(env);
+ bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
+
+ switch (ri->opc2 & 6) {
+ case 0:
+ switch (ri->opc1) {
+ case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
+ if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
+ mmu_idx = regime_e20 ?
+ ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
+ } else {
+ mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
+ }
+ break;
+ case 4: /* AT S1E2R, AT S1E2W */
+ mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
+ break;
+ case 6: /* AT S1E3R, AT S1E3W */
+ mmu_idx = ARMMMUIdx_E3;
+ secure = true;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ break;
+ case 2: /* AT S1E0R, AT S1E0W */
+ mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
+ break;
+ case 4: /* AT S12E1R, AT S12E1W */
+ mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
+ break;
+ case 6: /* AT S12E0R, AT S12E0W */
+ mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ env->cp15.par_el[1] = do_ats_write(env, value, access_type,
+ mmu_idx, secure);
+#else
+ /* Handled by hardware accelerator. */
+ g_assert_not_reached();
+#endif /* CONFIG_TCG */
+}
+#endif
+
+static const ARMCPRegInfo vapa_cp_reginfo[] = {
+ { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
+ offsetoflow32(CPUARMState, cp15.par_ns) },
+ .writefn = par_write },
+#ifndef CONFIG_USER_ONLY
+ /* This underdecoding is safe because the reginfo is NO_RAW. */
+ { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_W, .accessfn = ats_access,
+ .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
+#endif
+};
+
+/* Return basic MPU access permission bits. */
+static uint32_t simple_mpu_ap_bits(uint32_t val)
+{
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val >> i) & mask;
+ mask <<= 2;
+ }
+ return ret;
+}
+
+/* Pad basic MPU access permission bits to extended format. */
+static uint32_t extended_mpu_ap_bits(uint32_t val)
+{
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val & mask) << i;
+ mask <<= 2;
+ }
+ return ret;
+}
+
+static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
+}
+
+static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
+}
+
+static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
+}
+
+static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
+}
+
+static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
+
+ if (!u32p) {
+ return 0;
+ }
+
+ u32p += env->pmsav7.rnr[M_REG_NS];
+ return *u32p;
+}
+
+static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
+
+ if (!u32p) {
+ return;
+ }
+
+ u32p += env->pmsav7.rnr[M_REG_NS];
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+ *u32p = value;
+}
+
+static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint32_t nrgs = cpu->pmsav7_dregion;
+
+ if (value >= nrgs) {
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "PMSAv7 RGNR write >= # supported regions, %" PRIu32
+ " > %" PRIu32 "\n", (uint32_t)value, nrgs);
+ return;
+ }
+
+ raw_write(env, ri, value);
+}
+
+static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+ env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
+}
+
+static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
+}
+
+static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+ env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
+}
+
+static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
+}
+
+static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /*
+ * Ignore writes that would select not implemented region.
+ * This is architecturally UNPREDICTABLE.
+ */
+ if (value >= cpu->pmsav7_dregion) {
+ return;
+ }
+
+ env->pmsav7.rnr[M_REG_NS] = value;
+}
+
+static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+ env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
+}
+
+static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pmsav8.hprbar[env->pmsav8.hprselr];
+}
+
+static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+ env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
+}
+
+static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pmsav8.hprlar[env->pmsav8.hprselr];
+}
+
+static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint32_t n;
+ uint32_t bit;
+ ARMCPU *cpu = env_archcpu(env);
+
+ /* Ignore writes to unimplemented regions */
+ int rmax = MIN(cpu->pmsav8r_hdregion, 32);
+ value &= MAKE_64BIT_MASK(0, rmax);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+
+ /* Register alias is only valid for first 32 indexes */
+ for (n = 0; n < rmax; ++n) {
+ bit = extract32(value, n, 1);
+ env->pmsav8.hprlar[n] = deposit32(
+ env->pmsav8.hprlar[n], 0, 1, bit);
+ }
+}
+
+static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint32_t n;
+ uint32_t result = 0x0;
+ ARMCPU *cpu = env_archcpu(env);
+
+ /* Register alias is only valid for first 32 indexes */
+ for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
+ if (env->pmsav8.hprlar[n] & 0x1) {
+ result |= (0x1 << n);
+ }
+ }
+ return result;
+}
+
+static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /*
+ * Ignore writes that would select not implemented region.
+ * This is architecturally UNPREDICTABLE.
+ */
+ if (value >= cpu->pmsav8r_hdregion) {
+ return;
+ }
+
+ env->pmsav8.hprselr = value;
+}
+
+static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
+ (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
+
+ tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
+
+ if (ri->opc1 & 4) {
+ if (index >= cpu->pmsav8r_hdregion) {
+ return;
+ }
+ if (ri->opc2 & 0x1) {
+ env->pmsav8.hprlar[index] = value;
+ } else {
+ env->pmsav8.hprbar[index] = value;
+ }
+ } else {
+ if (index >= cpu->pmsav7_dregion) {
+ return;
+ }
+ if (ri->opc2 & 0x1) {
+ env->pmsav8.rlar[M_REG_NS][index] = value;
+ } else {
+ env->pmsav8.rbar[M_REG_NS][index] = value;
+ }
+ }
+}
+
+static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
+ (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
+
+ if (ri->opc1 & 4) {
+ if (index >= cpu->pmsav8r_hdregion) {
+ return 0x0;
+ }
+ if (ri->opc2 & 0x1) {
+ return env->pmsav8.hprlar[index];
+ } else {
+ return env->pmsav8.hprbar[index];
+ }
+ } else {
+ if (index >= cpu->pmsav7_dregion) {
+ return 0x0;
+ }
+ if (ri->opc2 & 0x1) {
+ return env->pmsav8.rlar[M_REG_NS][index];
+ } else {
+ return env->pmsav8.rbar[M_REG_NS][index];
+ }
+ }
+}
+
+static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
+ { .name = "PRBAR",
+ .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NO_RAW,
+ .accessfn = access_tvm_trvm,
+ .readfn = prbar_read, .writefn = prbar_write },
+ { .name = "PRLAR",
+ .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_NO_RAW,
+ .accessfn = access_tvm_trvm,
+ .readfn = prlar_read, .writefn = prlar_write },
+ { .name = "PRSELR", .resetvalue = 0,
+ .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .writefn = prselr_write,
+ .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
+ { .name = "HPRBAR", .resetvalue = 0,
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
+ .access = PL2_RW, .type = ARM_CP_NO_RAW,
+ .readfn = hprbar_read, .writefn = hprbar_write },
+ { .name = "HPRLAR",
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_NO_RAW,
+ .readfn = hprlar_read, .writefn = hprlar_write },
+ { .name = "HPRSELR", .resetvalue = 0,
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
+ .access = PL2_RW,
+ .writefn = hprselr_write,
+ .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
+ { .name = "HPRENR",
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_NO_RAW,
+ .readfn = hprenr_read, .writefn = hprenr_write },
+};
+
+static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
+ /*
+ * Reset for all these registers is handled in arm_cpu_reset(),
+ * because the PMSAv7 is also used by M-profile CPUs, which do
+ * not register cpregs but still need the state to be reset.
+ */
+ { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NO_RAW,
+ .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
+ .readfn = pmsav7_read, .writefn = pmsav7_write,
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
+ .access = PL1_RW, .type = ARM_CP_NO_RAW,
+ .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
+ .readfn = pmsav7_read, .writefn = pmsav7_write,
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
+ .access = PL1_RW, .type = ARM_CP_NO_RAW,
+ .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
+ .readfn = pmsav7_read, .writefn = pmsav7_write,
+ .resetfn = arm_cp_reset_ignore },
+ { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
+ .writefn = pmsav7_rgnr_write,
+ .resetfn = arm_cp_reset_ignore },
+};
+
+static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
+ { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
+ .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
+ { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
+ .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
+ { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
+ .resetvalue = 0, },
+ { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
+ .resetvalue = 0, },
+ { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
+ { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
+ /* Protection region base and size registers */
+ { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
+ { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
+ { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
+ { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
+ { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
+ { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
+ { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
+ { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
+};
+
+static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ if (!arm_feature(env, ARM_FEATURE_V8)) {
+ if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
+ /*
+ * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
+ * using Long-descriptor translation table format
+ */
+ value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
+ } else if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /*
+ * In an implementation that includes the Security Extensions
+ * TTBCR has additional fields PD0 [4] and PD1 [5] for
+ * Short-descriptor translation table format.
+ */
+ value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
+ } else {
+ value &= TTBCR_N;
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ /*
+ * With LPAE the TTBCR could result in a change of ASID
+ * via the TTBCR.A1 bit, so do a TLB flush.
+ */
+ tlb_flush(CPU(cpu));
+ }
+ raw_write(env, ri, value);
+}
+
+static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
+ tlb_flush(CPU(cpu));
+ raw_write(env, ri, value);
+}
+
+static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
+ if (cpreg_field_is_64bit(ri) &&
+ extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
+ ARMCPU *cpu = env_archcpu(env);
+ tlb_flush(CPU(cpu));
+ }
+ raw_write(env, ri, value);
+}
+
+static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * If we are running with E2&0 regime, then an ASID is active.
+ * Flush if that might be changing. Note we're not checking
+ * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
+ * holds the active ASID, only checking the field that might.
+ */
+ if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
+ (arm_hcr_el2_eff(env) & HCR_E2H)) {
+ uint16_t mask = ARMMMUIdxBit_E20_2 |
+ ARMMMUIdxBit_E20_2_PAN |
+ ARMMMUIdxBit_E20_0;
+ tlb_flush_by_mmuidx(env_cpu(env), mask);
+ }
+ raw_write(env, ri, value);
+}
+
+static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ CPUState *cs = CPU(cpu);
+
+ /*
+ * A change in VMID to the stage2 page table (Stage2) invalidates
+ * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
+ */
+ if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
+ tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
+ }
+ raw_write(env, ri, value);
+}
+
+static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
+ offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
+ { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
+ offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
+ { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
+ offsetof(CPUARMState, cp15.dfar_ns) } },
+ { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
+ .resetvalue = 0, },
+};
+
+static const ARMCPRegInfo vmsa_cp_reginfo[] = {
+ { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
+ { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .writefn = vmsa_ttbr_write, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
+ offsetof(CPUARMState, cp15.ttbr0_ns) } },
+ { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .writefn = vmsa_ttbr_write, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
+ offsetof(CPUARMState, cp15.ttbr1_ns) } },
+ { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .writefn = vmsa_tcr_el12_write,
+ .raw_writefn = raw_write,
+ .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
+ { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
+ .raw_writefn = raw_write,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
+ offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
+};
+
+/*
+ * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
+ * qemu tlbs nor adjusting cached masks.
+ */
+static const ARMCPRegInfo ttbcr2_reginfo = {
+ .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_ALIAS,
+ .bank_fieldoffsets = {
+ offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
+ offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
+ },
+};
+
+static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_ticonfig = value & 0xe7;
+ /* The OS_TYPE bit in this register changes the reported CPUID! */
+ env->cp15.c0_cpuid = (value & (1 << 5)) ?
+ ARM_CPUID_TI915T : ARM_CPUID_TI925T;
+}
+
+static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_threadid = value & 0xffff;
+}
+
+static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Wait-for-interrupt (deprecated) */
+ cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
+}
+
+static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * On OMAP there are registers indicating the max/min index of dcache lines
+ * containing a dirty line; cache flush operations have to reset these.
+ */
+ env->cp15.c15_i_max = 0x000;
+ env->cp15.c15_i_min = 0xff0;
+}
+
+static const ARMCPRegInfo omap_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
+ .resetvalue = 0, },
+ { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
+ .writefn = omap_ticonfig_write },
+ { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
+ { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0xff0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
+ { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
+ .writefn = omap_threadid_write },
+ { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
+ .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .type = ARM_CP_NO_RAW,
+ .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
+ /*
+ * TODO: Peripheral port remap register:
+ * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
+ * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
+ * when MMU is off.
+ */
+ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
+ .writefn = omap_cachemaint_write },
+ { .name = "C9", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
+ .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
+};
+
+static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_cpar = value & 0x3fff;
+}
+
+static const ARMCPRegInfo xscale_cp_reginfo[] = {
+ { .name = "XSCALE_CPAR",
+ .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
+ .writefn = xscale_cpar_write, },
+ { .name = "XSCALE_AUXCR",
+ .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
+ .resetvalue = 0, },
+ /*
+ * XScale specific cache-lockdown: since we have no cache we NOP these
+ * and hope the guest does not really rely on cache behaviour.
+ */
+ { .name = "XSCALE_LOCK_ICACHE_LINE",
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ { .name = "XSCALE_UNLOCK_ICACHE",
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ { .name = "XSCALE_DCACHE_LOCK",
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "XSCALE_UNLOCK_DCACHE",
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NOP },
+};
+
+static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
+ /*
+ * RAZ/WI the whole crn=15 space, when we don't have a more specific
+ * implementation of this implementation-defined space.
+ * Ideally this should eventually disappear in favour of actually
+ * implementing the correct behaviour for all cores.
+ */
+ { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW,
+ .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+};
+
+static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
+ /* Cache status: RAZ because we have no cache so it's always clean */
+ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+ .resetvalue = 0 },
+};
+
+static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
+ /* We never have a block transfer operation in progress */
+ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+ .resetvalue = 0 },
+ /* The cache ops themselves: these all NOP for QEMU */
+ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+ { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+ { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
+ .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+ { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+ { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
+ .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+ { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
+};
+
+static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
+ /*
+ * The cache test-and-clean instructions always return (1 << 30)
+ * to indicate that there are no dirty cache lines.
+ */
+ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+ .resetvalue = (1 << 30) },
+ { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
+ .resetvalue = (1 << 30) },
+};
+
+static const ARMCPRegInfo strongarm_cp_reginfo[] = {
+ /* Ignore ReadBuffer accesses */
+ { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .resetvalue = 0,
+ .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
+};
+
+static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ unsigned int cur_el = arm_current_el(env);
+
+ if (arm_is_el2_enabled(env) && cur_el == 1) {
+ return env->cp15.vpidr_el2;
+ }
+ return raw_read(env, ri);
+}
+
+static uint64_t mpidr_read_val(CPUARMState *env)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint64_t mpidr = cpu->mp_affinity;
+
+ if (arm_feature(env, ARM_FEATURE_V7MP)) {
+ mpidr |= (1U << 31);
+ /*
+ * Cores which are uniprocessor (non-coherent)
+ * but still implement the MP extensions set
+ * bit 30. (For instance, Cortex-R5).
+ */
+ if (cpu->mp_is_up) {
+ mpidr |= (1u << 30);
+ }
+ }
+ return mpidr;
+}
+
+static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ unsigned int cur_el = arm_current_el(env);
+
+ if (arm_is_el2_enabled(env) && cur_el == 1) {
+ return env->cp15.vmpidr_el2;
+ }
+ return mpidr_read_val(env);
+}
+
+static const ARMCPRegInfo lpae_cp_reginfo[] = {
+ /* NOP AMAIR0/1 */
+ { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
+ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
+ .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
+ offsetof(CPUARMState, cp15.par_ns)} },
+ { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
+ offsetof(CPUARMState, cp15.ttbr0_ns) },
+ .writefn = vmsa_ttbr_write, },
+ { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
+ offsetof(CPUARMState, cp15.ttbr1_ns) },
+ .writefn = vmsa_ttbr_write, },
+};
+
+static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return vfp_get_fpcr(env);
+}
+
+static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ vfp_set_fpcr(env, value);
+}
+
+static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return vfp_get_fpsr(env);
+}
+
+static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ vfp_set_fpsr(env, value);
+}
+
+static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
+ return CP_ACCESS_TRAP;
+ }
+ return CP_ACCESS_OK;
+}
+
+static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->daif = value & PSTATE_DAIF;
+}
+
+static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_PAN;
+}
+
+static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
+}
+
+static const ARMCPRegInfo pan_reginfo = {
+ .name = "PAN", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
+ .type = ARM_CP_NO_RAW, .access = PL1_RW,
+ .readfn = aa64_pan_read, .writefn = aa64_pan_write
+};
+
+static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_UAO;
+}
+
+static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
+}
+
+static const ARMCPRegInfo uao_reginfo = {
+ .name = "UAO", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
+ .type = ARM_CP_NO_RAW, .access = PL1_RW,
+ .readfn = aa64_uao_read, .writefn = aa64_uao_write
+};
+
+static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_DIT;
+}
+
+static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
+}
+
+static const ARMCPRegInfo dit_reginfo = {
+ .name = "DIT", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL0_RW,
+ .readfn = aa64_dit_read, .writefn = aa64_dit_write
+};
+
+static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_SSBS;
+}
+
+static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
+}
+
+static const ARMCPRegInfo ssbs_reginfo = {
+ .name = "SSBS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
+ .type = ARM_CP_NO_RAW, .access = PL0_RW,
+ .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
+};
+
+static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* Cache invalidate/clean to Point of Coherency or Persistence... */
+ switch (arm_current_el(env)) {
+ case 0:
+ /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
+ if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
+ return CP_ACCESS_TRAP;
+ }
+ /* fall through */
+ case 1:
+ /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
+ if (arm_hcr_el2_eff(env) & HCR_TPCP) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ break;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
+{
+ /* Cache invalidate/clean to Point of Unification... */
+ switch (arm_current_el(env)) {
+ case 0:
+ /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
+ if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
+ return CP_ACCESS_TRAP;
+ }
+ /* fall through */
+ case 1:
+ /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
+ if (arm_hcr_el2_eff(env) & hcrflags) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ break;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
+}
+
+static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
+}
+
+/*
+ * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
+ * Page D4-1736 (DDI0487A.b)
+ */
+
+static int vae1_tlbmask(CPUARMState *env)
+{
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ uint16_t mask;
+
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ mask = ARMMMUIdxBit_E20_2 |
+ ARMMMUIdxBit_E20_2_PAN |
+ ARMMMUIdxBit_E20_0;
+ } else {
+ mask = ARMMMUIdxBit_E10_1 |
+ ARMMMUIdxBit_E10_1_PAN |
+ ARMMMUIdxBit_E10_0;
+ }
+ return mask;
+}
+
+/* Return 56 if TBI is enabled, 64 otherwise. */
+static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
+ uint64_t addr)
+{
+ uint64_t tcr = regime_tcr(env, mmu_idx);
+ int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
+ int select = extract64(addr, 55, 1);
+
+ return (tbi >> select) & 1 ? 56 : 64;
+}
+
+static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
+{
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ ARMMMUIdx mmu_idx;
+
+ /* Only the regime of the mmu_idx below is significant. */
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ mmu_idx = ARMMMUIdx_E20_0;
+ } else {
+ mmu_idx = ARMMMUIdx_E10_0;
+ }
+
+ return tlbbits_for_regime(env, mmu_idx, addr);
+}
+
+static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = vae1_tlbmask(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
+}
+
+static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = vae1_tlbmask(env);
+
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
+ } else {
+ tlb_flush_by_mmuidx(cs, mask);
+ }
+}
+
+static int e2_tlbmask(CPUARMState *env)
+{
+ return (ARMMMUIdxBit_E20_0 |
+ ARMMMUIdxBit_E20_2 |
+ ARMMMUIdxBit_E20_2_PAN |
+ ARMMMUIdxBit_E2);
+}
+
+static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = alle1_tlbmask(env);
+
+ tlb_flush_by_mmuidx(cs, mask);
+}
+
+static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = e2_tlbmask(env);
+
+ tlb_flush_by_mmuidx(cs, mask);
+}
+
+static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ CPUState *cs = CPU(cpu);
+
+ tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
+}
+
+static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = alle1_tlbmask(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
+}
+
+static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = e2_tlbmask(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
+}
+
+static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+
+ tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
+}
+
+static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA, EL2
+ * Currently handles both VAE2 and VALE2, since we don't support
+ * flush-last-level-only.
+ */
+ CPUState *cs = env_cpu(env);
+ int mask = e2_tlbmask(env);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+ tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
+}
+
+static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA, EL3
+ * Currently handles both VAE3 and VALE3, since we don't support
+ * flush-last-level-only.
+ */
+ ARMCPU *cpu = env_archcpu(env);
+ CPUState *cs = CPU(cpu);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+ tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
+}
+
+static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = vae1_tlbmask(env);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+ int bits = vae1_tlbbits(env, pageaddr);
+
+ tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
+}
+
+static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA, EL1&0 (AArch64 version).
+ * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
+ * since we don't support flush-for-specific-ASID-only or
+ * flush-last-level-only.
+ */
+ CPUState *cs = env_cpu(env);
+ int mask = vae1_tlbmask(env);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+ int bits = vae1_tlbbits(env, pageaddr);
+
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
+ } else {
+ tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
+ }
+}
+
+static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+ int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
+
+ tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
+ ARMMMUIdxBit_E2, bits);
+}
+
+static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+ int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
+
+ tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
+ ARMMMUIdxBit_E3, bits);
+}
+
+static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
+{
+ /*
+ * The MSB of value is the NS field, which only applies if SEL2
+ * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
+ */
+ return (value >= 0
+ && cpu_isar_feature(aa64_sel2, env_archcpu(env))
+ && arm_is_secure_below_el3(env)
+ ? ARMMMUIdxBit_Stage2_S
+ : ARMMMUIdxBit_Stage2);
+}
+
+static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = ipas2e1_tlbmask(env, value);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+ if (tlb_force_broadcast(env)) {
+ tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
+ } else {
+ tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
+ }
+}
+
+static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPUState *cs = env_cpu(env);
+ int mask = ipas2e1_tlbmask(env, value);
+ uint64_t pageaddr = sextract64(value << 12, 0, 56);
+
+ tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
+}
+
+#ifdef TARGET_AARCH64
+typedef struct {
+ uint64_t base;
+ uint64_t length;
+} TLBIRange;
+
+static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
+{
+ /*
+ * Note that the TLBI range TG field encoding differs from both
+ * TG0 and TG1 encodings.
+ */
+ switch (tg) {
+ case 1:
+ return Gran4K;
+ case 2:
+ return Gran16K;
+ case 3:
+ return Gran64K;
+ default:
+ return GranInvalid;
+ }
+}
+
+static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
+ uint64_t value)
+{
+ unsigned int page_size_granule, page_shift, num, scale, exponent;
+ /* Extract one bit to represent the va selector in use. */
+ uint64_t select = sextract64(value, 36, 1);
+ ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
+ TLBIRange ret = { };
+ ARMGranuleSize gran;
+
+ page_size_granule = extract64(value, 46, 2);
+ gran = tlbi_range_tg_to_gran_size(page_size_granule);
+
+ /* The granule encoded in value must match the granule in use. */
+ if (gran != param.gran) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
+ page_size_granule);
+ return ret;
+ }
+
+ page_shift = arm_granule_bits(gran);
+ num = extract64(value, 39, 5);
+ scale = extract64(value, 44, 2);
+ exponent = (5 * scale) + 1;
+
+ ret.length = (num + 1) << (exponent + page_shift);
+
+ if (param.select) {
+ ret.base = sextract64(value, 0, 37);
+ } else {
+ ret.base = extract64(value, 0, 37);
+ }
+ if (param.ds) {
+ /*
+ * With DS=1, BaseADDR is always shifted 16 so that it is able
+ * to address all 52 va bits. The input address is perforce
+ * aligned on a 64k boundary regardless of translation granule.
+ */
+ page_shift = 16;
+ }
+ ret.base <<= page_shift;
+
+ return ret;
+}
+
+static void do_rvae_write(CPUARMState *env, uint64_t value,
+ int idxmap, bool synced)
+{
+ ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
+ TLBIRange range;
+ int bits;
+
+ range = tlbi_aa64_get_range(env, one_idx, value);
+ bits = tlbbits_for_regime(env, one_idx, range.base);
+
+ if (synced) {
+ tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
+ range.base,
+ range.length,
+ idxmap,
+ bits);
+ } else {
+ tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
+ range.length, idxmap, bits);
+ }
+}
+
+static void tlbi_aa64_rvae1_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, EL1&0.
+ * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
+ * since we don't support flush-for-specific-ASID-only or
+ * flush-last-level-only.
+ */
+
+ do_rvae_write(env, value, vae1_tlbmask(env),
+ tlb_force_broadcast(env));
+}
+
+static void tlbi_aa64_rvae1is_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, Inner/Outer Shareable EL1&0.
+ * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
+ * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
+ * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
+ * shareable specific flushes.
+ */
+
+ do_rvae_write(env, value, vae1_tlbmask(env), true);
+}
+
+static int vae2_tlbmask(CPUARMState *env)
+{
+ return ARMMMUIdxBit_E2;
+}
+
+static void tlbi_aa64_rvae2_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, EL2.
+ * Currently handles all of RVAE2 and RVALE2,
+ * since we don't support flush-for-specific-ASID-only or
+ * flush-last-level-only.
+ */
+
+ do_rvae_write(env, value, vae2_tlbmask(env),
+ tlb_force_broadcast(env));
+
+
+}
+
+static void tlbi_aa64_rvae2is_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, Inner/Outer Shareable, EL2.
+ * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
+ * since we don't support flush-for-specific-ASID-only,
+ * flush-last-level-only or inner/outer shareable specific flushes.
+ */
+
+ do_rvae_write(env, value, vae2_tlbmask(env), true);
+
+}
+
+static void tlbi_aa64_rvae3_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, EL3.
+ * Currently handles all of RVAE3 and RVALE3,
+ * since we don't support flush-for-specific-ASID-only or
+ * flush-last-level-only.
+ */
+
+ do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
+}
+
+static void tlbi_aa64_rvae3is_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Invalidate by VA range, EL3, Inner/Outer Shareable.
+ * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
+ * since we don't support flush-for-specific-ASID-only,
+ * flush-last-level-only or inner/outer specific flushes.
+ */
+
+ do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
+}
+
+static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
+ tlb_force_broadcast(env));
+}
+
+static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
+}
+#endif
+
+static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int cur_el = arm_current_el(env);
+
+ if (cur_el < 2) {
+ uint64_t hcr = arm_hcr_el2_eff(env);
+
+ if (cur_el == 0) {
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ } else {
+ if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
+ return CP_ACCESS_TRAP;
+ }
+ if (hcr & HCR_TDZ) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ } else if (hcr & HCR_TDZ) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ return CP_ACCESS_OK;
+}
+
+static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ int dzp_bit = 1 << 4;
+
+ /* DZP indicates whether DC ZVA access is allowed */
+ if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
+ dzp_bit = 0;
+ }
+ return cpu->dcz_blocksize | dzp_bit;
+}
+
+static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (!(env->pstate & PSTATE_SP)) {
+ /*
+ * Access to SP_EL0 is undefined if it's being used as
+ * the stack pointer.
+ */
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+ }
+ return CP_ACCESS_OK;
+}
+
+static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_SP;
+}
+
+static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
+{
+ update_spsel(env, val);
+}
+
+static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
+ /* M bit is RAZ/WI for PMSA with no MPU implemented */
+ value &= ~SCTLR_M;
+ }
+
+ /* ??? Lots of these bits are not implemented. */
+
+ if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
+ if (ri->opc1 == 6) { /* SCTLR_EL3 */
+ value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
+ } else {
+ value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
+ SCTLR_ATA0 | SCTLR_ATA);
+ }
+ }
+
+ if (raw_read(env, ri) == value) {
+ /*
+ * Skip the TLB flush if nothing actually changed; Linux likes
+ * to do a lot of pointless SCTLR writes.
+ */
+ return;
+ }
+
+ raw_write(env, ri, value);
+
+ /* This may enable/disable the MMU, so do a TLB flush. */
+ tlb_flush(CPU(cpu));
+
+ if (ri->type & ARM_CP_SUPPRESS_TB_END) {
+ /*
+ * Normally we would always end the TB on an SCTLR write; see the
+ * comment in ARMCPRegInfo sctlr initialization below for why Xscale
+ * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
+ * of hflags from the translator, so do it here.
+ */
+ arm_rebuild_hflags(env);
+ }
+}
+
+static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Some MDCR_EL3 bits affect whether PMU counters are running:
+ * if we are trying to change any of those then we must
+ * bracket this update with PMU start/finish calls.
+ */
+ bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
+
+ if (pmu_op) {
+ pmu_op_start(env);
+ }
+ env->cp15.mdcr_el3 = value;
+ if (pmu_op) {
+ pmu_op_finish(env);
+ }
+}
+
+static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
+ mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
+}
+
+static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * Some MDCR_EL2 bits affect whether PMU counters are running:
+ * if we are trying to change any of those then we must
+ * bracket this update with PMU start/finish calls.
+ */
+ bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
+
+ if (pmu_op) {
+ pmu_op_start(env);
+ }
+ env->cp15.mdcr_el2 = value;
+ if (pmu_op) {
+ pmu_op_finish(env);
+ }
+}
+
+static const ARMCPRegInfo v8_cp_reginfo[] = {
+ /*
+ * Minimal set of EL0-visible registers. This will need to be expanded
+ * significantly for system emulation of AArch64 CPUs.
+ */
+ { .name = "NZCV", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
+ .access = PL0_RW, .type = ARM_CP_NZCV },
+ { .name = "DAIF", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
+ .type = ARM_CP_NO_RAW,
+ .access = PL0_RW, .accessfn = aa64_daif_access,
+ .fieldoffset = offsetof(CPUARMState, daif),
+ .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
+ { .name = "FPCR", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
+ .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
+ .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
+ { .name = "FPSR", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
+ .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
+ .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
+ { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
+ .access = PL0_R, .type = ARM_CP_NO_RAW,
+ .readfn = aa64_dczid_read },
+ { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_DC_ZVA,
+#ifndef CONFIG_USER_ONLY
+ /* Avoid overhead of an access check that always passes in user-mode */
+ .accessfn = aa64_zva_access,
+#endif
+ },
+ { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
+ .access = PL1_R, .type = ARM_CP_CURRENTEL },
+ /* Cache ops: all NOPs since we don't emulate caches */
+ { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP,
+ .accessfn = access_ticab },
+ { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP,
+ .accessfn = access_tocu },
+ { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP,
+ .accessfn = access_tocu },
+ { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
+ .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
+ .type = ARM_CP_NOP },
+ { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
+ { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
+ { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP,
+ .accessfn = access_tocu },
+ { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
+ /* TLBI operations */
+ { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1is_write },
+ { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1is_write },
+ { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1_write },
+ { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1_write },
+ { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1_write },
+ { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1_write },
+ { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1_write },
+ { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1_write },
+ { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ipas2e1is_write },
+ { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ipas2e1is_write },
+ { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1is_write },
+ { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1is_write },
+ { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ipas2e1_write },
+ { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ipas2e1_write },
+ { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1_write },
+ { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1is_write },
+#ifndef CONFIG_USER_ONLY
+ /* 64 bit address translation operations */
+ { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
+ { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
+ .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
+ .writefn = par_write },
+#endif
+ /* TLB invalidate last level of translation table walk */
+ { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbimva_is_write },
+ { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
+ .writefn = tlbimvaa_is_write },
+ { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimva_write },
+ { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
+ .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
+ .writefn = tlbimvaa_write },
+ { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbimva_hyp_write },
+ { .name = "TLBIMVALHIS",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbimva_hyp_is_write },
+ { .name = "TLBIIPAS2",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiipas2_hyp_write },
+ { .name = "TLBIIPAS2IS",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiipas2is_hyp_write },
+ { .name = "TLBIIPAS2L",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiipas2_hyp_write },
+ { .name = "TLBIIPAS2LIS",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiipas2is_hyp_write },
+ /* 32 bit cache operations */
+ { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
+ { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
+ .type = ARM_CP_NOP, .access = PL1_W },
+ { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
+ { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
+ { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
+ .type = ARM_CP_NOP, .access = PL1_W },
+ { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
+ .type = ARM_CP_NOP, .access = PL1_W },
+ { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
+ { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
+ { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
+ { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
+ { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ /* MMU Domain access control / MPU write buffer control */
+ { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
+ .writefn = dacr_write, .raw_writefn = raw_write,
+ .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
+ offsetoflow32(CPUARMState, cp15.dacr_ns) } },
+ { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
+ { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
+ /*
+ * We rely on the access checks not allowing the guest to write to the
+ * state field when SPSel indicates that it's being used as the stack
+ * pointer.
+ */
+ { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
+ .access = PL1_RW, .accessfn = sp_el0_access,
+ .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
+ { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
+ .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
+ .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
+ { .name = "SPSel", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
+ .type = ARM_CP_NO_RAW,
+ .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
+ { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
+ .access = PL2_RW,
+ .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
+ .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
+ { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+ .writefn = dacr_write, .raw_writefn = raw_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
+ { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
+ .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+ .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
+ { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
+ { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
+ { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
+ { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
+ { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
+ .resetvalue = 0,
+ .access = PL3_RW,
+ .writefn = mdcr_el3_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
+ { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
+ .writefn = sdcr_write,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
+};
+
+static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
+ } else {
+ valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ valid_mask &= ~HCR_HCD;
+ } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
+ /*
+ * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
+ * However, if we're using the SMC PSCI conduit then QEMU is
+ * effectively acting like EL3 firmware and so the guest at
+ * EL2 should retain the ability to prevent EL1 from being
+ * able to make SMC calls into the ersatz firmware, so in
+ * that case HCR.TSC should be read/write.
+ */
+ valid_mask &= ~HCR_TSC;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+ if (cpu_isar_feature(aa64_vh, cpu)) {
+ valid_mask |= HCR_E2H;
+ }
+ if (cpu_isar_feature(aa64_ras, cpu)) {
+ valid_mask |= HCR_TERR | HCR_TEA;
+ }
+ if (cpu_isar_feature(aa64_lor, cpu)) {
+ valid_mask |= HCR_TLOR;
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ valid_mask |= HCR_API | HCR_APK;
+ }
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
+ }
+ if (cpu_isar_feature(aa64_scxtnum, cpu)) {
+ valid_mask |= HCR_ENSCXT;
+ }
+ if (cpu_isar_feature(aa64_fwb, cpu)) {
+ valid_mask |= HCR_FWB;
+ }
+ }
+
+ if (cpu_isar_feature(any_evt, cpu)) {
+ valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
+ } else if (cpu_isar_feature(any_half_evt, cpu)) {
+ valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
+ }
+
+ /* Clear RES0 bits. */
+ value &= valid_mask;
+
+ /*
+ * These bits change the MMU setup:
+ * HCR_VM enables stage 2 translation
+ * HCR_PTW forbids certain page-table setups
+ * HCR_DC disables stage1 and enables stage2 translation
+ * HCR_DCT enables tagging on (disabled) stage1 translation
+ * HCR_FWB changes the interpretation of stage2 descriptor bits
+ */
+ if ((env->cp15.hcr_el2 ^ value) &
+ (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
+ tlb_flush(CPU(cpu));
+ }
+ env->cp15.hcr_el2 = value;
+
+ /*
+ * Updates to VI and VF require us to update the status of
+ * virtual interrupts, which are the logical OR of these bits
+ * and the state of the input lines from the GIC. (This requires
+ * that we have the iothread lock, which is done by marking the
+ * reginfo structs as ARM_CP_IO.)
+ * Note that if a write to HCR pends a VIRQ or VFIQ it is never
+ * possible for it to be taken immediately, because VIRQ and
+ * VFIQ are masked unless running at EL0 or EL1, and HCR
+ * can only be written at EL2.
+ */
+ g_assert(qemu_mutex_iothread_locked());
+ arm_cpu_update_virq(cpu);
+ arm_cpu_update_vfiq(cpu);
+ arm_cpu_update_vserr(cpu);
+}
+
+static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ do_hcr_write(env, value, 0);
+}
+
+static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
+ value = deposit64(env->cp15.hcr_el2, 32, 32, value);
+ do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
+}
+
+static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Handle HCR write, i.e. write to low half of HCR_EL2 */
+ value = deposit64(env->cp15.hcr_el2, 0, 32, value);
+ do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
+}
+
+static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint64_t valid_mask = 0;
+
+ /* No features adding bits to HCRX are implemented. */
+
+ /* Clear RES0 bits. */
+ env->cp15.hcrx_el2 = value & valid_mask;
+}
+
+static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) < 3
+ && arm_feature(env, ARM_FEATURE_EL3)
+ && !(env->cp15.scr_el3 & SCR_HXEN)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo hcrx_el2_reginfo = {
+ .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
+ .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
+ .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
+};
+
+/* Return the effective value of HCRX_EL2. */
+uint64_t arm_hcrx_el2_eff(CPUARMState *env)
+{
+ /*
+ * The bits in this register behave as 0 for all purposes other than
+ * direct reads of the register if:
+ * - EL2 is not enabled in the current security state,
+ * - SCR_EL3.HXEn is 0.
+ */
+ if (!arm_is_el2_enabled(env)
+ || (arm_feature(env, ARM_FEATURE_EL3)
+ && !(env->cp15.scr_el3 & SCR_HXEN))) {
+ return 0;
+ }
+ return env->cp15.hcrx_el2;
+}
+
+static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * For A-profile AArch32 EL3, if NSACR.CP10
+ * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
+ !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
+ uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
+ value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
+ }
+ env->cp15.cptr_el[2] = value;
+}
+
+static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /*
+ * For A-profile AArch32 EL3, if NSACR.CP10
+ * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
+ */
+ uint64_t value = env->cp15.cptr_el[2];
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
+ !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
+ value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
+ }
+ return value;
+}
+
+static const ARMCPRegInfo el2_cp_reginfo[] = {
+ { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
+ .writefn = hcr_write },
+ { .name = "HCR", .state = ARM_CP_STATE_AA32,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
+ .writefn = hcr_writelow },
+ { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
+ .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
+ { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
+ { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
+ { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
+ .type = ARM_CP_ALIAS,
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
+ .access = PL2_RW,
+ .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
+ { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
+ { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .writefn = vbar_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
+ .resetvalue = 0 },
+ { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
+ .access = PL3_RW, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
+ { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
+ .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
+ .readfn = cptr_el2_read, .writefn = cptr_el2_write },
+ { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
+ .resetvalue = 0 },
+ { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
+ { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
+ { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
+ .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
+ { .name = "VTCR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
+ .type = ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = access_el3_aa32ns,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
+ { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
+ .access = PL2_RW,
+ /* no .writefn needed as this can't cause an ASID change */
+ .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
+ { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 6, .crm = 2,
+ .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = access_el3_aa32ns,
+ .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
+ .writefn = vttbr_write },
+ { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
+ .access = PL2_RW, .writefn = vttbr_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
+ { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
+ { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
+ .access = PL2_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
+ { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
+ { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
+ .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
+ { .name = "TLBIALLNSNH",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiall_nsnh_write },
+ { .name = "TLBIALLNSNHIS",
+ .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiall_nsnh_is_write },
+ { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiall_hyp_write },
+ { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbiall_hyp_is_write },
+ { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbimva_hyp_write },
+ { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
+ .type = ARM_CP_NO_RAW, .access = PL2_W,
+ .writefn = tlbimva_hyp_is_write },
+ { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_alle2_write },
+ { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2_write },
+ { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2_write },
+ { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_alle2is_write },
+ { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2is_write },
+ { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2is_write },
+#ifndef CONFIG_USER_ONLY
+ /*
+ * Unlike the other EL2-related AT operations, these must
+ * UNDEF from EL3 if EL2 is not implemented, which is why we
+ * define them here rather than with the rest of the AT ops.
+ */
+ { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
+ .access = PL2_W, .accessfn = at_s1e2_access,
+ .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
+ .access = PL2_W, .accessfn = at_s1e2_access,
+ .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = ats_write64 },
+ /*
+ * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
+ * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
+ * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
+ * to behave as if SCR.NS was 1.
+ */
+ { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
+ .access = PL2_W,
+ .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
+ { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
+ .access = PL2_W,
+ .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
+ { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
+ /*
+ * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
+ * reset values as IMPDEF. We choose to reset to 3 to comply with
+ * both ARMv7 and ARMv8.
+ */
+ .access = PL2_RW, .resetvalue = 3,
+ .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
+ { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
+ .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
+ .writefn = gt_cntvoff_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
+ { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
+ .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
+ .writefn = gt_cntvoff_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
+ { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
+ .type = ARM_CP_IO, .access = PL2_RW,
+ .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
+ { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
+ .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
+ .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
+ { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
+ .resetfn = gt_hyp_timer_reset,
+ .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
+ { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
+ .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
+ .resetvalue = 0,
+ .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
+#endif
+ { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
+ .access = PL2_RW, .accessfn = access_el3_aa32ns,
+ .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
+ { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
+ { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
+ .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
+};
+
+static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
+ { .name = "HCR2", .state = ARM_CP_STATE_AA32,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
+ .access = PL2_RW,
+ .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
+ .writefn = hcr_writehigh },
+};
+
+static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
+ return CP_ACCESS_OK;
+ }
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+}
+
+static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
+ { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
+ .access = PL2_RW, .accessfn = sel2_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
+ { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
+ .access = PL2_RW, .accessfn = sel2_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
+};
+
+static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
+ * At Secure EL1 it traps to EL3 or EL2.
+ */
+ if (arm_current_el(env) == 3) {
+ return CP_ACCESS_OK;
+ }
+ if (arm_is_secure_below_el3(env)) {
+ if (env->cp15.scr_el3 & SCR_EEL2) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_TRAP_EL3;
+ }
+ /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
+ if (isread) {
+ return CP_ACCESS_OK;
+ }
+ return CP_ACCESS_TRAP_UNCATEGORIZED;
+}
+
+static const ARMCPRegInfo el3_cp_reginfo[] = {
+ { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
+ .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
+ .resetfn = scr_reset, .writefn = scr_write },
+ { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
+ .writefn = scr_write },
+ { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
+ .access = PL3_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.sder) },
+ { .name = "SDER",
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
+ .access = PL3_RW, .resetvalue = 0,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
+ { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
+ .writefn = vbar_write, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
+ { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
+ .access = PL3_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
+ { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
+ .access = PL3_RW,
+ /* no .writefn needed as this can't cause an ASID change */
+ .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
+ { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
+ .access = PL3_RW,
+ .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
+ { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
+ .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
+ { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
+ .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
+ { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_ALIAS,
+ .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
+ .access = PL3_RW,
+ .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
+ { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
+ .access = PL3_RW, .writefn = vbar_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
+ .resetvalue = 0 },
+ { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
+ .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
+ { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
+ .access = PL3_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
+ { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
+ .access = PL3_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
+ .access = PL3_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
+ .access = PL3_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle3is_write },
+ { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3is_write },
+ { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3is_write },
+ { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle3_write },
+ { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3_write },
+ { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3_write },
+};
+
+#ifndef CONFIG_USER_ONLY
+/* Test if system register redirection is to occur in the current state. */
+static bool redirect_for_e2h(CPUARMState *env)
+{
+ return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
+}
+
+static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ CPReadFn *readfn;
+
+ if (redirect_for_e2h(env)) {
+ /* Switch to the saved EL2 version of the register. */
+ ri = ri->opaque;
+ readfn = ri->readfn;
+ } else {
+ readfn = ri->orig_readfn;
+ }
+ if (readfn == NULL) {
+ readfn = raw_read;
+ }
+ return readfn(env, ri);
+}
+
+static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ CPWriteFn *writefn;
+
+ if (redirect_for_e2h(env)) {
+ /* Switch to the saved EL2 version of the register. */
+ ri = ri->opaque;
+ writefn = ri->writefn;
+ } else {
+ writefn = ri->orig_writefn;
+ }
+ if (writefn == NULL) {
+ writefn = raw_write;
+ }
+ writefn(env, ri, value);
+}
+
+static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
+{
+ struct E2HAlias {
+ uint32_t src_key, dst_key, new_key;
+ const char *src_name, *dst_name, *new_name;
+ bool (*feature)(const ARMISARegisters *id);
+ };
+
+#define K(op0, op1, crn, crm, op2) \
+ ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
+
+ static const struct E2HAlias aliases[] = {
+ { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
+ "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
+ { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
+ "CPACR", "CPTR_EL2", "CPACR_EL12" },
+ { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
+ "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
+ { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
+ "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
+ { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
+ "TCR_EL1", "TCR_EL2", "TCR_EL12" },
+ { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
+ "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
+ { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
+ "ELR_EL1", "ELR_EL2", "ELR_EL12" },
+ { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
+ "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
+ { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
+ "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
+ { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
+ "ESR_EL1", "ESR_EL2", "ESR_EL12" },
+ { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
+ "FAR_EL1", "FAR_EL2", "FAR_EL12" },
+ { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
+ "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
+ { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
+ "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
+ { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
+ "VBAR", "VBAR_EL2", "VBAR_EL12" },
+ { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
+ "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
+ { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
+ "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
+
+ /*
+ * Note that redirection of ZCR is mentioned in the description
+ * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
+ * not in the summary table.
+ */
+ { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
+ "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
+ { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
+ "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
+
+ { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
+ "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
+
+ { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
+ "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
+ isar_feature_aa64_scxtnum },
+
+ /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
+ /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
+ };
+#undef K
+
+ size_t i;
+
+ for (i = 0; i < ARRAY_SIZE(aliases); i++) {
+ const struct E2HAlias *a = &aliases[i];
+ ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
+ bool ok;
+
+ if (a->feature && !a->feature(&cpu->isar)) {
+ continue;
+ }
+
+ src_reg = g_hash_table_lookup(cpu->cp_regs,
+ (gpointer)(uintptr_t)a->src_key);
+ dst_reg = g_hash_table_lookup(cpu->cp_regs,
+ (gpointer)(uintptr_t)a->dst_key);
+ g_assert(src_reg != NULL);
+ g_assert(dst_reg != NULL);
+
+ /* Cross-compare names to detect typos in the keys. */
+ g_assert(strcmp(src_reg->name, a->src_name) == 0);
+ g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
+
+ /* None of the core system registers use opaque; we will. */
+ g_assert(src_reg->opaque == NULL);
+
+ /* Create alias before redirection so we dup the right data. */
+ new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
+
+ new_reg->name = a->new_name;
+ new_reg->type |= ARM_CP_ALIAS;
+ /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
+ new_reg->access &= PL2_RW | PL3_RW;
+
+ ok = g_hash_table_insert(cpu->cp_regs,
+ (gpointer)(uintptr_t)a->new_key, new_reg);
+ g_assert(ok);
+
+ src_reg->opaque = dst_reg;
+ src_reg->orig_readfn = src_reg->readfn ?: raw_read;
+ src_reg->orig_writefn = src_reg->writefn ?: raw_write;
+ if (!src_reg->raw_readfn) {
+ src_reg->raw_readfn = raw_read;
+ }
+ if (!src_reg->raw_writefn) {
+ src_reg->raw_writefn = raw_write;
+ }
+ src_reg->readfn = el2_e2h_read;
+ src_reg->writefn = el2_e2h_write;
+ }
+}
+#endif
+
+static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int cur_el = arm_current_el(env);
+
+ if (cur_el < 2) {
+ uint64_t hcr = arm_hcr_el2_eff(env);
+
+ if (cur_el == 0) {
+ if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
+ if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ } else {
+ if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
+ return CP_ACCESS_TRAP;
+ }
+ if (hcr & HCR_TID2) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ } else if (hcr & HCR_TID2) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+
+ if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+/*
+ * Check for traps to RAS registers, which are controlled
+ * by HCR_EL2.TERR and SCR_EL3.TERR.
+ */
+static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
+ return env->cp15.vdisr_el2;
+ }
+ if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
+ return 0; /* RAZ/WI */
+ }
+ return env->cp15.disr_el1;
+}
+
+static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
+ env->cp15.vdisr_el2 = val;
+ return;
+ }
+ if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
+ return; /* RAZ/WI */
+ }
+ env->cp15.disr_el1 = val;
+}
+
+/*
+ * Minimal RAS implementation with no Error Records.
+ * Which means that all of the Error Record registers:
+ * ERXADDR_EL1
+ * ERXCTLR_EL1
+ * ERXFR_EL1
+ * ERXMISC0_EL1
+ * ERXMISC1_EL1
+ * ERXMISC2_EL1
+ * ERXMISC3_EL1
+ * ERXPFGCDN_EL1 (RASv1p1)
+ * ERXPFGCTL_EL1 (RASv1p1)
+ * ERXPFGF_EL1 (RASv1p1)
+ * ERXSTATUS_EL1
+ * and
+ * ERRSELR_EL1
+ * may generate UNDEFINED, which is the effect we get by not
+ * listing them at all.
+ */
+static const ARMCPRegInfo minimal_ras_reginfo[] = {
+ { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
+ .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
+ { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
+ .access = PL1_R, .accessfn = access_terr,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
+ { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
+ .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
+};
+
+static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int cur_el = arm_current_el(env);
+ int old_len = sve_vqm1_for_el(env, cur_el);
+ int new_len;
+
+ /* Bits other than [3:0] are RAZ/WI. */
+ QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
+ raw_write(env, ri, value & 0xf);
+
+ /*
+ * Because we arrived here, we know both FP and SVE are enabled;
+ * otherwise we would have trapped access to the ZCR_ELn register.
+ */
+ new_len = sve_vqm1_for_el(env, cur_el);
+ if (new_len < old_len) {
+ aarch64_sve_narrow_vq(env, new_len + 1);
+ }
+}
+
+static const ARMCPRegInfo zcr_reginfo[] = {
+ { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_SVE,
+ .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
+ .writefn = zcr_write, .raw_writefn = raw_write },
+ { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
+ .access = PL2_RW, .type = ARM_CP_SVE,
+ .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
+ .writefn = zcr_write, .raw_writefn = raw_write },
+ { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
+ .access = PL3_RW, .type = ARM_CP_SVE,
+ .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
+ .writefn = zcr_write, .raw_writefn = raw_write },
+};
+
+#ifdef TARGET_AARCH64
+static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el == 0) {
+ uint64_t sctlr = arm_sctlr(env, el);
+ if (!(sctlr & SCTLR_EnTP2)) {
+ return CP_ACCESS_TRAP;
+ }
+ }
+ /* TODO: FEAT_FGT */
+ if (el < 3
+ && arm_feature(env, ARM_FEATURE_EL3)
+ && !(env->cp15.scr_el3 & SCR_ENTP2)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
+ if (arm_current_el(env) < 3
+ && arm_feature(env, ARM_FEATURE_EL3)
+ && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ aarch64_set_svcr(env, value, -1);
+}
+
+static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ int cur_el = arm_current_el(env);
+ int old_len = sve_vqm1_for_el(env, cur_el);
+ int new_len;
+
+ QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
+ value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
+ raw_write(env, ri, value);
+
+ /*
+ * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
+ * when SVL is widened (old values kept, or zeros). Choose to keep the
+ * current values for simplicity. But for QEMU internals, we must still
+ * apply the narrower SVL to the Zregs and Pregs -- see the comment
+ * above aarch64_sve_narrow_vq.
+ */
+ new_len = sve_vqm1_for_el(env, cur_el);
+ if (new_len < old_len) {
+ aarch64_sve_narrow_vq(env, new_len + 1);
+ }
+}
+
+static const ARMCPRegInfo sme_reginfo[] = {
+ { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
+ .access = PL0_RW, .accessfn = access_tpidr2,
+ .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
+ { .name = "SVCR", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_SME,
+ .fieldoffset = offsetof(CPUARMState, svcr),
+ .writefn = svcr_write, .raw_writefn = raw_write },
+ { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
+ .access = PL1_RW, .type = ARM_CP_SME,
+ .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
+ .writefn = smcr_write, .raw_writefn = raw_write },
+ { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
+ .access = PL2_RW, .type = ARM_CP_SME,
+ .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
+ .writefn = smcr_write, .raw_writefn = raw_write },
+ { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
+ .access = PL3_RW, .type = ARM_CP_SME,
+ .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
+ .writefn = smcr_write, .raw_writefn = raw_write },
+ { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
+ .access = PL1_R, .accessfn = access_aa64_tid1,
+ /*
+ * IMPLEMENTOR = 0 (software)
+ * REVISION = 0 (implementation defined)
+ * SMPS = 0 (no streaming execution priority in QEMU)
+ * AFFINITY = 0 (streaming sve mode not shared with other PEs)
+ */
+ .type = ARM_CP_CONST, .resetvalue = 0, },
+ /*
+ * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
+ */
+ { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
+ .access = PL1_RW, .accessfn = access_esm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
+ .access = PL2_RW, .accessfn = access_esm,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+};
+#endif /* TARGET_AARCH64 */
+
+static void define_pmu_regs(ARMCPU *cpu)
+{
+ /*
+ * v7 performance monitor control register: same implementor
+ * field as main ID register, and we implement four counters in
+ * addition to the cycle count register.
+ */
+ unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
+ ARMCPRegInfo pmcr = {
+ .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
+ .accessfn = pmreg_access, .writefn = pmcr_write,
+ .raw_writefn = raw_write,
+ };
+ ARMCPRegInfo pmcr64 = {
+ .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
+ .resetvalue = cpu->isar.reset_pmcr_el0,
+ .writefn = pmcr_write, .raw_writefn = raw_write,
+ };
+
+ define_one_arm_cp_reg(cpu, &pmcr);
+ define_one_arm_cp_reg(cpu, &pmcr64);
+ for (i = 0; i < pmcrn; i++) {
+ char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
+ char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
+ char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
+ char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
+ ARMCPRegInfo pmev_regs[] = {
+ { .name = pmevcntr_name, .cp = 15, .crn = 14,
+ .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
+ .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
+ .accessfn = pmreg_access_xevcntr },
+ { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
+ .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
+ .type = ARM_CP_IO,
+ .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
+ .raw_readfn = pmevcntr_rawread,
+ .raw_writefn = pmevcntr_rawwrite },
+ { .name = pmevtyper_name, .cp = 15, .crn = 14,
+ .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
+ .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
+ .accessfn = pmreg_access },
+ { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
+ .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
+ .type = ARM_CP_IO,
+ .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
+ .raw_writefn = pmevtyper_rawwrite },
+ };
+ define_arm_cp_regs(cpu, pmev_regs);
+ g_free(pmevcntr_name);
+ g_free(pmevcntr_el0_name);
+ g_free(pmevtyper_name);
+ g_free(pmevtyper_el0_name);
+ }
+ if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
+ ARMCPRegInfo v81_pmu_regs[] = {
+ { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = extract64(cpu->pmceid0, 32, 32) },
+ { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = extract64(cpu->pmceid1, 32, 32) },
+ };
+ define_arm_cp_regs(cpu, v81_pmu_regs);
+ }
+ if (cpu_isar_feature(any_pmuv3p4, cpu)) {
+ static const ARMCPRegInfo v84_pmmir = {
+ .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
+ .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = 0
+ };
+ define_one_arm_cp_reg(cpu, &v84_pmmir);
+ }
+}
+
+/*
+ * We don't know until after realize whether there's a GICv3
+ * attached, and that is what registers the gicv3 sysregs.
+ * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
+ * at runtime.
+ */
+static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint64_t pfr1 = cpu->isar.id_pfr1;
+
+ if (env->gicv3state) {
+ pfr1 |= 1 << 28;
+ }
+ return pfr1;
+}
+
+#ifndef CONFIG_USER_ONLY
+static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ uint64_t pfr0 = cpu->isar.id_aa64pfr0;
+
+ if (env->gicv3state) {
+ pfr0 |= 1 << 24;
+ }
+ return pfr0;
+}
+#endif
+
+/*
+ * Shared logic between LORID and the rest of the LOR* registers.
+ * Secure state exclusion has already been dealt with.
+ */
+static CPAccessResult access_lor_ns(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_lor_other(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ if (arm_is_secure_below_el3(env)) {
+ /* Access denied in secure mode. */
+ return CP_ACCESS_TRAP;
+ }
+ return access_lor_ns(env, ri, isread);
+}
+
+/*
+ * A trivial implementation of ARMv8.1-LOR leaves all of these
+ * registers fixed at 0, which indicates that there are zero
+ * supported Limited Ordering regions.
+ */
+static const ARMCPRegInfo lor_reginfo[] = {
+ { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_lor_other,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_lor_other,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_lor_other,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
+ .access = PL1_RW, .accessfn = access_lor_other,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
+ .access = PL1_R, .accessfn = access_lor_ns,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+};
+
+#ifdef TARGET_AARCH64
+static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 &&
+ arm_is_el2_enabled(env) &&
+ !(arm_hcr_el2_eff(env) & HCR_APK)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 &&
+ arm_feature(env, ARM_FEATURE_EL3) &&
+ !(env->cp15.scr_el3 & SCR_APK)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo pauth_reginfo[] = {
+ { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
+ { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
+ { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
+ { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
+ { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
+ { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
+ { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
+ { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
+ { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
+ { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
+ .access = PL1_RW, .accessfn = access_pauth,
+ .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
+};
+
+static const ARMCPRegInfo tlbirange_reginfo[] = {
+ { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1is_write },
+ { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1_write },
+ { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1_write },
+ { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1_write },
+ { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae1_write },
+ { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ripas2e1is_write },
+ { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ripas2e1is_write },
+ { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2is_write },
+ { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2is_write },
+ { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ripas2e1_write },
+ { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_ripas2e1_write },
+ { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2is_write },
+ { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2is_write },
+ { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2_write },
+ { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_rvae2_write },
+ { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3is_write },
+ { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3is_write },
+ { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3is_write },
+ { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3is_write },
+ { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3_write },
+ { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_rvae3_write },
+};
+
+static const ARMCPRegInfo tlbios_reginfo[] = {
+ { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1is_write },
+ { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vmalle1is_write },
+ { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
+ .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae1is_write },
+ { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_alle2is_write },
+ { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2is_write },
+ { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1is_write },
+ { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
+ .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
+ .writefn = tlbi_aa64_vae2is_write },
+ { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
+ .access = PL2_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle1is_write },
+ { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
+ .access = PL2_W, .type = ARM_CP_NOP },
+ { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
+ .access = PL2_W, .type = ARM_CP_NOP },
+ { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
+ .access = PL2_W, .type = ARM_CP_NOP },
+ { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
+ .access = PL2_W, .type = ARM_CP_NOP },
+ { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_alle3is_write },
+ { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3is_write },
+ { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
+ .access = PL3_W, .type = ARM_CP_NO_RAW,
+ .writefn = tlbi_aa64_vae3is_write },
+};
+
+static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ Error *err = NULL;
+ uint64_t ret;
+
+ /* Success sets NZCV = 0000. */
+ env->NF = env->CF = env->VF = 0, env->ZF = 1;
+
+ if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
+ /*
+ * ??? Failed, for unknown reasons in the crypto subsystem.
+ * The best we can do is log the reason and return the
+ * timed-out indication to the guest. There is no reason
+ * we know to expect this failure to be transitory, so the
+ * guest may well hang retrying the operation.
+ */
+ qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
+ ri->name, error_get_pretty(err));
+ error_free(err);
+
+ env->ZF = 0; /* NZCF = 0100 */
+ return 0;
+ }
+ return ret;
+}
+
+/* We do not support re-seeding, so the two registers operate the same. */
+static const ARMCPRegInfo rndr_reginfo[] = {
+ { .name = "RNDR", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
+ .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
+ .access = PL0_R, .readfn = rndr_readfn },
+ { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
+ .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
+ .access = PL0_R, .readfn = rndr_readfn },
+};
+
+#ifndef CONFIG_USER_ONLY
+static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
+ uint64_t value)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ /* CTR_EL0 System register -> DminLine, bits [19:16] */
+ uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
+ uint64_t vaddr_in = (uint64_t) value;
+ uint64_t vaddr = vaddr_in & ~(dline_size - 1);
+ void *haddr;
+ int mem_idx = cpu_mmu_index(env, false);
+
+ /* This won't be crossing page boundaries */
+ haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
+ if (haddr) {
+
+ ram_addr_t offset;
+ MemoryRegion *mr;
+
+ /* RCU lock is already being held */
+ mr = memory_region_from_host(haddr, &offset);
+
+ if (mr) {
+ memory_region_writeback(mr, offset, dline_size);
+ }
+ }
+}
+
+static const ARMCPRegInfo dcpop_reg[] = {
+ { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
+ .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
+};
+
+static const ARMCPRegInfo dcpodp_reg[] = {
+ { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
+ .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
+};
+#endif /*CONFIG_USER_ONLY*/
+
+static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && arm_is_el2_enabled(env)) {
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ if (el < 3 &&
+ arm_feature(env, ARM_FEATURE_EL3) &&
+ !(env->cp15.scr_el3 & SCR_ATA)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return env->pstate & PSTATE_TCO;
+}
+
+static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
+{
+ env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
+}
+
+static const ARMCPRegInfo mte_reginfo[] = {
+ { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_mte,
+ .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
+ { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_mte,
+ .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
+ { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
+ .access = PL2_RW, .accessfn = access_mte,
+ .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
+ { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
+ .access = PL3_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
+ { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
+ .access = PL1_RW, .accessfn = access_mte,
+ .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
+ { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
+ .access = PL1_RW, .accessfn = access_mte,
+ .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
+ { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
+ .access = PL1_R, .accessfn = access_aa64_tid5,
+ .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
+ { .name = "TCO", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
+ .type = ARM_CP_NO_RAW,
+ .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
+ { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
+ .type = ARM_CP_NOP, .access = PL1_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL1_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+ { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
+ .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
+};
+
+static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
+ { .name = "TCO", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
+ .type = ARM_CP_CONST, .access = PL0_RW, },
+};
+
+static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
+ { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W,
+ .accessfn = aa64_cacheop_poc_access },
+ { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
+ .access = PL0_W, .type = ARM_CP_DC_GVA,
+#ifndef CONFIG_USER_ONLY
+ /* Avoid overhead of an access check that always passes in user-mode */
+ .accessfn = aa64_zva_access,
+#endif
+ },
+ { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_DC_GZVA,
+#ifndef CONFIG_USER_ONLY
+ /* Avoid overhead of an access check that always passes in user-mode */
+ .accessfn = aa64_zva_access,
+#endif
+ },
+};
+
+static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ int el = arm_current_el(env);
+
+ if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
+ if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
+ if (hcr & HCR_TGE) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_TRAP;
+ }
+ } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3
+ && arm_feature(env, ARM_FEATURE_EL3)
+ && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo scxtnum_reginfo[] = {
+ { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
+ .access = PL0_RW, .accessfn = access_scxtnum,
+ .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
+ { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
+ .access = PL1_RW, .accessfn = access_scxtnum,
+ .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
+ { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
+ .access = PL2_RW, .accessfn = access_scxtnum,
+ .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
+ { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
+ .access = PL3_RW,
+ .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
+};
+#endif /* TARGET_AARCH64 */
+
+static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+
+ if (el == 0) {
+ uint64_t sctlr = arm_sctlr(env, el);
+ if (!(sctlr & SCTLR_EnRCTX)) {
+ return CP_ACCESS_TRAP;
+ }
+ } else if (el == 1) {
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ if (hcr & HCR_NV) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ }
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo predinv_reginfo[] = {
+ { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+ { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+ { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+ /*
+ * Note the AArch32 opcodes have a different OPC1.
+ */
+ { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+ { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+ { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
+ .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
+};
+
+static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* Read the high 32 bits of the current CCSIDR */
+ return extract64(ccsidr_read(env, ri), 32, 32);
+}
+
+static const ARMCPRegInfo ccsidr2_reginfo[] = {
+ { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
+ .access = PL1_R,
+ .accessfn = access_tid4,
+ .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
+};
+
+static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ return access_aa64_tid3(env, ri, isread);
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_joscr_jmcr(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ /*
+ * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
+ * in v7A, not in v8A.
+ */
+ if (!arm_feature(env, ARM_FEATURE_V8) &&
+ arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
+ (env->cp15.hstr_el2 & HSTR_TJDBX)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ return CP_ACCESS_OK;
+}
+
+static const ARMCPRegInfo jazelle_regs[] = {
+ { .name = "JIDR",
+ .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
+ .access = PL1_R, .accessfn = access_jazelle,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "JOSCR",
+ .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
+ .accessfn = access_joscr_jmcr,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "JMCR",
+ .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
+ .accessfn = access_joscr_jmcr,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+};
+
+static const ARMCPRegInfo contextidr_el2 = {
+ .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
+};
+
+static const ARMCPRegInfo vhe_reginfo[] = {
+ { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
+ .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
+#ifndef CONFIG_USER_ONLY
+ { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
+ .fieldoffset =
+ offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
+ .type = ARM_CP_IO, .access = PL2_RW,
+ .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
+ { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
+ .resetfn = gt_hv_timer_reset,
+ .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
+ { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
+ .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
+ .access = PL2_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
+ .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
+ { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = e2h_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
+ .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
+ { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = e2h_access,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
+ .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
+ { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = e2h_access,
+ .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
+ { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
+ .access = PL2_RW, .accessfn = e2h_access,
+ .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
+ { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+ .access = PL2_RW, .accessfn = e2h_access,
+ .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
+ { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
+ .access = PL2_RW, .accessfn = e2h_access,
+ .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
+#endif
+};
+
+#ifndef CONFIG_USER_ONLY
+static const ARMCPRegInfo ats1e1_reginfo[] = {
+ { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+ { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write64 },
+};
+
+static const ARMCPRegInfo ats1cp_reginfo[] = {
+ { .name = "ATS1CPRP",
+ .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write },
+ { .name = "ATS1CPWP",
+ .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
+ .writefn = ats_write },
+};
+#endif
+
+/*
+ * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
+ * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
+ * is non-zero, which is never for ARMv7, optionally in ARMv8
+ * and mandatorily for ARMv8.2 and up.
+ * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
+ * implementation is RAZ/WI we can ignore this detail, as we
+ * do for ACTLR.
+ */
+static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
+ { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
+ .access = PL1_RW, .accessfn = access_tacr,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+};
+
+void register_cp_regs_for_features(ARMCPU *cpu)
+{
+ /* Register all the coprocessor registers based on feature bits */
+ CPUARMState *env = &cpu->env;
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ /* M profile has no coprocessor registers */
+ return;
+ }
+
+ define_arm_cp_regs(cpu, cp_reginfo);
+ if (!arm_feature(env, ARM_FEATURE_V8)) {
+ /*
+ * Must go early as it is full of wildcards that may be
+ * overridden by later definitions.
+ */
+ define_arm_cp_regs(cpu, not_v8_cp_reginfo);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ /* The ID registers all have impdef reset values */
+ ARMCPRegInfo v6_idregs[] = {
+ { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_pfr0 },
+ /*
+ * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
+ * the value of the GIC field until after we define these regs.
+ */
+ { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_NO_RAW,
+ .accessfn = access_aa32_tid3,
+ .readfn = id_pfr1_read,
+ .writefn = arm_cp_write_ignore },
+ { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_dfr0 },
+ { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->id_afr0 },
+ { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_mmfr0 },
+ { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_mmfr1 },
+ { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_mmfr2 },
+ { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_mmfr3 },
+ { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar0 },
+ { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar1 },
+ { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar2 },
+ { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar3 },
+ { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar4 },
+ { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar5 },
+ { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_mmfr4 },
+ { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa32_tid3,
+ .resetvalue = cpu->isar.id_isar6 },
+ };
+ define_arm_cp_regs(cpu, v6_idregs);
+ define_arm_cp_regs(cpu, v6_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, not_v6_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6K)) {
+ define_arm_cp_regs(cpu, v6k_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7MP) &&
+ !arm_feature(env, ARM_FEATURE_PMSA)) {
+ define_arm_cp_regs(cpu, v7mp_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7VE)) {
+ define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ ARMCPRegInfo clidr = {
+ .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_tid4,
+ .resetvalue = cpu->clidr
+ };
+ define_one_arm_cp_reg(cpu, &clidr);
+ define_arm_cp_regs(cpu, v7_cp_reginfo);
+ define_debug_regs(cpu);
+ define_pmu_regs(cpu);
+ } else {
+ define_arm_cp_regs(cpu, not_v7_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ /*
+ * v8 ID registers, which all have impdef reset values.
+ * Note that within the ID register ranges the unused slots
+ * must all RAZ, not UNDEF; future architecture versions may
+ * define new registers here.
+ * ID registers which are AArch64 views of the AArch32 ID registers
+ * which already existed in v6 and v7 are handled elsewhere,
+ * in v6_idregs[].
+ */
+ int i;
+ ARMCPRegInfo v8_idregs[] = {
+ /*
+ * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
+ * emulation because we don't know the right value for the
+ * GIC field until after we define these regs.
+ */
+ { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
+ .access = PL1_R,
+#ifdef CONFIG_USER_ONLY
+ .type = ARM_CP_CONST,
+ .resetvalue = cpu->isar.id_aa64pfr0
+#else
+ .type = ARM_CP_NO_RAW,
+ .accessfn = access_aa64_tid3,
+ .readfn = id_aa64pfr0_read,
+ .writefn = arm_cp_write_ignore
+#endif
+ },
+ { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64pfr1},
+ { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64zfr0 },
+ { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64smfr0 },
+ { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64dfr0 },
+ { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64dfr1 },
+ { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->id_aa64afr0 },
+ { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->id_aa64afr1 },
+ { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64isar0 },
+ { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64isar1 },
+ { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64mmfr0 },
+ { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64mmfr1 },
+ { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_aa64mmfr2 },
+ { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.mvfr0 },
+ { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.mvfr1 },
+ { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.mvfr2 },
+ /*
+ * "0, c0, c3, {0,1,2}" are the encodings corresponding to
+ * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
+ * as RAZ, since it is in the "reserved for future ID
+ * registers, RAZ" part of the AArch32 encoding space.
+ */
+ { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ /*
+ * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
+ * they're also RAZ for AArch64, and in v8 are gradually
+ * being filled with AArch64-view-of-AArch32-ID-register
+ * for new ID registers.
+ */
+ { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_pfr2 },
+ { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_dfr1 },
+ { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = cpu->isar.id_mmfr5 },
+ { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 },
+ { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = extract64(cpu->pmceid0, 0, 32) },
+ { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = cpu->pmceid0 },
+ { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = extract64(cpu->pmceid1, 0, 32) },
+ { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .resetvalue = cpu->pmceid1 },
+ };
+#ifdef CONFIG_USER_ONLY
+ static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
+ { .name = "ID_AA64PFR0_EL1",
+ .exported_bits = R_ID_AA64PFR0_FP_MASK |
+ R_ID_AA64PFR0_ADVSIMD_MASK |
+ R_ID_AA64PFR0_SVE_MASK |
+ R_ID_AA64PFR0_DIT_MASK,
+ .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
+ (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
+ { .name = "ID_AA64PFR1_EL1",
+ .exported_bits = R_ID_AA64PFR1_BT_MASK |
+ R_ID_AA64PFR1_SSBS_MASK |
+ R_ID_AA64PFR1_MTE_MASK |
+ R_ID_AA64PFR1_SME_MASK },
+ { .name = "ID_AA64PFR*_EL1_RESERVED",
+ .is_glob = true },
+ { .name = "ID_AA64ZFR0_EL1",
+ .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
+ R_ID_AA64ZFR0_AES_MASK |
+ R_ID_AA64ZFR0_BITPERM_MASK |
+ R_ID_AA64ZFR0_BFLOAT16_MASK |
+ R_ID_AA64ZFR0_SHA3_MASK |
+ R_ID_AA64ZFR0_SM4_MASK |
+ R_ID_AA64ZFR0_I8MM_MASK |
+ R_ID_AA64ZFR0_F32MM_MASK |
+ R_ID_AA64ZFR0_F64MM_MASK },
+ { .name = "ID_AA64SMFR0_EL1",
+ .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
+ R_ID_AA64SMFR0_B16F32_MASK |
+ R_ID_AA64SMFR0_F16F32_MASK |
+ R_ID_AA64SMFR0_I8I32_MASK |
+ R_ID_AA64SMFR0_F64F64_MASK |
+ R_ID_AA64SMFR0_I16I64_MASK |
+ R_ID_AA64SMFR0_FA64_MASK },
+ { .name = "ID_AA64MMFR0_EL1",
+ .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
+ .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
+ (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
+ { .name = "ID_AA64MMFR1_EL1",
+ .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
+ { .name = "ID_AA64MMFR2_EL1",
+ .exported_bits = R_ID_AA64MMFR2_AT_MASK },
+ { .name = "ID_AA64MMFR*_EL1_RESERVED",
+ .is_glob = true },
+ { .name = "ID_AA64DFR0_EL1",
+ .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
+ { .name = "ID_AA64DFR1_EL1" },
+ { .name = "ID_AA64DFR*_EL1_RESERVED",
+ .is_glob = true },
+ { .name = "ID_AA64AFR*",
+ .is_glob = true },
+ { .name = "ID_AA64ISAR0_EL1",
+ .exported_bits = R_ID_AA64ISAR0_AES_MASK |
+ R_ID_AA64ISAR0_SHA1_MASK |
+ R_ID_AA64ISAR0_SHA2_MASK |
+ R_ID_AA64ISAR0_CRC32_MASK |
+ R_ID_AA64ISAR0_ATOMIC_MASK |
+ R_ID_AA64ISAR0_RDM_MASK |
+ R_ID_AA64ISAR0_SHA3_MASK |
+ R_ID_AA64ISAR0_SM3_MASK |
+ R_ID_AA64ISAR0_SM4_MASK |
+ R_ID_AA64ISAR0_DP_MASK |
+ R_ID_AA64ISAR0_FHM_MASK |
+ R_ID_AA64ISAR0_TS_MASK |
+ R_ID_AA64ISAR0_RNDR_MASK },
+ { .name = "ID_AA64ISAR1_EL1",
+ .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
+ R_ID_AA64ISAR1_APA_MASK |
+ R_ID_AA64ISAR1_API_MASK |
+ R_ID_AA64ISAR1_JSCVT_MASK |
+ R_ID_AA64ISAR1_FCMA_MASK |
+ R_ID_AA64ISAR1_LRCPC_MASK |
+ R_ID_AA64ISAR1_GPA_MASK |
+ R_ID_AA64ISAR1_GPI_MASK |
+ R_ID_AA64ISAR1_FRINTTS_MASK |
+ R_ID_AA64ISAR1_SB_MASK |
+ R_ID_AA64ISAR1_BF16_MASK |
+ R_ID_AA64ISAR1_DGH_MASK |
+ R_ID_AA64ISAR1_I8MM_MASK },
+ { .name = "ID_AA64ISAR2_EL1",
+ .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
+ R_ID_AA64ISAR2_RPRES_MASK |
+ R_ID_AA64ISAR2_GPA3_MASK |
+ R_ID_AA64ISAR2_APA3_MASK },
+ { .name = "ID_AA64ISAR*_EL1_RESERVED",
+ .is_glob = true },
+ };
+ modify_arm_cp_regs(v8_idregs, v8_user_idregs);
+#endif
+ /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
+ if (!arm_feature(env, ARM_FEATURE_EL3) &&
+ !arm_feature(env, ARM_FEATURE_EL2)) {
+ ARMCPRegInfo rvbar = {
+ .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
+ .access = PL1_R,
+ .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
+ };
+ define_one_arm_cp_reg(cpu, &rvbar);
+ }
+ define_arm_cp_regs(cpu, v8_idregs);
+ define_arm_cp_regs(cpu, v8_cp_reginfo);
+
+ for (i = 4; i < 16; i++) {
+ /*
+ * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
+ * For pre-v8 cores there are RAZ patterns for these in
+ * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
+ * v8 extends the "must RAZ" part of the ID register space
+ * to also cover c0, 0, c{8-15}, {0-7}.
+ * These are STATE_AA32 because in the AArch64 sysreg space
+ * c4-c7 is where the AArch64 ID registers live (and we've
+ * already defined those in v8_idregs[]), and c8-c15 are not
+ * "must RAZ" for AArch64.
+ */
+ g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
+ ARMCPRegInfo v8_aa32_raz_idregs = {
+ .name = name,
+ .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .accessfn = access_aa64_tid3,
+ .resetvalue = 0 };
+ define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
+ }
+ }
+
+ /*
+ * Register the base EL2 cpregs.
+ * Pre v8, these registers are implemented only as part of the
+ * Virtualization Extensions (EL2 present). Beginning with v8,
+ * if EL2 is missing but EL3 is enabled, mostly these become
+ * RES0 from EL3, with some specific exceptions.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL2)
+ || (arm_feature(env, ARM_FEATURE_EL3)
+ && arm_feature(env, ARM_FEATURE_V8))) {
+ uint64_t vmpidr_def = mpidr_read_val(env);
+ ARMCPRegInfo vpidr_regs[] = {
+ { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .accessfn = access_el3_aa32ns,
+ .resetvalue = cpu->midr,
+ .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
+ { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .resetvalue = cpu->midr,
+ .type = ARM_CP_EL3_NO_EL2_C_NZ,
+ .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
+ { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
+ .access = PL2_RW, .accessfn = access_el3_aa32ns,
+ .resetvalue = vmpidr_def,
+ .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
+ { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
+ .access = PL2_RW, .resetvalue = vmpidr_def,
+ .type = ARM_CP_EL3_NO_EL2_C_NZ,
+ .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
+ };
+ /*
+ * The only field of MDCR_EL2 that has a defined architectural reset
+ * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
+ */
+ ARMCPRegInfo mdcr_el2 = {
+ .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
+ .writefn = mdcr_el2_write,
+ .access = PL2_RW, .resetvalue = pmu_num_counters(env),
+ .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
+ };
+ define_one_arm_cp_reg(cpu, &mdcr_el2);
+ define_arm_cp_regs(cpu, vpidr_regs);
+ define_arm_cp_regs(cpu, el2_cp_reginfo);
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
+ }
+ if (cpu_isar_feature(aa64_sel2, cpu)) {
+ define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
+ }
+ /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
+ if (!arm_feature(env, ARM_FEATURE_EL3)) {
+ ARMCPRegInfo rvbar[] = {
+ {
+ .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
+ .access = PL2_R,
+ .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
+ },
+ { .name = "RVBAR", .type = ARM_CP_ALIAS,
+ .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
+ .access = PL2_R,
+ .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
+ },
+ };
+ define_arm_cp_regs(cpu, rvbar);
+ }
+ }
+
+ /* Register the base EL3 cpregs. */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ define_arm_cp_regs(cpu, el3_cp_reginfo);
+ ARMCPRegInfo el3_regs[] = {
+ { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
+ .access = PL3_R,
+ .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
+ },
+ { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
+ .access = PL3_RW,
+ .raw_writefn = raw_write, .writefn = sctlr_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
+ .resetvalue = cpu->reset_sctlr },
+ };
+
+ define_arm_cp_regs(cpu, el3_regs);
+ }
+ /*
+ * The behaviour of NSACR is sufficiently various that we don't
+ * try to describe it in a single reginfo:
+ * if EL3 is 64 bit, then trap to EL3 from S EL1,
+ * reads as constant 0xc00 from NS EL1 and NS EL2
+ * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
+ * if v7 without EL3, register doesn't exist
+ * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+ static const ARMCPRegInfo nsacr = {
+ .name = "NSACR", .type = ARM_CP_CONST,
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
+ .access = PL1_RW, .accessfn = nsacr_access,
+ .resetvalue = 0xc00
+ };
+ define_one_arm_cp_reg(cpu, &nsacr);
+ } else {
+ static const ARMCPRegInfo nsacr = {
+ .name = "NSACR",
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
+ .access = PL3_RW | PL1_R,
+ .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
+ };
+ define_one_arm_cp_reg(cpu, &nsacr);
+ }
+ } else {
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ static const ARMCPRegInfo nsacr = {
+ .name = "NSACR", .type = ARM_CP_CONST,
+ .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
+ .access = PL1_R,
+ .resetvalue = 0xc00
+ };
+ define_one_arm_cp_reg(cpu, &nsacr);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_PMSA)) {
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ /* PMSAv6 not implemented */
+ assert(arm_feature(env, ARM_FEATURE_V7));
+ define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
+ define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
+ }
+ } else {
+ define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
+ define_arm_cp_regs(cpu, vmsa_cp_reginfo);
+ /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
+ if (cpu_isar_feature(aa32_hpd, cpu)) {
+ define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
+ }
+ }
+ if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+ define_arm_cp_regs(cpu, t2ee_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
+ define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_VAPA)) {
+ define_arm_cp_regs(cpu, vapa_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
+ define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
+ define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
+ define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
+ define_arm_cp_regs(cpu, omap_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ define_arm_cp_regs(cpu, strongarm_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ define_arm_cp_regs(cpu, xscale_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
+ define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ define_arm_cp_regs(cpu, lpae_cp_reginfo);
+ }
+ if (cpu_isar_feature(aa32_jazelle, cpu)) {
+ define_arm_cp_regs(cpu, jazelle_regs);
+ }
+ /*
+ * Slightly awkwardly, the OMAP and StrongARM cores need all of
+ * cp15 crn=0 to be writes-ignored, whereas for other cores they should
+ * be read-only (ie write causes UNDEF exception).
+ */
+ {
+ ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
+ /*
+ * Pre-v8 MIDR space.
+ * Note that the MIDR isn't a simple constant register because
+ * of the TI925 behaviour where writes to another register can
+ * cause the MIDR value to change.
+ *
+ * Unimplemented registers in the c15 0 0 0 space default to
+ * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
+ * and friends override accordingly.
+ */
+ { .name = "MIDR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .resetvalue = cpu->midr,
+ .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
+ .readfn = midr_read,
+ .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
+ .type = ARM_CP_OVERRIDE },
+ /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ };
+ ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
+ { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
+ .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
+ .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
+ .readfn = midr_read },
+ /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
+ { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
+ .access = PL1_R, .resetvalue = cpu->midr },
+ { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
+ .access = PL1_R,
+ .accessfn = access_aa64_tid1,
+ .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
+ };
+ ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
+ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_R, .resetvalue = cpu->midr
+ };
+ ARMCPRegInfo id_cp_reginfo[] = {
+ /* These are common to v8 and pre-v8 */
+ { .name = "CTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_R, .accessfn = ctr_el0_access,
+ .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+ { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
+ .access = PL0_R, .accessfn = ctr_el0_access,
+ .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+ /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
+ { .name = "TCMTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_R,
+ .accessfn = access_aa32_tid1,
+ .type = ARM_CP_CONST, .resetvalue = 0 },
+ };
+ /* TLBTR is specific to VMSA */
+ ARMCPRegInfo id_tlbtr_reginfo = {
+ .name = "TLBTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_R,
+ .accessfn = access_aa32_tid1,
+ .type = ARM_CP_CONST, .resetvalue = 0,
+ };
+ /* MPUIR is specific to PMSA V6+ */
+ ARMCPRegInfo id_mpuir_reginfo = {
+ .name = "MPUIR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->pmsav7_dregion << 8
+ };
+ /* HMPUIR is specific to PMSA V8 */
+ ARMCPRegInfo id_hmpuir_reginfo = {
+ .name = "HMPUIR",
+ .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
+ .access = PL2_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->pmsav8r_hdregion
+ };
+ static const ARMCPRegInfo crn0_wi_reginfo = {
+ .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE
+ };
+#ifdef CONFIG_USER_ONLY
+ static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
+ { .name = "MIDR_EL1",
+ .exported_bits = R_MIDR_EL1_REVISION_MASK |
+ R_MIDR_EL1_PARTNUM_MASK |
+ R_MIDR_EL1_ARCHITECTURE_MASK |
+ R_MIDR_EL1_VARIANT_MASK |
+ R_MIDR_EL1_IMPLEMENTER_MASK },
+ { .name = "REVIDR_EL1" },
+ };
+ modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
+#endif
+ if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
+ arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ size_t i;
+ /*
+ * Register the blanket "writes ignored" value first to cover the
+ * whole space. Then update the specific ID registers to allow write
+ * access, so that they ignore writes rather than causing them to
+ * UNDEF.
+ */
+ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
+ for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
+ id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
+ }
+ for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
+ id_cp_reginfo[i].access = PL1_RW;
+ }
+ id_mpuir_reginfo.access = PL1_RW;
+ id_tlbtr_reginfo.access = PL1_RW;
+ }
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
+ if (!arm_feature(env, ARM_FEATURE_PMSA)) {
+ define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
+ }
+ } else {
+ define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
+ }
+ define_arm_cp_regs(cpu, id_cp_reginfo);
+ if (!arm_feature(env, ARM_FEATURE_PMSA)) {
+ define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
+ } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
+ arm_feature(env, ARM_FEATURE_V8)) {
+ uint32_t i = 0;
+ char *tmp_string;
+
+ define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
+ define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
+ define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
+
+ /* Register alias is only valid for first 32 indexes */
+ for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
+ uint8_t crm = 0b1000 | extract32(i, 1, 3);
+ uint8_t opc1 = extract32(i, 4, 1);
+ uint8_t opc2 = extract32(i, 0, 1) << 2;
+
+ tmp_string = g_strdup_printf("PRBAR%u", i);
+ ARMCPRegInfo tmp_prbarn_reginfo = {
+ .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
+ .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
+ .access = PL1_RW, .resetvalue = 0,
+ .accessfn = access_tvm_trvm,
+ .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
+ };
+ define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
+ g_free(tmp_string);
+
+ opc2 = extract32(i, 0, 1) << 2 | 0x1;
+ tmp_string = g_strdup_printf("PRLAR%u", i);
+ ARMCPRegInfo tmp_prlarn_reginfo = {
+ .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
+ .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
+ .access = PL1_RW, .resetvalue = 0,
+ .accessfn = access_tvm_trvm,
+ .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
+ };
+ define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
+ g_free(tmp_string);
+ }
+
+ /* Register alias is only valid for first 32 indexes */
+ for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
+ uint8_t crm = 0b1000 | extract32(i, 1, 3);
+ uint8_t opc1 = 0b100 | extract32(i, 4, 1);
+ uint8_t opc2 = extract32(i, 0, 1) << 2;
+
+ tmp_string = g_strdup_printf("HPRBAR%u", i);
+ ARMCPRegInfo tmp_hprbarn_reginfo = {
+ .name = tmp_string,
+ .type = ARM_CP_NO_RAW,
+ .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
+ .access = PL2_RW, .resetvalue = 0,
+ .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
+ };
+ define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
+ g_free(tmp_string);
+
+ opc2 = extract32(i, 0, 1) << 2 | 0x1;
+ tmp_string = g_strdup_printf("HPRLAR%u", i);
+ ARMCPRegInfo tmp_hprlarn_reginfo = {
+ .name = tmp_string,
+ .type = ARM_CP_NO_RAW,
+ .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
+ .access = PL2_RW, .resetvalue = 0,
+ .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
+ };
+ define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
+ g_free(tmp_string);
+ }
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_MPIDR)) {
+ ARMCPRegInfo mpidr_cp_reginfo[] = {
+ { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
+ .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
+ };
+#ifdef CONFIG_USER_ONLY
+ static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
+ { .name = "MPIDR_EL1",
+ .fixed_bits = 0x0000000080000000 },
+ };
+ modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
+#endif
+ define_arm_cp_regs(cpu, mpidr_cp_reginfo);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_AUXCR)) {
+ ARMCPRegInfo auxcr_reginfo[] = {
+ { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tacr,
+ .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
+ { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
+ .access = PL2_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
+ .access = PL3_RW, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ };
+ define_arm_cp_regs(cpu, auxcr_reginfo);
+ if (cpu_isar_feature(aa32_ac2, cpu)) {
+ define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_CBAR)) {
+ /*
+ * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
+ * There are two flavours:
+ * (1) older 32-bit only cores have a simple 32-bit CBAR
+ * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
+ * 32-bit register visible to AArch32 at a different encoding
+ * to the "flavour 1" register and with the bits rearranged to
+ * be able to squash a 64-bit address into the 32-bit view.
+ * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
+ * in future if we support AArch32-only configs of some of the
+ * AArch64 cores we might need to add a specific feature flag
+ * to indicate cores with "flavour 2" CBAR.
+ */
+ if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+ /* 32 bit view is [31:18] 0...0 [43:32]. */
+ uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
+ | extract64(cpu->reset_cbar, 32, 12);
+ ARMCPRegInfo cbar_reginfo[] = {
+ { .name = "CBAR",
+ .type = ARM_CP_CONST,
+ .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
+ .access = PL1_R, .resetvalue = cbar32 },
+ { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
+ .type = ARM_CP_CONST,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
+ .access = PL1_R, .resetvalue = cpu->reset_cbar },
+ };
+ /* We don't implement a r/w 64 bit CBAR currently */
+ assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
+ define_arm_cp_regs(cpu, cbar_reginfo);
+ } else {
+ ARMCPRegInfo cbar = {
+ .name = "CBAR",
+ .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
+ .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
+ .fieldoffset = offsetof(CPUARMState,
+ cp15.c15_config_base_address)
+ };
+ if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
+ cbar.access = PL1_R;
+ cbar.fieldoffset = 0;
+ cbar.type = ARM_CP_CONST;
+ }
+ define_one_arm_cp_reg(cpu, &cbar);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_VBAR)) {
+ static const ARMCPRegInfo vbar_cp_reginfo[] = {
+ { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .writefn = vbar_write,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
+ offsetof(CPUARMState, cp15.vbar_ns) },
+ .resetvalue = 0 },
+ };
+ define_arm_cp_regs(cpu, vbar_cp_reginfo);
+ }
+
+ /* Generic registers whose values depend on the implementation */
+ {
+ ARMCPRegInfo sctlr = {
+ .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .accessfn = access_tvm_trvm,
+ .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
+ offsetof(CPUARMState, cp15.sctlr_ns) },
+ .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
+ .raw_writefn = raw_write,
+ };
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ /*
+ * Normally we would always end the TB on an SCTLR write, but Linux
+ * arch/arm/mach-pxa/sleep.S expects two instructions following
+ * an MMU enable to execute from cache. Imitate this behaviour.
+ */
+ sctlr.type |= ARM_CP_SUPPRESS_TB_END;
+ }
+ define_one_arm_cp_reg(cpu, &sctlr);
+
+ if (arm_feature(env, ARM_FEATURE_PMSA) &&
+ arm_feature(env, ARM_FEATURE_V8)) {
+ ARMCPRegInfo vsctlr = {
+ .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .resetvalue = 0x0,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
+ };
+ define_one_arm_cp_reg(cpu, &vsctlr);
+ }
+ }
+
+ if (cpu_isar_feature(aa64_lor, cpu)) {
+ define_arm_cp_regs(cpu, lor_reginfo);
+ }
+ if (cpu_isar_feature(aa64_pan, cpu)) {
+ define_one_arm_cp_reg(cpu, &pan_reginfo);
+ }
+#ifndef CONFIG_USER_ONLY
+ if (cpu_isar_feature(aa64_ats1e1, cpu)) {
+ define_arm_cp_regs(cpu, ats1e1_reginfo);
+ }
+ if (cpu_isar_feature(aa32_ats1e1, cpu)) {
+ define_arm_cp_regs(cpu, ats1cp_reginfo);
+ }
+#endif
+ if (cpu_isar_feature(aa64_uao, cpu)) {
+ define_one_arm_cp_reg(cpu, &uao_reginfo);
+ }
+
+ if (cpu_isar_feature(aa64_dit, cpu)) {
+ define_one_arm_cp_reg(cpu, &dit_reginfo);
+ }
+ if (cpu_isar_feature(aa64_ssbs, cpu)) {
+ define_one_arm_cp_reg(cpu, &ssbs_reginfo);
+ }
+ if (cpu_isar_feature(any_ras, cpu)) {
+ define_arm_cp_regs(cpu, minimal_ras_reginfo);
+ }
+
+ if (cpu_isar_feature(aa64_vh, cpu) ||
+ cpu_isar_feature(aa64_debugv8p2, cpu)) {
+ define_one_arm_cp_reg(cpu, &contextidr_el2);
+ }
+ if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
+ define_arm_cp_regs(cpu, vhe_reginfo);
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ define_arm_cp_regs(cpu, zcr_reginfo);
+ }
+
+ if (cpu_isar_feature(aa64_hcx, cpu)) {
+ define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
+ }
+
+#ifdef TARGET_AARCH64
+ if (cpu_isar_feature(aa64_sme, cpu)) {
+ define_arm_cp_regs(cpu, sme_reginfo);
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ define_arm_cp_regs(cpu, pauth_reginfo);
+ }
+ if (cpu_isar_feature(aa64_rndr, cpu)) {
+ define_arm_cp_regs(cpu, rndr_reginfo);
+ }
+ if (cpu_isar_feature(aa64_tlbirange, cpu)) {
+ define_arm_cp_regs(cpu, tlbirange_reginfo);
+ }
+ if (cpu_isar_feature(aa64_tlbios, cpu)) {
+ define_arm_cp_regs(cpu, tlbios_reginfo);
+ }
+#ifndef CONFIG_USER_ONLY
+ /* Data Cache clean instructions up to PoP */
+ if (cpu_isar_feature(aa64_dcpop, cpu)) {
+ define_one_arm_cp_reg(cpu, dcpop_reg);
+
+ if (cpu_isar_feature(aa64_dcpodp, cpu)) {
+ define_one_arm_cp_reg(cpu, dcpodp_reg);
+ }
+ }
+#endif /*CONFIG_USER_ONLY*/
+
+ /*
+ * If full MTE is enabled, add all of the system registers.
+ * If only "instructions available at EL0" are enabled,
+ * then define only a RAZ/WI version of PSTATE.TCO.
+ */
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ define_arm_cp_regs(cpu, mte_reginfo);
+ define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
+ } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
+ define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
+ define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
+ }
+
+ if (cpu_isar_feature(aa64_scxtnum, cpu)) {
+ define_arm_cp_regs(cpu, scxtnum_reginfo);
+ }
+#endif
+
+ if (cpu_isar_feature(any_predinv, cpu)) {
+ define_arm_cp_regs(cpu, predinv_reginfo);
+ }
+
+ if (cpu_isar_feature(any_ccidx, cpu)) {
+ define_arm_cp_regs(cpu, ccsidr2_reginfo);
+ }
+
+#ifndef CONFIG_USER_ONLY
+ /*
+ * Register redirections and aliases must be done last,
+ * after the registers from the other extensions have been defined.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
+ define_arm_vh_e2h_redirects_aliases(cpu);
+ }
+#endif
+}
+
+/*
+ * Private utility function for define_one_arm_cp_reg_with_opaque():
+ * add a single reginfo struct to the hash table.
+ */
+static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
+ void *opaque, CPState state,
+ CPSecureState secstate,
+ int crm, int opc1, int opc2,
+ const char *name)
+{
+ CPUARMState *env = &cpu->env;
+ uint32_t key;
+ ARMCPRegInfo *r2;
+ bool is64 = r->type & ARM_CP_64BIT;
+ bool ns = secstate & ARM_CP_SECSTATE_NS;
+ int cp = r->cp;
+ size_t name_len;
+ bool make_const;
+
+ switch (state) {
+ case ARM_CP_STATE_AA32:
+ /* We assume it is a cp15 register if the .cp field is left unset. */
+ if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
+ cp = 15;
+ }
+ key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
+ break;
+ case ARM_CP_STATE_AA64:
+ /*
+ * To allow abbreviation of ARMCPRegInfo definitions, we treat
+ * cp == 0 as equivalent to the value for "standard guest-visible
+ * sysreg". STATE_BOTH definitions are also always "standard sysreg"
+ * in their AArch64 view (the .cp value may be non-zero for the
+ * benefit of the AArch32 view).
+ */
+ if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
+ cp = CP_REG_ARM64_SYSREG_CP;
+ }
+ key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ /* Overriding of an existing definition must be explicitly requested. */
+ if (!(r->type & ARM_CP_OVERRIDE)) {
+ const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
+ if (oldreg) {
+ assert(oldreg->type & ARM_CP_OVERRIDE);
+ }
+ }
+
+ /*
+ * Eliminate registers that are not present because the EL is missing.
+ * Doing this here makes it easier to put all registers for a given
+ * feature into the same ARMCPRegInfo array and define them all at once.
+ */
+ make_const = false;
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /*
+ * An EL2 register without EL2 but with EL3 is (usually) RES0.
+ * See rule RJFFP in section D1.1.3 of DDI0487H.a.
+ */
+ int min_el = ctz32(r->access) / 2;
+ if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
+ if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
+ return;
+ }
+ make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
+ }
+ } else {
+ CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
+ ? PL2_RW : PL1_RW);
+ if ((r->access & max_el) == 0) {
+ return;
+ }
+ }
+
+ /* Combine cpreg and name into one allocation. */
+ name_len = strlen(name) + 1;
+ r2 = g_malloc(sizeof(*r2) + name_len);
+ *r2 = *r;
+ r2->name = memcpy(r2 + 1, name, name_len);
+
+ /*
+ * Update fields to match the instantiation, overwiting wildcards
+ * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
+ */
+ r2->cp = cp;
+ r2->crm = crm;
+ r2->opc1 = opc1;
+ r2->opc2 = opc2;
+ r2->state = state;
+ r2->secure = secstate;
+ if (opaque) {
+ r2->opaque = opaque;
+ }
+
+ if (make_const) {
+ /* This should not have been a very special register to begin. */
+ int old_special = r2->type & ARM_CP_SPECIAL_MASK;
+ assert(old_special == 0 || old_special == ARM_CP_NOP);
+ /*
+ * Set the special function to CONST, retaining the other flags.
+ * This is important for e.g. ARM_CP_SVE so that we still
+ * take the SVE trap if CPTR_EL3.EZ == 0.
+ */
+ r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
+ /*
+ * Usually, these registers become RES0, but there are a few
+ * special cases like VPIDR_EL2 which have a constant non-zero
+ * value with writes ignored.
+ */
+ if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
+ r2->resetvalue = 0;
+ }
+ /*
+ * ARM_CP_CONST has precedence, so removing the callbacks and
+ * offsets are not strictly necessary, but it is potentially
+ * less confusing to debug later.
+ */
+ r2->readfn = NULL;
+ r2->writefn = NULL;
+ r2->raw_readfn = NULL;
+ r2->raw_writefn = NULL;
+ r2->resetfn = NULL;
+ r2->fieldoffset = 0;
+ r2->bank_fieldoffsets[0] = 0;
+ r2->bank_fieldoffsets[1] = 0;
+ } else {
+ bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
+
+ if (isbanked) {
+ /*
+ * Register is banked (using both entries in array).
+ * Overwriting fieldoffset as the array is only used to define
+ * banked registers but later only fieldoffset is used.
+ */
+ r2->fieldoffset = r->bank_fieldoffsets[ns];
+ }
+ if (state == ARM_CP_STATE_AA32) {
+ if (isbanked) {
+ /*
+ * If the register is banked then we don't need to migrate or
+ * reset the 32-bit instance in certain cases:
+ *
+ * 1) If the register has both 32-bit and 64-bit instances
+ * then we can count on the 64-bit instance taking care
+ * of the non-secure bank.
+ * 2) If ARMv8 is enabled then we can count on a 64-bit
+ * version taking care of the secure bank. This requires
+ * that separate 32 and 64-bit definitions are provided.
+ */
+ if ((r->state == ARM_CP_STATE_BOTH && ns) ||
+ (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
+ r2->type |= ARM_CP_ALIAS;
+ }
+ } else if ((secstate != r->secure) && !ns) {
+ /*
+ * The register is not banked so we only want to allow
+ * migration of the non-secure instance.
+ */
+ r2->type |= ARM_CP_ALIAS;
+ }
+
+ if (HOST_BIG_ENDIAN &&
+ r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
+ r2->fieldoffset += sizeof(uint32_t);
+ }
+ }
+ }
+
+ /*
+ * By convention, for wildcarded registers only the first
+ * entry is used for migration; the others are marked as
+ * ALIAS so we don't try to transfer the register
+ * multiple times. Special registers (ie NOP/WFI) are
+ * never migratable and not even raw-accessible.
+ */
+ if (r2->type & ARM_CP_SPECIAL_MASK) {
+ r2->type |= ARM_CP_NO_RAW;
+ }
+ if (((r->crm == CP_ANY) && crm != 0) ||
+ ((r->opc1 == CP_ANY) && opc1 != 0) ||
+ ((r->opc2 == CP_ANY) && opc2 != 0)) {
+ r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
+ }
+
+ /*
+ * Check that raw accesses are either forbidden or handled. Note that
+ * we can't assert this earlier because the setup of fieldoffset for
+ * banked registers has to be done first.
+ */
+ if (!(r2->type & ARM_CP_NO_RAW)) {
+ assert(!raw_accessors_invalid(r2));
+ }
+
+ g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
+}
+
+
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *r, void *opaque)
+{
+ /*
+ * Define implementations of coprocessor registers.
+ * We store these in a hashtable because typically
+ * there are less than 150 registers in a space which
+ * is 16*16*16*8*8 = 262144 in size.
+ * Wildcarding is supported for the crm, opc1 and opc2 fields.
+ * If a register is defined twice then the second definition is
+ * used, so this can be used to define some generic registers and
+ * then override them with implementation specific variations.
+ * At least one of the original and the second definition should
+ * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
+ * against accidental use.
+ *
+ * The state field defines whether the register is to be
+ * visible in the AArch32 or AArch64 execution state. If the
+ * state is set to ARM_CP_STATE_BOTH then we synthesise a
+ * reginfo structure for the AArch32 view, which sees the lower
+ * 32 bits of the 64 bit register.
+ *
+ * Only registers visible in AArch64 may set r->opc0; opc0 cannot
+ * be wildcarded. AArch64 registers are always considered to be 64
+ * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
+ * the register, if any.
+ */
+ int crm, opc1, opc2;
+ int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
+ int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
+ int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
+ int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
+ int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
+ int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
+ CPState state;
+
+ /* 64 bit registers have only CRm and Opc1 fields */
+ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
+ /* op0 only exists in the AArch64 encodings */
+ assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
+ /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
+ assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
+ /*
+ * This API is only for Arm's system coprocessors (14 and 15) or
+ * (M-profile or v7A-and-earlier only) for implementation defined
+ * coprocessors in the range 0..7. Our decode assumes this, since
+ * 8..13 can be used for other insns including VFP and Neon. See
+ * valid_cp() in translate.c. Assert here that we haven't tried
+ * to use an invalid coprocessor number.
+ */
+ switch (r->state) {
+ case ARM_CP_STATE_BOTH:
+ /* 0 has a special meaning, but otherwise the same rules as AA32. */
+ if (r->cp == 0) {
+ break;
+ }
+ /* fall through */
+ case ARM_CP_STATE_AA32:
+ if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
+ !arm_feature(&cpu->env, ARM_FEATURE_M)) {
+ assert(r->cp >= 14 && r->cp <= 15);
+ } else {
+ assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
+ }
+ break;
+ case ARM_CP_STATE_AA64:
+ assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ /*
+ * The AArch64 pseudocode CheckSystemAccess() specifies that op1
+ * encodes a minimum access level for the register. We roll this
+ * runtime check into our general permission check code, so check
+ * here that the reginfo's specified permissions are strict enough
+ * to encompass the generic architectural permission check.
+ */
+ if (r->state != ARM_CP_STATE_AA32) {
+ CPAccessRights mask;
+ switch (r->opc1) {
+ case 0:
+ /* min_EL EL1, but some accessible to EL0 via kernel ABI */
+ mask = PL0U_R | PL1_RW;
+ break;
+ case 1: case 2:
+ /* min_EL EL1 */
+ mask = PL1_RW;
+ break;
+ case 3:
+ /* min_EL EL0 */
+ mask = PL0_RW;
+ break;
+ case 4:
+ case 5:
+ /* min_EL EL2 */
+ mask = PL2_RW;
+ break;
+ case 6:
+ /* min_EL EL3 */
+ mask = PL3_RW;
+ break;
+ case 7:
+ /* min_EL EL1, secure mode only (we don't check the latter) */
+ mask = PL1_RW;
+ break;
+ default:
+ /* broken reginfo with out-of-range opc1 */
+ g_assert_not_reached();
+ }
+ /* assert our permissions are not too lax (stricter is fine) */
+ assert((r->access & ~mask) == 0);
+ }
+
+ /*
+ * Check that the register definition has enough info to handle
+ * reads and writes if they are permitted.
+ */
+ if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
+ if (r->access & PL3_R) {
+ assert((r->fieldoffset ||
+ (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+ r->readfn);
+ }
+ if (r->access & PL3_W) {
+ assert((r->fieldoffset ||
+ (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+ r->writefn);
+ }
+ }
+
+ for (crm = crmmin; crm <= crmmax; crm++) {
+ for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
+ for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
+ for (state = ARM_CP_STATE_AA32;
+ state <= ARM_CP_STATE_AA64; state++) {
+ if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
+ continue;
+ }
+ if (state == ARM_CP_STATE_AA32) {
+ /*
+ * Under AArch32 CP registers can be common
+ * (same for secure and non-secure world) or banked.
+ */
+ char *name;
+
+ switch (r->secure) {
+ case ARM_CP_SECSTATE_S:
+ case ARM_CP_SECSTATE_NS:
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ r->secure, crm, opc1, opc2,
+ r->name);
+ break;
+ case ARM_CP_SECSTATE_BOTH:
+ name = g_strdup_printf("%s_S", r->name);
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_S,
+ crm, opc1, opc2, name);
+ g_free(name);
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_NS,
+ crm, opc1, opc2, r->name);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ } else {
+ /*
+ * AArch64 registers get mapped to non-secure instance
+ * of AArch32
+ */
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_NS,
+ crm, opc1, opc2, r->name);
+ }
+ }
+ }
+ }
+ }
+}
+
+/* Define a whole list of registers */
+void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
+ void *opaque, size_t len)
+{
+ size_t i;
+ for (i = 0; i < len; ++i) {
+ define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
+ }
+}
+
+/*
+ * Modify ARMCPRegInfo for access from userspace.
+ *
+ * This is a data driven modification directed by
+ * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
+ * user-space cannot alter any values and dynamic values pertaining to
+ * execution state are hidden from user space view anyway.
+ */
+void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
+ const ARMCPRegUserSpaceInfo *mods,
+ size_t mods_len)
+{
+ for (size_t mi = 0; mi < mods_len; ++mi) {
+ const ARMCPRegUserSpaceInfo *m = mods + mi;
+ GPatternSpec *pat = NULL;
+
+ if (m->is_glob) {
+ pat = g_pattern_spec_new(m->name);
+ }
+ for (size_t ri = 0; ri < regs_len; ++ri) {
+ ARMCPRegInfo *r = regs + ri;
+
+ if (pat && g_pattern_match_string(pat, r->name)) {
+ r->type = ARM_CP_CONST;
+ r->access = PL0U_R;
+ r->resetvalue = 0;
+ /* continue */
+ } else if (strcmp(r->name, m->name) == 0) {
+ r->type = ARM_CP_CONST;
+ r->access = PL0U_R;
+ r->resetvalue &= m->exported_bits;
+ r->resetvalue |= m->fixed_bits;
+ break;
+ }
+ }
+ if (pat) {
+ g_pattern_spec_free(pat);
+ }
+ }
+}
+
+const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
+{
+ return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
+}
+
+void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Helper coprocessor write function for write-ignore registers */
+}
+
+uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* Helper coprocessor write function for read-as-zero registers */
+ return 0;
+}
+
+void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
+{
+ /* Helper coprocessor reset function for do-nothing-on-reset registers */
+}
@@ -8,7 +8,6 @@
#include "qemu/osdep.h"
#include "qemu/log.h"
-#include "trace.h"
#include "cpu.h"
#include "internals.h"
#include "exec/helper-proto.h"
@@ -31,5617 +30,9 @@
#endif
#include "cpregs.h"
-#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
static void switch_mode(CPUARMState *env, int mode);
-static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- assert(ri->fieldoffset);
- if (cpreg_field_is_64bit(ri)) {
- return CPREG_FIELD64(env, ri);
- } else {
- return CPREG_FIELD32(env, ri);
- }
-}
-
-void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- assert(ri->fieldoffset);
- if (cpreg_field_is_64bit(ri)) {
- CPREG_FIELD64(env, ri) = value;
- } else {
- CPREG_FIELD32(env, ri) = value;
- }
-}
-
-static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return (char *)env + ri->fieldoffset;
-}
-
-uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* Raw read of a coprocessor register (as needed for migration, etc). */
- if (ri->type & ARM_CP_CONST) {
- return ri->resetvalue;
- } else if (ri->raw_readfn) {
- return ri->raw_readfn(env, ri);
- } else if (ri->readfn) {
- return ri->readfn(env, ri);
- } else {
- return raw_read(env, ri);
- }
-}
-
-static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t v)
-{
- /*
- * Raw write of a coprocessor register (as needed for migration, etc).
- * Note that constant registers are treated as write-ignored; the
- * caller should check for success by whether a readback gives the
- * value written.
- */
- if (ri->type & ARM_CP_CONST) {
- return;
- } else if (ri->raw_writefn) {
- ri->raw_writefn(env, ri, v);
- } else if (ri->writefn) {
- ri->writefn(env, ri, v);
- } else {
- raw_write(env, ri, v);
- }
-}
-
-static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
-{
- /*
- * Return true if the regdef would cause an assertion if you called
- * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
- * program bug for it not to have the NO_RAW flag).
- * NB that returning false here doesn't necessarily mean that calling
- * read/write_raw_cp_reg() is safe, because we can't distinguish "has
- * read/write access functions which are safe for raw use" from "has
- * read/write access functions which have side effects but has forgotten
- * to provide raw access functions".
- * The tests here line up with the conditions in read/write_raw_cp_reg()
- * and assertions in raw_read()/raw_write().
- */
- if ((ri->type & ARM_CP_CONST) ||
- ri->fieldoffset ||
- ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
- return false;
- }
- return true;
-}
-
-bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
-{
- /* Write the coprocessor state from cpu->env to the (index,value) list. */
- int i;
- bool ok = true;
-
- for (i = 0; i < cpu->cpreg_array_len; i++) {
- uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
- const ARMCPRegInfo *ri;
- uint64_t newval;
-
- ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
- if (!ri) {
- ok = false;
- continue;
- }
- if (ri->type & ARM_CP_NO_RAW) {
- continue;
- }
-
- newval = read_raw_cp_reg(&cpu->env, ri);
- if (kvm_sync) {
- /*
- * Only sync if the previous list->cpustate sync succeeded.
- * Rather than tracking the success/failure state for every
- * item in the list, we just recheck "does the raw write we must
- * have made in write_list_to_cpustate() read back OK" here.
- */
- uint64_t oldval = cpu->cpreg_values[i];
-
- if (oldval == newval) {
- continue;
- }
-
- write_raw_cp_reg(&cpu->env, ri, oldval);
- if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
- continue;
- }
-
- write_raw_cp_reg(&cpu->env, ri, newval);
- }
- cpu->cpreg_values[i] = newval;
- }
- return ok;
-}
-
-bool write_list_to_cpustate(ARMCPU *cpu)
-{
- int i;
- bool ok = true;
-
- for (i = 0; i < cpu->cpreg_array_len; i++) {
- uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
- uint64_t v = cpu->cpreg_values[i];
- const ARMCPRegInfo *ri;
-
- ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
- if (!ri) {
- ok = false;
- continue;
- }
- if (ri->type & ARM_CP_NO_RAW) {
- continue;
- }
- /*
- * Write value and confirm it reads back as written
- * (to catch read-only registers and partially read-only
- * registers where the incoming migration value doesn't match)
- */
- write_raw_cp_reg(&cpu->env, ri, v);
- if (read_raw_cp_reg(&cpu->env, ri) != v) {
- ok = false;
- }
- }
- return ok;
-}
-
-static void add_cpreg_to_list(gpointer key, gpointer opaque)
-{
- ARMCPU *cpu = opaque;
- uint32_t regidx = (uintptr_t)key;
- const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
-
- if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
- cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
- /* The value array need not be initialized at this point */
- cpu->cpreg_array_len++;
- }
-}
-
-static void count_cpreg(gpointer key, gpointer opaque)
-{
- ARMCPU *cpu = opaque;
- const ARMCPRegInfo *ri;
-
- ri = g_hash_table_lookup(cpu->cp_regs, key);
-
- if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
- cpu->cpreg_array_len++;
- }
-}
-
-static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
-{
- uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
- uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
-
- if (aidx > bidx) {
- return 1;
- }
- if (aidx < bidx) {
- return -1;
- }
- return 0;
-}
-
-void init_cpreg_list(ARMCPU *cpu)
-{
- /*
- * Initialise the cpreg_tuples[] array based on the cp_regs hash.
- * Note that we require cpreg_tuples[] to be sorted by key ID.
- */
- GList *keys;
- int arraylen;
-
- keys = g_hash_table_get_keys(cpu->cp_regs);
- keys = g_list_sort(keys, cpreg_key_compare);
-
- cpu->cpreg_array_len = 0;
-
- g_list_foreach(keys, count_cpreg, cpu);
-
- arraylen = cpu->cpreg_array_len;
- cpu->cpreg_indexes = g_new(uint64_t, arraylen);
- cpu->cpreg_values = g_new(uint64_t, arraylen);
- cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
- cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
- cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
- cpu->cpreg_array_len = 0;
-
- g_list_foreach(keys, add_cpreg_to_list, cpu);
-
- assert(cpu->cpreg_array_len == arraylen);
-
- g_list_free(keys);
-}
-
-/*
- * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
- */
-static CPAccessResult access_el3_aa32ns(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- if (!is_a64(env) && arm_current_el(env) == 3 &&
- arm_is_secure_below_el3(env)) {
- return CP_ACCESS_TRAP_UNCATEGORIZED;
- }
- return CP_ACCESS_OK;
-}
-
-/*
- * Some secure-only AArch32 registers trap to EL3 if used from
- * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
- * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
- * We assume that the .access field is set to PL1_RW.
- */
-static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 3) {
- return CP_ACCESS_OK;
- }
- if (arm_is_secure_below_el3(env)) {
- if (env->cp15.scr_el3 & SCR_EEL2) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_TRAP_EL3;
- }
- /* This will be EL1 NS and EL2 NS, which just UNDEF */
- return CP_ACCESS_TRAP_UNCATEGORIZED;
-}
-
-/*
- * Check for traps to performance monitor registers, which are controlled
- * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
- */
-static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
- uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
-
- if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
-static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1) {
- uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
- if (arm_hcr_el2_eff(env) & trap) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- return CP_ACCESS_OK;
-}
-
-/* Check for traps from EL1 due to HCR_EL2.TSW. */
-static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-/* Check for traps from EL1 due to HCR_EL2.TACR. */
-static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-/* Check for traps from EL1 due to HCR_EL2.TTLB. */
-static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
-static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 &&
- (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-#ifdef TARGET_AARCH64
-/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
-static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 &&
- (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-#endif
-
-static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- raw_write(env, ri, value);
- tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
-}
-
-static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- if (raw_read(env, ri) != value) {
- /*
- * Unlike real hardware the qemu TLB uses virtual addresses,
- * not modified virtual addresses, so this causes a TLB flush.
- */
- tlb_flush(CPU(cpu));
- raw_write(env, ri, value);
- }
-}
-
-static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
- && !extended_addresses_enabled(env)) {
- /*
- * For VMSA (when not using the LPAE long descriptor page table
- * format) this register includes the ASID, so do a TLB flush.
- * For PMSA it is purely a process ID and no action is needed.
- */
- tlb_flush(CPU(cpu));
- }
- raw_write(env, ri, value);
-}
-
-static int alle1_tlbmask(CPUARMState *env)
-{
- /*
- * Note that the 'ALL' scope must invalidate both stage 1 and
- * stage 2 translations, whereas most other scopes only invalidate
- * stage 1 translations.
- */
- return (ARMMMUIdxBit_E10_1 |
- ARMMMUIdxBit_E10_1_PAN |
- ARMMMUIdxBit_E10_0 |
- ARMMMUIdxBit_Stage2 |
- ARMMMUIdxBit_Stage2_S);
-}
-
-
-/* IS variants of TLB operations must affect all cores */
-static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_all_cpus_synced(cs);
-}
-
-static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_all_cpus_synced(cs);
-}
-
-static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
-}
-
-static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
-}
-
-/*
- * Non-IS variants of TLB operations are upgraded to
- * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
- * force broadcast of these operations.
- */
-static bool tlb_force_broadcast(CPUARMState *env)
-{
- return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
-}
-
-static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Invalidate all (TLBIALL) */
- CPUState *cs = env_cpu(env);
-
- if (tlb_force_broadcast(env)) {
- tlb_flush_all_cpus_synced(cs);
- } else {
- tlb_flush(cs);
- }
-}
-
-static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
- CPUState *cs = env_cpu(env);
-
- value &= TARGET_PAGE_MASK;
- if (tlb_force_broadcast(env)) {
- tlb_flush_page_all_cpus_synced(cs, value);
- } else {
- tlb_flush_page(cs, value);
- }
-}
-
-static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Invalidate by ASID (TLBIASID) */
- CPUState *cs = env_cpu(env);
-
- if (tlb_force_broadcast(env)) {
- tlb_flush_all_cpus_synced(cs);
- } else {
- tlb_flush(cs);
- }
-}
-
-static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
- CPUState *cs = env_cpu(env);
-
- value &= TARGET_PAGE_MASK;
- if (tlb_force_broadcast(env)) {
- tlb_flush_page_all_cpus_synced(cs, value);
- } else {
- tlb_flush_page(cs, value);
- }
-}
-
-static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
-}
-
-static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
-}
-
-
-static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
-}
-
-static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
-}
-
-static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
-
- tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
-}
-
-static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
-
- tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
- ARMMMUIdxBit_E2);
-}
-
-static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
-
- tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
-}
-
-static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
-
- tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
-}
-
-static const ARMCPRegInfo cp_reginfo[] = {
- /*
- * Define the secure and non-secure FCSE identifier CP registers
- * separately because there is no secure bank in V8 (no _EL3). This allows
- * the secure register to be properly reset and migrated. There is also no
- * v8 EL1 version of the register so the non-secure instance stands alone.
- */
- { .name = "FCSEIDR",
- .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
- .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
- .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
- { .name = "FCSEIDR_S",
- .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
- .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
- .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
- /*
- * Define the secure and non-secure context identifier CP registers
- * separately because there is no secure bank in V8 (no _EL3). This allows
- * the secure register to be properly reset and migrated. In the
- * non-secure case, the 32-bit register will have reset and migration
- * disabled during registration as it is handled by the 64-bit instance.
- */
- { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .secure = ARM_CP_SECSTATE_NS,
- .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
- .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
- { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .secure = ARM_CP_SECSTATE_S,
- .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
- .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
-};
-
-static const ARMCPRegInfo not_v8_cp_reginfo[] = {
- /*
- * NB: Some of these registers exist in v8 but with more precise
- * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
- */
- /* MMU Domain access control / MPU write buffer control */
- { .name = "DACR",
- .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
- .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
- .writefn = dacr_write, .raw_writefn = raw_write,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
- offsetoflow32(CPUARMState, cp15.dacr_ns) } },
- /*
- * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
- * For v6 and v5, these mappings are overly broad.
- */
- { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
- /* Cache maintenance ops; some of this space may be overridden later. */
- { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
- .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
- .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
-};
-
-static const ARMCPRegInfo not_v6_cp_reginfo[] = {
- /*
- * Not all pre-v6 cores implemented this WFI, so this is slightly
- * over-broad.
- */
- { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
- .access = PL1_W, .type = ARM_CP_WFI },
-};
-
-static const ARMCPRegInfo not_v7_cp_reginfo[] = {
- /*
- * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
- * is UNPREDICTABLE; we choose to NOP as most implementations do).
- */
- { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
- .access = PL1_W, .type = ARM_CP_WFI },
- /*
- * L1 cache lockdown. Not architectural in v6 and earlier but in practice
- * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
- * OMAPCP will override this space.
- */
- { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
- .resetvalue = 0 },
- { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
- .resetvalue = 0 },
- /* v6 doesn't have the cache ID registers but Linux reads them anyway */
- { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
- .resetvalue = 0 },
- /*
- * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
- * implementing it as RAZ means the "debug architecture version" bits
- * will read as a reserved value, which should cause Linux to not try
- * to use the debug hardware.
- */
- { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- /*
- * MMU TLB control. Note that the wildcarding means we cover not just
- * the unified TLB ops but also the dside/iside/inner-shareable variants.
- */
- { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
- .type = ARM_CP_NO_RAW },
- { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
- .type = ARM_CP_NO_RAW },
- { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
- .type = ARM_CP_NO_RAW },
- { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
- .type = ARM_CP_NO_RAW },
- { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
- .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
- .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
-};
-
-static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint32_t mask = 0;
-
- /* In ARMv8 most bits of CPACR_EL1 are RES0. */
- if (!arm_feature(env, ARM_FEATURE_V8)) {
- /*
- * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
- * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
- * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
- */
- if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
- /* VFP coprocessor: cp10 & cp11 [23:20] */
- mask |= R_CPACR_ASEDIS_MASK |
- R_CPACR_D32DIS_MASK |
- R_CPACR_CP11_MASK |
- R_CPACR_CP10_MASK;
-
- if (!arm_feature(env, ARM_FEATURE_NEON)) {
- /* ASEDIS [31] bit is RAO/WI */
- value |= R_CPACR_ASEDIS_MASK;
- }
-
- /*
- * VFPv3 and upwards with NEON implement 32 double precision
- * registers (D0-D31).
- */
- if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
- /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
- value |= R_CPACR_D32DIS_MASK;
- }
- }
- value &= mask;
- }
-
- /*
- * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
- * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
- */
- if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
- !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
- mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
- value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
- }
-
- env->cp15.cpacr_el1 = value;
-}
-
-static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /*
- * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
- * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
- */
- uint64_t value = env->cp15.cpacr_el1;
-
- if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
- !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
- value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
- }
- return value;
-}
-
-
-static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /*
- * Call cpacr_write() so that we reset with the correct RAO bits set
- * for our CPU features.
- */
- cpacr_write(env, ri, 0);
-}
-
-static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_feature(env, ARM_FEATURE_V8)) {
- /* Check if CPACR accesses are to be trapped to EL2 */
- if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
- FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
- return CP_ACCESS_TRAP_EL2;
- /* Check if CPACR accesses are to be trapped to EL3 */
- } else if (arm_current_el(env) < 3 &&
- FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
- return CP_ACCESS_TRAP_EL3;
- }
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /* Check if CPTR accesses are set to trap to EL3 */
- if (arm_current_el(env) == 2 &&
- FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
- return CP_ACCESS_TRAP_EL3;
- }
-
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo v6_cp_reginfo[] = {
- /* prefetch by MVA in v6, NOP in v7 */
- { .name = "MVA_prefetch",
- .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NOP },
- /*
- * We need to break the TB after ISB to execute self-modifying code
- * correctly and also to take any pending interrupts immediately.
- * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
- */
- { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
- .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
- { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
- .access = PL0_W, .type = ARM_CP_NOP },
- { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
- .access = PL0_W, .type = ARM_CP_NOP },
- { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
- offsetof(CPUARMState, cp15.ifar_ns) },
- .resetvalue = 0, },
- /*
- * Watchpoint Fault Address Register : should actually only be present
- * for 1136, 1176, 11MPCore.
- */
- { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
- { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
- .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
- .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
- .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
-};
-
-typedef struct pm_event {
- uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
- /* If the event is supported on this CPU (used to generate PMCEID[01]) */
- bool (*supported)(CPUARMState *);
- /*
- * Retrieve the current count of the underlying event. The programmed
- * counters hold a difference from the return value from this function
- */
- uint64_t (*get_count)(CPUARMState *);
- /*
- * Return how many nanoseconds it will take (at a minimum) for count events
- * to occur. A negative value indicates the counter will never overflow, or
- * that the counter has otherwise arranged for the overflow bit to be set
- * and the PMU interrupt to be raised on overflow.
- */
- int64_t (*ns_per_count)(uint64_t);
-} pm_event;
-
-static bool event_always_supported(CPUARMState *env)
-{
- return true;
-}
-
-static uint64_t swinc_get_count(CPUARMState *env)
-{
- /*
- * SW_INCR events are written directly to the pmevcntr's by writes to
- * PMSWINC, so there is no underlying count maintained by the PMU itself
- */
- return 0;
-}
-
-static int64_t swinc_ns_per(uint64_t ignored)
-{
- return -1;
-}
-
-/*
- * Return the underlying cycle count for the PMU cycle counters. If we're in
- * usermode, simply return 0.
- */
-static uint64_t cycles_get_count(CPUARMState *env)
-{
-#ifndef CONFIG_USER_ONLY
- return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
-#else
- return cpu_get_host_ticks();
-#endif
-}
-
-#ifndef CONFIG_USER_ONLY
-static int64_t cycles_ns_per(uint64_t cycles)
-{
- return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
-}
-
-static bool instructions_supported(CPUARMState *env)
-{
- return icount_enabled() == 1; /* Precise instruction counting */
-}
-
-static uint64_t instructions_get_count(CPUARMState *env)
-{
- return (uint64_t)icount_get_raw();
-}
-
-static int64_t instructions_ns_per(uint64_t icount)
-{
- return icount_to_ns((int64_t)icount);
-}
-#endif
-
-static bool pmuv3p1_events_supported(CPUARMState *env)
-{
- /* For events which are supported in any v8.1 PMU */
- return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
-}
-
-static bool pmuv3p4_events_supported(CPUARMState *env)
-{
- /* For events which are supported in any v8.1 PMU */
- return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
-}
-
-static uint64_t zero_event_get_count(CPUARMState *env)
-{
- /* For events which on QEMU never fire, so their count is always zero */
- return 0;
-}
-
-static int64_t zero_event_ns_per(uint64_t cycles)
-{
- /* An event which never fires can never overflow */
- return -1;
-}
-
-static const pm_event pm_events[] = {
- { .number = 0x000, /* SW_INCR */
- .supported = event_always_supported,
- .get_count = swinc_get_count,
- .ns_per_count = swinc_ns_per,
- },
-#ifndef CONFIG_USER_ONLY
- { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
- .supported = instructions_supported,
- .get_count = instructions_get_count,
- .ns_per_count = instructions_ns_per,
- },
- { .number = 0x011, /* CPU_CYCLES, Cycle */
- .supported = event_always_supported,
- .get_count = cycles_get_count,
- .ns_per_count = cycles_ns_per,
- },
-#endif
- { .number = 0x023, /* STALL_FRONTEND */
- .supported = pmuv3p1_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
- { .number = 0x024, /* STALL_BACKEND */
- .supported = pmuv3p1_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
- { .number = 0x03c, /* STALL */
- .supported = pmuv3p4_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
-};
-
-/*
- * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
- * events (i.e. the statistical profiling extension), this implementation
- * should first be updated to something sparse instead of the current
- * supported_event_map[] array.
- */
-#define MAX_EVENT_ID 0x3c
-#define UNSUPPORTED_EVENT UINT16_MAX
-static uint16_t supported_event_map[MAX_EVENT_ID + 1];
-
-/*
- * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
- * of ARM event numbers to indices in our pm_events array.
- *
- * Note: Events in the 0x40XX range are not currently supported.
- */
-void pmu_init(ARMCPU *cpu)
-{
- unsigned int i;
-
- /*
- * Empty supported_event_map and cpu->pmceid[01] before adding supported
- * events to them
- */
- for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
- supported_event_map[i] = UNSUPPORTED_EVENT;
- }
- cpu->pmceid0 = 0;
- cpu->pmceid1 = 0;
-
- for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
- const pm_event *cnt = &pm_events[i];
- assert(cnt->number <= MAX_EVENT_ID);
- /* We do not currently support events in the 0x40xx range */
- assert(cnt->number <= 0x3f);
-
- if (cnt->supported(&cpu->env)) {
- supported_event_map[cnt->number] = i;
- uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
- if (cnt->number & 0x20) {
- cpu->pmceid1 |= event_mask;
- } else {
- cpu->pmceid0 |= event_mask;
- }
- }
- }
-}
-
-/*
- * Check at runtime whether a PMU event is supported for the current machine
- */
-static bool event_supported(uint16_t number)
-{
- if (number > MAX_EVENT_ID) {
- return false;
- }
- return supported_event_map[number] != UNSUPPORTED_EVENT;
-}
-
-static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * Performance monitor registers user accessibility is controlled
- * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
- * trapping to EL2 or EL3 for other accesses.
- */
- int el = arm_current_el(env);
- uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
-
- if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
- return CP_ACCESS_TRAP;
- }
- if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL3;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* ER: event counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
- && isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_swinc(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* SW: software increment write trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
- && !isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_selr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* ER: event counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* CR: cycle counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
- && isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-/*
- * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
- * We use these to decide whether we need to wrap a write to MDCR_EL2
- * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
- */
-#define MDCR_EL2_PMU_ENABLE_BITS \
- (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
-#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
-
-/*
- * Returns true if the counter (pass 31 for PMCCNTR) should count events using
- * the current EL, security state, and register configuration.
- */
-static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
-{
- uint64_t filter;
- bool e, p, u, nsk, nsu, nsh, m;
- bool enabled, prohibited = false, filtered;
- bool secure = arm_is_secure(env);
- int el = arm_current_el(env);
- uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
- uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
-
- if (!arm_feature(env, ARM_FEATURE_PMU)) {
- return false;
- }
-
- if (!arm_feature(env, ARM_FEATURE_EL2) ||
- (counter < hpmn || counter == 31)) {
- e = env->cp15.c9_pmcr & PMCRE;
- } else {
- e = mdcr_el2 & MDCR_HPME;
- }
- enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
-
- /* Is event counting prohibited? */
- if (el == 2 && (counter < hpmn || counter == 31)) {
- prohibited = mdcr_el2 & MDCR_HPMD;
- }
- if (secure) {
- prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
- }
-
- if (counter == 31) {
- /*
- * The cycle counter defaults to running. PMCR.DP says "disable
- * the cycle counter when event counting is prohibited".
- * Some MDCR bits disable the cycle counter specifically.
- */
- prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
- if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- if (secure) {
- prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
- }
- if (el == 2) {
- prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
- }
- }
- }
-
- if (counter == 31) {
- filter = env->cp15.pmccfiltr_el0;
- } else {
- filter = env->cp15.c14_pmevtyper[counter];
- }
-
- p = filter & PMXEVTYPER_P;
- u = filter & PMXEVTYPER_U;
- nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
- nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
- nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
- m = arm_el_is_aa64(env, 1) &&
- arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
-
- if (el == 0) {
- filtered = secure ? u : u != nsu;
- } else if (el == 1) {
- filtered = secure ? p : p != nsk;
- } else if (el == 2) {
- filtered = !nsh;
- } else { /* EL3 */
- filtered = m != p;
- }
-
- if (counter != 31) {
- /*
- * If not checking PMCCNTR, ensure the counter is setup to an event we
- * support
- */
- uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
- if (!event_supported(event)) {
- return false;
- }
- }
-
- return enabled && !prohibited && !filtered;
-}
-
-static void pmu_update_irq(CPUARMState *env)
-{
- ARMCPU *cpu = env_archcpu(env);
- qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
- (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
-}
-
-static bool pmccntr_clockdiv_enabled(CPUARMState *env)
-{
- /*
- * Return true if the clock divider is enabled and the cycle counter
- * is supposed to tick only once every 64 clock cycles. This is
- * controlled by PMCR.D, but if PMCR.LC is set to enable the long
- * (64-bit) cycle counter PMCR.D has no effect.
- */
- return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
-}
-
-static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
-{
- /* Return true if the specified event counter is configured to be 64 bit */
-
- /* This isn't intended to be used with the cycle counter */
- assert(counter < 31);
-
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- return false;
- }
-
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- /*
- * MDCR_EL2.HLP still applies even when EL2 is disabled in the
- * current security state, so we don't use arm_mdcr_el2_eff() here.
- */
- bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
- int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
-
- if (hpmn != 0 && counter >= hpmn) {
- return hlp;
- }
- }
- return env->cp15.c9_pmcr & PMCRLP;
-}
-
-/*
- * Ensure c15_ccnt is the guest-visible count so that operations such as
- * enabling/disabling the counter or filtering, modifying the count itself,
- * etc. can be done logically. This is essentially a no-op if the counter is
- * not enabled at the time of the call.
- */
-static void pmccntr_op_start(CPUARMState *env)
-{
- uint64_t cycles = cycles_get_count(env);
-
- if (pmu_counter_enabled(env, 31)) {
- uint64_t eff_cycles = cycles;
- if (pmccntr_clockdiv_enabled(env)) {
- eff_cycles /= 64;
- }
-
- uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
-
- uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
- 1ull << 63 : 1ull << 31;
- if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
- env->cp15.c9_pmovsr |= (1ULL << 31);
- pmu_update_irq(env);
- }
-
- env->cp15.c15_ccnt = new_pmccntr;
- }
- env->cp15.c15_ccnt_delta = cycles;
-}
-
-/*
- * If PMCCNTR is enabled, recalculate the delta between the clock and the
- * guest-visible count. A call to pmccntr_op_finish should follow every call to
- * pmccntr_op_start.
- */
-static void pmccntr_op_finish(CPUARMState *env)
-{
- if (pmu_counter_enabled(env, 31)) {
-#ifndef CONFIG_USER_ONLY
- /* Calculate when the counter will next overflow */
- uint64_t remaining_cycles = -env->cp15.c15_ccnt;
- if (!(env->cp15.c9_pmcr & PMCRLC)) {
- remaining_cycles = (uint32_t)remaining_cycles;
- }
- int64_t overflow_in = cycles_ns_per(remaining_cycles);
-
- if (overflow_in > 0) {
- int64_t overflow_at;
-
- if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- overflow_in, &overflow_at)) {
- ARMCPU *cpu = env_archcpu(env);
- timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
- }
- }
-#endif
-
- uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
- if (pmccntr_clockdiv_enabled(env)) {
- prev_cycles /= 64;
- }
- env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
- }
-}
-
-static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
-{
-
- uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
- uint64_t count = 0;
- if (event_supported(event)) {
- uint16_t event_idx = supported_event_map[event];
- count = pm_events[event_idx].get_count(env);
- }
-
- if (pmu_counter_enabled(env, counter)) {
- uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
- uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
- 1ULL << 63 : 1ULL << 31;
-
- if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
- env->cp15.c9_pmovsr |= (1 << counter);
- pmu_update_irq(env);
- }
- env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
- }
- env->cp15.c14_pmevcntr_delta[counter] = count;
-}
-
-static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
-{
- if (pmu_counter_enabled(env, counter)) {
-#ifndef CONFIG_USER_ONLY
- uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
- uint16_t event_idx = supported_event_map[event];
- uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
- int64_t overflow_in;
-
- if (!pmevcntr_is_64_bit(env, counter)) {
- delta = (uint32_t)delta;
- }
- overflow_in = pm_events[event_idx].ns_per_count(delta);
-
- if (overflow_in > 0) {
- int64_t overflow_at;
-
- if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- overflow_in, &overflow_at)) {
- ARMCPU *cpu = env_archcpu(env);
- timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
- }
- }
-#endif
-
- env->cp15.c14_pmevcntr_delta[counter] -=
- env->cp15.c14_pmevcntr[counter];
- }
-}
-
-void pmu_op_start(CPUARMState *env)
-{
- unsigned int i;
- pmccntr_op_start(env);
- for (i = 0; i < pmu_num_counters(env); i++) {
- pmevcntr_op_start(env, i);
- }
-}
-
-void pmu_op_finish(CPUARMState *env)
-{
- unsigned int i;
- pmccntr_op_finish(env);
- for (i = 0; i < pmu_num_counters(env); i++) {
- pmevcntr_op_finish(env, i);
- }
-}
-
-void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
-{
- pmu_op_start(&cpu->env);
-}
-
-void pmu_post_el_change(ARMCPU *cpu, void *ignored)
-{
- pmu_op_finish(&cpu->env);
-}
-
-void arm_pmu_timer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- /*
- * Update all the counter values based on the current underlying counts,
- * triggering interrupts to be raised, if necessary. pmu_op_finish() also
- * has the effect of setting the cpu->pmu_timer to the next earliest time a
- * counter may expire.
- */
- pmu_op_start(&cpu->env);
- pmu_op_finish(&cpu->env);
-}
-
-static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
-
- if (value & PMCRC) {
- /* The counter has been reset */
- env->cp15.c15_ccnt = 0;
- }
-
- if (value & PMCRP) {
- unsigned int i;
- for (i = 0; i < pmu_num_counters(env); i++) {
- env->cp15.c14_pmevcntr[i] = 0;
- }
- }
-
- env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
- env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
-
- pmu_op_finish(env);
-}
-
-static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- unsigned int i;
- uint64_t overflow_mask, new_pmswinc;
-
- for (i = 0; i < pmu_num_counters(env); i++) {
- /* Increment a counter's count iff: */
- if ((value & (1 << i)) && /* counter's bit is set */
- /* counter is enabled and not filtered */
- pmu_counter_enabled(env, i) &&
- /* counter is SW_INCR */
- (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
- pmevcntr_op_start(env, i);
-
- /*
- * Detect if this write causes an overflow since we can't predict
- * PMSWINC overflows like we can for other events
- */
- new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
-
- overflow_mask = pmevcntr_is_64_bit(env, i) ?
- 1ULL << 63 : 1ULL << 31;
-
- if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
- env->cp15.c9_pmovsr |= (1 << i);
- pmu_update_irq(env);
- }
-
- env->cp15.c14_pmevcntr[i] = new_pmswinc;
-
- pmevcntr_op_finish(env, i);
- }
- }
-}
-
-static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint64_t ret;
- pmccntr_op_start(env);
- ret = env->cp15.c15_ccnt;
- pmccntr_op_finish(env);
- return ret;
-}
-
-static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
- * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
- * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
- * accessed.
- */
- env->cp15.c9_pmselr = value & 0x1f;
-}
-
-static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- env->cp15.c15_ccnt = value;
- pmccntr_op_finish(env);
-}
-
-static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint64_t cur_val = pmccntr_read(env, NULL);
-
- pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
-}
-
-static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
- pmccntr_op_finish(env);
-}
-
-static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- /* M is not accessible from AArch32 */
- env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
- (value & PMCCFILTR);
- pmccntr_op_finish(env);
-}
-
-static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* M is not visible in AArch32 */
- return env->cp15.pmccfiltr_el0 & PMCCFILTR;
-}
-
-static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmcnten |= value;
- pmu_op_finish(env);
-}
-
-static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmcnten &= ~value;
- pmu_op_finish(env);
-}
-
-static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmovsr &= ~value;
- pmu_update_irq(env);
-}
-
-static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmovsr |= value;
- pmu_update_irq(env);
-}
-
-static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value, const uint8_t counter)
-{
- if (counter == 31) {
- pmccfiltr_write(env, ri, value);
- } else if (counter < pmu_num_counters(env)) {
- pmevcntr_op_start(env, counter);
-
- /*
- * If this counter's event type is changing, store the current
- * underlying count for the new type in c14_pmevcntr_delta[counter] so
- * pmevcntr_op_finish has the correct baseline when it converts back to
- * a delta.
- */
- uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
- PMXEVTYPER_EVTCOUNT;
- uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
- if (old_event != new_event) {
- uint64_t count = 0;
- if (event_supported(new_event)) {
- uint16_t event_idx = supported_event_map[new_event];
- count = pm_events[event_idx].get_count(env);
- }
- env->cp15.c14_pmevcntr_delta[counter] = count;
- }
-
- env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
- pmevcntr_op_finish(env, counter);
- }
- /*
- * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
- * PMSELR value is equal to or greater than the number of implemented
- * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
- */
-}
-
-static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
- const uint8_t counter)
-{
- if (counter == 31) {
- return env->cp15.pmccfiltr_el0;
- } else if (counter < pmu_num_counters(env)) {
- return env->cp15.c14_pmevtyper[counter];
- } else {
- /*
- * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
- * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
- */
- return 0;
- }
-}
-
-static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- pmevtyper_write(env, ri, value, counter);
-}
-
-static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- env->cp15.c14_pmevtyper[counter] = value;
-
- /*
- * pmevtyper_rawwrite is called between a pair of pmu_op_start and
- * pmu_op_finish calls when loading saved state for a migration. Because
- * we're potentially updating the type of event here, the value written to
- * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
- * different counter type. Therefore, we need to set this value to the
- * current count for the counter type we're writing so that pmu_op_finish
- * has the correct count for its calculation.
- */
- uint16_t event = value & PMXEVTYPER_EVTCOUNT;
- if (event_supported(event)) {
- uint16_t event_idx = supported_event_map[event];
- env->cp15.c14_pmevcntr_delta[counter] =
- pm_events[event_idx].get_count(env);
- }
-}
-
-static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- return pmevtyper_read(env, ri, counter);
-}
-
-static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
-}
-
-static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
-}
-
-static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value, uint8_t counter)
-{
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
- value &= MAKE_64BIT_MASK(0, 32);
- }
- if (counter < pmu_num_counters(env)) {
- pmevcntr_op_start(env, counter);
- env->cp15.c14_pmevcntr[counter] = value;
- pmevcntr_op_finish(env, counter);
- }
- /*
- * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
- * are CONSTRAINED UNPREDICTABLE.
- */
-}
-
-static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
- uint8_t counter)
-{
- if (counter < pmu_num_counters(env)) {
- uint64_t ret;
- pmevcntr_op_start(env, counter);
- ret = env->cp15.c14_pmevcntr[counter];
- pmevcntr_op_finish(env, counter);
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
- ret &= MAKE_64BIT_MASK(0, 32);
- }
- return ret;
- } else {
- /*
- * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
- * are CONSTRAINED UNPREDICTABLE.
- */
- return 0;
- }
-}
-
-static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- pmevcntr_write(env, ri, value, counter);
-}
-
-static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- return pmevcntr_read(env, ri, counter);
-}
-
-static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- assert(counter < pmu_num_counters(env));
- env->cp15.c14_pmevcntr[counter] = value;
- pmevcntr_write(env, ri, value, counter);
-}
-
-static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- assert(counter < pmu_num_counters(env));
- return env->cp15.c14_pmevcntr[counter];
-}
-
-static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
-}
-
-static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
-}
-
-static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- if (arm_feature(env, ARM_FEATURE_V8)) {
- env->cp15.c9_pmuserenr = value & 0xf;
- } else {
- env->cp15.c9_pmuserenr = value & 1;
- }
-}
-
-static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* We have no event counters so only the C bit can be changed */
- value &= pmu_counter_mask(env);
- env->cp15.c9_pminten |= value;
- pmu_update_irq(env);
-}
-
-static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pminten &= ~value;
- pmu_update_irq(env);
-}
-
-static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Note that even though the AArch64 view of this register has bits
- * [10:0] all RES0 we can only mask the bottom 5, to comply with the
- * architectural requirements for bits which are RES0 only in some
- * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
- * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
- */
- raw_write(env, ri, value & ~0x1FULL);
-}
-
-static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- /* Begin with base v8.0 state. */
- uint64_t valid_mask = 0x3fff;
- ARMCPU *cpu = env_archcpu(env);
- uint64_t changed;
-
- /*
- * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
- * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
- * Instead, choose the format based on the mode of EL3.
- */
- if (arm_el_is_aa64(env, 3)) {
- value |= SCR_FW | SCR_AW; /* RES1 */
- valid_mask &= ~SCR_NET; /* RES0 */
-
- if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
- !cpu_isar_feature(aa64_aa32_el2, cpu)) {
- value |= SCR_RW; /* RAO/WI */
- }
- if (cpu_isar_feature(aa64_ras, cpu)) {
- valid_mask |= SCR_TERR;
- }
- if (cpu_isar_feature(aa64_lor, cpu)) {
- valid_mask |= SCR_TLOR;
- }
- if (cpu_isar_feature(aa64_pauth, cpu)) {
- valid_mask |= SCR_API | SCR_APK;
- }
- if (cpu_isar_feature(aa64_sel2, cpu)) {
- valid_mask |= SCR_EEL2;
- }
- if (cpu_isar_feature(aa64_mte, cpu)) {
- valid_mask |= SCR_ATA;
- }
- if (cpu_isar_feature(aa64_scxtnum, cpu)) {
- valid_mask |= SCR_ENSCXT;
- }
- if (cpu_isar_feature(aa64_doublefault, cpu)) {
- valid_mask |= SCR_EASE | SCR_NMEA;
- }
- if (cpu_isar_feature(aa64_sme, cpu)) {
- valid_mask |= SCR_ENTP2;
- }
- if (cpu_isar_feature(aa64_hcx, cpu)) {
- valid_mask |= SCR_HXEN;
- }
- } else {
- valid_mask &= ~(SCR_RW | SCR_ST);
- if (cpu_isar_feature(aa32_ras, cpu)) {
- valid_mask |= SCR_TERR;
- }
- }
-
- if (!arm_feature(env, ARM_FEATURE_EL2)) {
- valid_mask &= ~SCR_HCE;
-
- /*
- * On ARMv7, SMD (or SCD as it is called in v7) is only
- * supported if EL2 exists. The bit is UNK/SBZP when
- * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
- * when EL2 is unavailable.
- * On ARMv8, this bit is always available.
- */
- if (arm_feature(env, ARM_FEATURE_V7) &&
- !arm_feature(env, ARM_FEATURE_V8)) {
- valid_mask &= ~SCR_SMD;
- }
- }
-
- /* Clear all-context RES0 bits. */
- value &= valid_mask;
- changed = env->cp15.scr_el3 ^ value;
- env->cp15.scr_el3 = value;
-
- /*
- * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
- * we must invalidate all TLBs below EL3.
- */
- if (changed & SCR_NS) {
- tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
- ARMMMUIdxBit_E20_0 |
- ARMMMUIdxBit_E10_1 |
- ARMMMUIdxBit_E20_2 |
- ARMMMUIdxBit_E10_1_PAN |
- ARMMMUIdxBit_E20_2_PAN |
- ARMMMUIdxBit_E2));
- }
-}
-
-static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /*
- * scr_write will set the RES1 bits on an AArch64-only CPU.
- * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
- */
- scr_write(env, ri, 0);
-}
-
-static CPAccessResult access_tid4(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 &&
- (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- /*
- * Acquire the CSSELR index from the bank corresponding to the CCSIDR
- * bank
- */
- uint32_t index = A32_BANKED_REG_GET(env, csselr,
- ri->secure & ARM_CP_SECSTATE_S);
-
- return cpu->ccsidr[index];
-}
-
-static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- raw_write(env, ri, value & 0xf);
-}
-
-static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- CPUState *cs = env_cpu(env);
- bool el1 = arm_current_el(env) == 1;
- uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
- uint64_t ret = 0;
-
- if (hcr_el2 & HCR_IMO) {
- if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
- ret |= CPSR_I;
- }
- } else {
- if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
- ret |= CPSR_I;
- }
- }
-
- if (hcr_el2 & HCR_FMO) {
- if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
- ret |= CPSR_F;
- }
- } else {
- if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
- ret |= CPSR_F;
- }
- }
-
- if (hcr_el2 & HCR_AMO) {
- if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
- ret |= CPSR_A;
- }
- }
-
- return ret;
-}
-
-static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_feature(env, ARM_FEATURE_V8)) {
- return access_aa64_tid1(env, ri, isread);
- }
-
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo v7_cp_reginfo[] = {
- /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
- { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
- .access = PL1_W, .type = ARM_CP_NOP },
- /*
- * Performance monitors are implementation defined in v7,
- * but with an ARM recommended set of registers, which we
- * follow.
- *
- * Performance registers fall into three categories:
- * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
- * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
- * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
- * For the cases controlled by PMUSERENR we must set .access to PL0_RW
- * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
- */
- { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
- .writefn = pmcntenset_write,
- .accessfn = pmreg_access,
- .raw_writefn = raw_write },
- { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
- .writefn = pmcntenset_write, .raw_writefn = raw_write },
- { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
- .access = PL0_RW,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
- .accessfn = pmreg_access,
- .writefn = pmcntenclr_write,
- .type = ARM_CP_ALIAS | ARM_CP_IO },
- { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
- .writefn = pmcntenclr_write },
- { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
- .access = PL0_RW, .type = ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
- .accessfn = pmreg_access,
- .writefn = pmovsr_write,
- .raw_writefn = raw_write },
- { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsr_write,
- .raw_writefn = raw_write },
- { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc,
- .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .writefn = pmswinc_write },
- { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc,
- .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .writefn = pmswinc_write },
- { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
- .access = PL0_RW, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
- .accessfn = pmreg_access_selr, .writefn = pmselr_write,
- .raw_writefn = raw_write},
- { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
- .access = PL0_RW, .accessfn = pmreg_access_selr,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
- .writefn = pmselr_write, .raw_writefn = raw_write, },
- { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
- .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
- .readfn = pmccntr_read, .writefn = pmccntr_write32,
- .accessfn = pmreg_access_ccntr },
- { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
- .access = PL0_RW, .accessfn = pmreg_access_ccntr,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
- .readfn = pmccntr_read, .writefn = pmccntr_write,
- .raw_readfn = raw_read, .raw_writefn = raw_write, },
- { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
- .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .resetvalue = 0, },
- { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
- .writefn = pmccfiltr_write, .raw_writefn = raw_write,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
- .resetvalue = 0, },
- { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access,
- .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
- { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access,
- .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
- { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access_xevcntr,
- .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
- { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access_xevcntr,
- .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
- { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
- .access = PL0_R | PL1_RW, .accessfn = access_tpm,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
- .resetvalue = 0,
- .writefn = pmuserenr_write, .raw_writefn = raw_write },
- { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
- .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
- .resetvalue = 0,
- .writefn = pmuserenr_write, .raw_writefn = raw_write },
- { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tpm,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
- .resetvalue = 0,
- .writefn = pmintenset_write, .raw_writefn = raw_write },
- { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tpm,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenset_write, .raw_writefn = raw_write,
- .resetvalue = 0x0 },
- { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tpm,
- .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenclr_write, },
- { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tpm,
- .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenclr_write },
- { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
- .access = PL1_R,
- .accessfn = access_tid4,
- .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
- { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
- .access = PL1_RW,
- .accessfn = access_tid4,
- .writefn = csselr_write, .resetvalue = 0,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
- offsetof(CPUARMState, cp15.csselr_ns) } },
- /*
- * Auxiliary ID register: this actually has an IMPDEF value but for now
- * just RAZ for all cores:
- */
- { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid1,
- .resetvalue = 0 },
- /*
- * Auxiliary fault status registers: these also are IMPDEF, and we
- * choose to RAZ/WI for all cores.
- */
- { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- /*
- * MAIR can just read-as-written because we don't implement caches
- * and so don't need to care about memory attributes.
- */
- { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
- .resetvalue = 0 },
- { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
- .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
- .resetvalue = 0 },
- /*
- * For non-long-descriptor page tables these are PRRR and NMRR;
- * regardless they still act as reads-as-written for QEMU.
- */
- /*
- * MAIR0/1 are defined separately from their 64-bit counterpart which
- * allows them to assign the correct fieldoffset based on the endianness
- * handled in the field definitions.
- */
- { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
- offsetof(CPUARMState, cp15.mair0_ns) },
- .resetfn = arm_cp_reset_ignore },
- { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
- offsetof(CPUARMState, cp15.mair1_ns) },
- .resetfn = arm_cp_reset_ignore },
- { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
- /* 32 bit ITLB invalidates */
- { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiall_write },
- { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimva_write },
- { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiasid_write },
- /* 32 bit DTLB invalidates */
- { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiall_write },
- { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimva_write },
- { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiasid_write },
- /* 32 bit TLB invalidates */
- { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiall_write },
- { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimva_write },
- { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbiasid_write },
- { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimvaa_write },
-};
-
-static const ARMCPRegInfo v7mp_cp_reginfo[] = {
- /* 32 bit TLB invalidates, Inner Shareable */
- { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbiall_is_write },
- { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbimva_is_write },
- { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbiasid_is_write },
- { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbimvaa_is_write },
-};
-
-static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
- /* PMOVSSET is not implemented in v7 before v7ve */
- { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsset_write,
- .raw_writefn = raw_write },
- { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsset_write,
- .raw_writefn = raw_write },
-};
-
-static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= 1;
- env->teecr = value;
-}
-
-static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
- * at all, so we don't need to check whether we're v8A.
- */
- if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
- (env->cp15.hstr_el2 & HSTR_TTEE)) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 0 && (env->teecr & 1)) {
- return CP_ACCESS_TRAP;
- }
- return teecr_access(env, ri, isread);
-}
-
-static const ARMCPRegInfo t2ee_cp_reginfo[] = {
- { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
- .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
- .resetvalue = 0,
- .writefn = teecr_write, .accessfn = teecr_access },
- { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
- .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
- .accessfn = teehbr_access, .resetvalue = 0 },
-};
-
-static const ARMCPRegInfo v6k_cp_reginfo[] = {
- { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
- .access = PL0_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
- { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL0_RW,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
- offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
- .resetfn = arm_cp_reset_ignore },
- { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
- .access = PL0_R | PL1_W,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
- .resetvalue = 0},
- { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
- .access = PL0_R | PL1_W,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
- offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
- .resetfn = arm_cp_reset_ignore },
- { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
- { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
- .access = PL1_RW,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
- offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
- .resetvalue = 0 },
-};
-
-#ifndef CONFIG_USER_ONLY
-
-static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
- * Writable only at the highest implemented exception level.
- */
- int el = arm_current_el(env);
- uint64_t hcr;
- uint32_t cntkctl;
-
- switch (el) {
- case 0:
- hcr = arm_hcr_el2_eff(env);
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- cntkctl = env->cp15.cnthctl_el2;
- } else {
- cntkctl = env->cp15.c14_cntkctl;
- }
- if (!extract32(cntkctl, 0, 2)) {
- return CP_ACCESS_TRAP;
- }
- break;
- case 1:
- if (!isread && ri->state == ARM_CP_STATE_AA32 &&
- arm_is_secure_below_el3(env)) {
- /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
- return CP_ACCESS_TRAP_UNCATEGORIZED;
- }
- break;
- case 2:
- case 3:
- break;
- }
-
- if (!isread && el < arm_highest_el(env)) {
- return CP_ACCESS_TRAP_UNCATEGORIZED;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
- bool isread)
-{
- unsigned int cur_el = arm_current_el(env);
- bool has_el2 = arm_is_el2_enabled(env);
- uint64_t hcr = arm_hcr_el2_eff(env);
-
- switch (cur_el) {
- case 0:
- /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
- ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
- }
-
- /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
- if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
- return CP_ACCESS_TRAP;
- }
-
- /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
- if (hcr & HCR_E2H) {
- if (timeridx == GTIMER_PHYS &&
- !extract32(env->cp15.cnthctl_el2, 10, 1)) {
- return CP_ACCESS_TRAP_EL2;
- }
- } else {
- /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
- if (has_el2 && timeridx == GTIMER_PHYS &&
- !extract32(env->cp15.cnthctl_el2, 1, 1)) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- break;
-
- case 1:
- /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
- if (has_el2 && timeridx == GTIMER_PHYS &&
- (hcr & HCR_E2H
- ? !extract32(env->cp15.cnthctl_el2, 10, 1)
- : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
- return CP_ACCESS_TRAP_EL2;
- }
- break;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
- bool isread)
-{
- unsigned int cur_el = arm_current_el(env);
- bool has_el2 = arm_is_el2_enabled(env);
- uint64_t hcr = arm_hcr_el2_eff(env);
-
- switch (cur_el) {
- case 0:
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
- return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
- ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
- }
-
- /*
- * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
- * EL0 if EL0[PV]TEN is zero.
- */
- if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
- return CP_ACCESS_TRAP;
- }
- /* fall through */
-
- case 1:
- if (has_el2 && timeridx == GTIMER_PHYS) {
- if (hcr & HCR_E2H) {
- /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
- if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
- return CP_ACCESS_TRAP_EL2;
- }
- } else {
- /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
- if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- }
- break;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult gt_pct_access(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- return gt_counter_access(env, GTIMER_PHYS, isread);
-}
-
-static CPAccessResult gt_vct_access(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- return gt_counter_access(env, GTIMER_VIRT, isread);
-}
-
-static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- return gt_timer_access(env, GTIMER_PHYS, isread);
-}
-
-static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- return gt_timer_access(env, GTIMER_VIRT, isread);
-}
-
-static CPAccessResult gt_stimer_access(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * The AArch64 register view of the secure physical timer is
- * always accessible from EL3, and configurably accessible from
- * Secure EL1.
- */
- switch (arm_current_el(env)) {
- case 1:
- if (!arm_is_secure(env)) {
- return CP_ACCESS_TRAP;
- }
- if (!(env->cp15.scr_el3 & SCR_ST)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
- case 0:
- case 2:
- return CP_ACCESS_TRAP;
- case 3:
- return CP_ACCESS_OK;
- default:
- g_assert_not_reached();
- }
-}
-
-static uint64_t gt_get_countervalue(CPUARMState *env)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
-}
-
-static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
-{
- ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
-
- if (gt->ctl & 1) {
- /*
- * Timer enabled: calculate and set current ISTATUS, irq, and
- * reset timer to when ISTATUS next has to change
- */
- uint64_t offset = timeridx == GTIMER_VIRT ?
- cpu->env.cp15.cntvoff_el2 : 0;
- uint64_t count = gt_get_countervalue(&cpu->env);
- /* Note that this must be unsigned 64 bit arithmetic: */
- int istatus = count - offset >= gt->cval;
- uint64_t nexttick;
- int irqstate;
-
- gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
-
- irqstate = (istatus && !(gt->ctl & 2));
- qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
-
- if (istatus) {
- /* Next transition is when count rolls back over to zero */
- nexttick = UINT64_MAX;
- } else {
- /* Next transition is when we hit cval */
- nexttick = gt->cval + offset;
- }
- /*
- * Note that the desired next expiry time might be beyond the
- * signed-64-bit range of a QEMUTimer -- in this case we just
- * set the timer for as far in the future as possible. When the
- * timer expires we will reset the timer for any remaining period.
- */
- if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
- timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
- } else {
- timer_mod(cpu->gt_timer[timeridx], nexttick);
- }
- trace_arm_gt_recalc(timeridx, irqstate, nexttick);
- } else {
- /* Timer disabled: ISTATUS and timer output always clear */
- gt->ctl &= ~4;
- qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
- timer_del(cpu->gt_timer[timeridx]);
- trace_arm_gt_recalc_disabled(timeridx);
- }
-}
-
-static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
- int timeridx)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- timer_del(cpu->gt_timer[timeridx]);
-}
-
-static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_get_countervalue(env);
-}
-
-static uint64_t gt_virt_cnt_offset(CPUARMState *env)
-{
- uint64_t hcr;
-
- switch (arm_current_el(env)) {
- case 2:
- hcr = arm_hcr_el2_eff(env);
- if (hcr & HCR_E2H) {
- return 0;
- }
- break;
- case 0:
- hcr = arm_hcr_el2_eff(env);
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- return 0;
- }
- break;
- }
-
- return env->cp15.cntvoff_el2;
-}
-
-static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
-}
-
-static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- int timeridx,
- uint64_t value)
-{
- trace_arm_gt_cval_write(timeridx, value);
- env->cp15.c14_timer[timeridx].cval = value;
- gt_recalc_timer(env_archcpu(env), timeridx);
-}
-
-static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
- int timeridx)
-{
- uint64_t offset = 0;
-
- switch (timeridx) {
- case GTIMER_VIRT:
- case GTIMER_HYPVIRT:
- offset = gt_virt_cnt_offset(env);
- break;
- }
-
- return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
- (gt_get_countervalue(env) - offset));
-}
-
-static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- int timeridx,
- uint64_t value)
-{
- uint64_t offset = 0;
-
- switch (timeridx) {
- case GTIMER_VIRT:
- case GTIMER_HYPVIRT:
- offset = gt_virt_cnt_offset(env);
- break;
- }
-
- trace_arm_gt_tval_write(timeridx, value);
- env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
- sextract64(value, 0, 32);
- gt_recalc_timer(env_archcpu(env), timeridx);
-}
-
-static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- int timeridx,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
-
- trace_arm_gt_ctl_write(timeridx, value);
- env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
- if ((oldval ^ value) & 1) {
- /* Enable toggled */
- gt_recalc_timer(cpu, timeridx);
- } else if ((oldval ^ value) & 2) {
- /*
- * IMASK toggled: don't need to recalculate,
- * just set the interrupt line based on ISTATUS
- */
- int irqstate = (oldval & 4) && !(value & 2);
-
- trace_arm_gt_imask_toggle(timeridx, irqstate);
- qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
- }
-}
-
-static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- gt_timer_reset(env, ri, GTIMER_PHYS);
-}
-
-static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_cval_write(env, ri, GTIMER_PHYS, value);
-}
-
-static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_tval_read(env, ri, GTIMER_PHYS);
-}
-
-static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_tval_write(env, ri, GTIMER_PHYS, value);
-}
-
-static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_ctl_write(env, ri, GTIMER_PHYS, value);
-}
-
-static int gt_phys_redir_timeridx(CPUARMState *env)
-{
- switch (arm_mmu_idx(env)) {
- case ARMMMUIdx_E20_0:
- case ARMMMUIdx_E20_2:
- case ARMMMUIdx_E20_2_PAN:
- return GTIMER_HYP;
- default:
- return GTIMER_PHYS;
- }
-}
-
-static int gt_virt_redir_timeridx(CPUARMState *env)
-{
- switch (arm_mmu_idx(env)) {
- case ARMMMUIdx_E20_0:
- case ARMMMUIdx_E20_2:
- case ARMMMUIdx_E20_2_PAN:
- return GTIMER_HYPVIRT;
- default:
- return GTIMER_VIRT;
- }
-}
-
-static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- return env->cp15.c14_timer[timeridx].cval;
-}
-
-static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- gt_cval_write(env, ri, timeridx, value);
-}
-
-static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- return gt_tval_read(env, ri, timeridx);
-}
-
-static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- gt_tval_write(env, ri, timeridx, value);
-}
-
-static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- return env->cp15.c14_timer[timeridx].ctl;
-}
-
-static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_phys_redir_timeridx(env);
- gt_ctl_write(env, ri, timeridx, value);
-}
-
-static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- gt_timer_reset(env, ri, GTIMER_VIRT);
-}
-
-static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_cval_write(env, ri, GTIMER_VIRT, value);
-}
-
-static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_tval_read(env, ri, GTIMER_VIRT);
-}
-
-static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_tval_write(env, ri, GTIMER_VIRT, value);
-}
-
-static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_ctl_write(env, ri, GTIMER_VIRT, value);
-}
-
-static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- trace_arm_gt_cntvoff_write(value);
- raw_write(env, ri, value);
- gt_recalc_timer(cpu, GTIMER_VIRT);
-}
-
-static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- return env->cp15.c14_timer[timeridx].cval;
-}
-
-static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- gt_cval_write(env, ri, timeridx, value);
-}
-
-static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- return gt_tval_read(env, ri, timeridx);
-}
-
-static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- gt_tval_write(env, ri, timeridx, value);
-}
-
-static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
- const ARMCPRegInfo *ri)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- return env->cp15.c14_timer[timeridx].ctl;
-}
-
-static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int timeridx = gt_virt_redir_timeridx(env);
- gt_ctl_write(env, ri, timeridx, value);
-}
-
-static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- gt_timer_reset(env, ri, GTIMER_HYP);
-}
-
-static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_cval_write(env, ri, GTIMER_HYP, value);
-}
-
-static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_tval_read(env, ri, GTIMER_HYP);
-}
-
-static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_tval_write(env, ri, GTIMER_HYP, value);
-}
-
-static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_ctl_write(env, ri, GTIMER_HYP, value);
-}
-
-static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- gt_timer_reset(env, ri, GTIMER_SEC);
-}
-
-static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_cval_write(env, ri, GTIMER_SEC, value);
-}
-
-static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_tval_read(env, ri, GTIMER_SEC);
-}
-
-static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_tval_write(env, ri, GTIMER_SEC, value);
-}
-
-static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_ctl_write(env, ri, GTIMER_SEC, value);
-}
-
-static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- gt_timer_reset(env, ri, GTIMER_HYPVIRT);
-}
-
-static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
-}
-
-static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return gt_tval_read(env, ri, GTIMER_HYPVIRT);
-}
-
-static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
-}
-
-static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
-}
-
-void arm_gt_ptimer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- gt_recalc_timer(cpu, GTIMER_PHYS);
-}
-
-void arm_gt_vtimer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- gt_recalc_timer(cpu, GTIMER_VIRT);
-}
-
-void arm_gt_htimer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- gt_recalc_timer(cpu, GTIMER_HYP);
-}
-
-void arm_gt_stimer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- gt_recalc_timer(cpu, GTIMER_SEC);
-}
-
-void arm_gt_hvtimer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- gt_recalc_timer(cpu, GTIMER_HYPVIRT);
-}
-
-static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
-}
-
-static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
- /*
- * Note that CNTFRQ is purely reads-as-written for the benefit
- * of software; writing it doesn't actually change the timer frequency.
- * Our reset value matches the fixed frequency we implement the timer at.
- */
- { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
- .type = ARM_CP_ALIAS,
- .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
- },
- { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
- .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
- .resetfn = arm_gt_cntfrq_reset,
- },
- /* overall control: mostly access permissions */
- { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
- .resetvalue = 0,
- },
- /* per-timer control */
- { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
- .secure = ARM_CP_SECSTATE_NS,
- .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
- .accessfn = gt_ptimer_access,
- .fieldoffset = offsetoflow32(CPUARMState,
- cp15.c14_timer[GTIMER_PHYS].ctl),
- .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
- .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
- },
- { .name = "CNTP_CTL_S",
- .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
- .secure = ARM_CP_SECSTATE_S,
- .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
- .accessfn = gt_ptimer_access,
- .fieldoffset = offsetoflow32(CPUARMState,
- cp15.c14_timer[GTIMER_SEC].ctl),
- .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
- },
- { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
- .type = ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_ptimer_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
- .resetvalue = 0,
- .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
- .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
- },
- { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
- .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
- .accessfn = gt_vtimer_access,
- .fieldoffset = offsetoflow32(CPUARMState,
- cp15.c14_timer[GTIMER_VIRT].ctl),
- .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
- .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
- },
- { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
- .type = ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_vtimer_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
- .resetvalue = 0,
- .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
- .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
- },
- /* TimerValue views: a 32 bit downcounting view of the underlying state */
- { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
- .secure = ARM_CP_SECSTATE_NS,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_ptimer_access,
- .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
- },
- { .name = "CNTP_TVAL_S",
- .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
- .secure = ARM_CP_SECSTATE_S,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_ptimer_access,
- .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
- },
- { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
- .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
- },
- { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_vtimer_access,
- .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
- },
- { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
- .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
- .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
- },
- /* The counter itself */
- { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
- .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = gt_pct_access,
- .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
- },
- { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
- .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = gt_pct_access, .readfn = gt_cnt_read,
- },
- { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
- .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = gt_vct_access,
- .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
- },
- { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
- .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
- },
- /* Comparison value, indicating when the timer goes off */
- { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
- .secure = ARM_CP_SECSTATE_NS,
- .access = PL0_RW,
- .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
- .accessfn = gt_ptimer_access,
- .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
- .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
- },
- { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
- .secure = ARM_CP_SECSTATE_S,
- .access = PL0_RW,
- .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
- .accessfn = gt_ptimer_access,
- .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
- },
- { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
- .access = PL0_RW,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
- .resetvalue = 0, .accessfn = gt_ptimer_access,
- .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
- .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
- },
- { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
- .access = PL0_RW,
- .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
- .accessfn = gt_vtimer_access,
- .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
- .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
- },
- { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
- .access = PL0_RW,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
- .resetvalue = 0, .accessfn = gt_vtimer_access,
- .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
- .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
- },
- /*
- * Secure timer -- this is actually restricted to only EL3
- * and configurably Secure-EL1 via the accessfn.
- */
- { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
- .accessfn = gt_stimer_access,
- .readfn = gt_sec_tval_read,
- .writefn = gt_sec_tval_write,
- .resetfn = gt_sec_timer_reset,
- },
- { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
- .type = ARM_CP_IO, .access = PL1_RW,
- .accessfn = gt_stimer_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
- .resetvalue = 0,
- .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
- },
- { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
- .type = ARM_CP_IO, .access = PL1_RW,
- .accessfn = gt_stimer_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
- .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
- },
-};
-
-static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
- return CP_ACCESS_TRAP;
- }
- return CP_ACCESS_OK;
-}
-
-#else
-
-/*
- * In user-mode most of the generic timer registers are inaccessible
- * however modern kernels (4.12+) allow access to cntvct_el0
- */
-
-static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- /*
- * Currently we have no support for QEMUTimer in linux-user so we
- * can't call gt_get_countervalue(env), instead we directly
- * call the lower level functions.
- */
- return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
-}
-
-static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
- { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
- .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
- .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
- },
- { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
- .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .readfn = gt_virt_cnt_read,
- },
-};
-
-#endif
-
-static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- if (arm_feature(env, ARM_FEATURE_LPAE)) {
- raw_write(env, ri, value);
- } else if (arm_feature(env, ARM_FEATURE_V7)) {
- raw_write(env, ri, value & 0xfffff6ff);
- } else {
- raw_write(env, ri, value & 0xfffff1ff);
- }
-}
-
-#ifndef CONFIG_USER_ONLY
-/* get_phys_addr() isn't present for user-mode-only targets */
-
-static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (ri->opc2 & 4) {
- /*
- * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
- * Secure EL1 (which can only happen if EL3 is AArch64).
- * They are simply UNDEF if executed from NS EL1.
- * They function normally from EL2 or EL3.
- */
- if (arm_current_el(env) == 1) {
- if (arm_is_secure_below_el3(env)) {
- if (env->cp15.scr_el3 & SCR_EEL2) {
- return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
- }
- return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
- }
- return CP_ACCESS_TRAP_UNCATEGORIZED;
- }
- }
- return CP_ACCESS_OK;
-}
-
-#ifdef CONFIG_TCG
-static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
- MMUAccessType access_type, ARMMMUIdx mmu_idx,
- bool is_secure)
-{
- bool ret;
- uint64_t par64;
- bool format64 = false;
- ARMMMUFaultInfo fi = {};
- GetPhysAddrResult res = {};
-
- ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
- is_secure, &res, &fi);
-
- /*
- * ATS operations only do S1 or S1+S2 translations, so we never
- * have to deal with the ARMCacheAttrs format for S2 only.
- */
- assert(!res.cacheattrs.is_s2_format);
-
- if (ret) {
- /*
- * Some kinds of translation fault must cause exceptions rather
- * than being reported in the PAR.
- */
- int current_el = arm_current_el(env);
- int target_el;
- uint32_t syn, fsr, fsc;
- bool take_exc = false;
-
- if (fi.s1ptw && current_el == 1
- && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
- /*
- * Synchronous stage 2 fault on an access made as part of the
- * translation table walk for AT S1E0* or AT S1E1* insn
- * executed from NS EL1. If this is a synchronous external abort
- * and SCR_EL3.EA == 1, then we take a synchronous external abort
- * to EL3. Otherwise the fault is taken as an exception to EL2,
- * and HPFAR_EL2 holds the faulting IPA.
- */
- if (fi.type == ARMFault_SyncExternalOnWalk &&
- (env->cp15.scr_el3 & SCR_EA)) {
- target_el = 3;
- } else {
- env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
- if (arm_is_secure_below_el3(env) && fi.s1ns) {
- env->cp15.hpfar_el2 |= HPFAR_NS;
- }
- target_el = 2;
- }
- take_exc = true;
- } else if (fi.type == ARMFault_SyncExternalOnWalk) {
- /*
- * Synchronous external aborts during a translation table walk
- * are taken as Data Abort exceptions.
- */
- if (fi.stage2) {
- if (current_el == 3) {
- target_el = 3;
- } else {
- target_el = 2;
- }
- } else {
- target_el = exception_target_el(env);
- }
- take_exc = true;
- }
-
- if (take_exc) {
- /* Construct FSR and FSC using same logic as arm_deliver_fault() */
- if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
- arm_s1_regime_using_lpae_format(env, mmu_idx)) {
- fsr = arm_fi_to_lfsc(&fi);
- fsc = extract32(fsr, 0, 6);
- } else {
- fsr = arm_fi_to_sfsc(&fi);
- fsc = 0x3f;
- }
- /*
- * Report exception with ESR indicating a fault due to a
- * translation table walk for a cache maintenance instruction.
- */
- syn = syn_data_abort_no_iss(current_el == target_el, 0,
- fi.ea, 1, fi.s1ptw, 1, fsc);
- env->exception.vaddress = value;
- env->exception.fsr = fsr;
- raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
- }
- }
-
- if (is_a64(env)) {
- format64 = true;
- } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
- /*
- * ATS1Cxx:
- * * TTBCR.EAE determines whether the result is returned using the
- * 32-bit or the 64-bit PAR format
- * * Instructions executed in Hyp mode always use the 64bit format
- *
- * ATS1S2NSOxx uses the 64bit format if any of the following is true:
- * * The Non-secure TTBCR.EAE bit is set to 1
- * * The implementation includes EL2, and the value of HCR.VM is 1
- *
- * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
- *
- * ATS1Hx always uses the 64bit format.
- */
- format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
-
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- if (mmu_idx == ARMMMUIdx_E10_0 ||
- mmu_idx == ARMMMUIdx_E10_1 ||
- mmu_idx == ARMMMUIdx_E10_1_PAN) {
- format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
- } else {
- format64 |= arm_current_el(env) == 2;
- }
- }
- }
-
- if (format64) {
- /* Create a 64-bit PAR */
- par64 = (1 << 11); /* LPAE bit always set */
- if (!ret) {
- par64 |= res.f.phys_addr & ~0xfffULL;
- if (!res.f.attrs.secure) {
- par64 |= (1 << 9); /* NS */
- }
- par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
- par64 |= res.cacheattrs.shareability << 7; /* SH */
- } else {
- uint32_t fsr = arm_fi_to_lfsc(&fi);
-
- par64 |= 1; /* F */
- par64 |= (fsr & 0x3f) << 1; /* FS */
- if (fi.stage2) {
- par64 |= (1 << 9); /* S */
- }
- if (fi.s1ptw) {
- par64 |= (1 << 8); /* PTW */
- }
- }
- } else {
- /*
- * fsr is a DFSR/IFSR value for the short descriptor
- * translation table format (with WnR always clear).
- * Convert it to a 32-bit PAR.
- */
- if (!ret) {
- /* We do not set any attribute bits in the PAR */
- if (res.f.lg_page_size == 24
- && arm_feature(env, ARM_FEATURE_V7)) {
- par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
- } else {
- par64 = res.f.phys_addr & 0xfffff000;
- }
- if (!res.f.attrs.secure) {
- par64 |= (1 << 9); /* NS */
- }
- } else {
- uint32_t fsr = arm_fi_to_sfsc(&fi);
-
- par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
- ((fsr & 0xf) << 1) | 1;
- }
- }
- return par64;
-}
-#endif /* CONFIG_TCG */
-
-static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
-#ifdef CONFIG_TCG
- MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
- uint64_t par64;
- ARMMMUIdx mmu_idx;
- int el = arm_current_el(env);
- bool secure = arm_is_secure_below_el3(env);
-
- switch (ri->opc2 & 6) {
- case 0:
- /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
- switch (el) {
- case 3:
- mmu_idx = ARMMMUIdx_E3;
- secure = true;
- break;
- case 2:
- g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
- /* fall through */
- case 1:
- if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
- mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
- } else {
- mmu_idx = ARMMMUIdx_Stage1_E1;
- }
- break;
- default:
- g_assert_not_reached();
- }
- break;
- case 2:
- /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
- switch (el) {
- case 3:
- mmu_idx = ARMMMUIdx_E10_0;
- secure = true;
- break;
- case 2:
- g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
- mmu_idx = ARMMMUIdx_Stage1_E0;
- break;
- case 1:
- mmu_idx = ARMMMUIdx_Stage1_E0;
- break;
- default:
- g_assert_not_reached();
- }
- break;
- case 4:
- /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
- mmu_idx = ARMMMUIdx_E10_1;
- secure = false;
- break;
- case 6:
- /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
- mmu_idx = ARMMMUIdx_E10_0;
- secure = false;
- break;
- default:
- g_assert_not_reached();
- }
-
- par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
-
- A32_BANKED_CURRENT_REG_SET(env, par, par64);
-#else
- /* Handled by hardware accelerator. */
- g_assert_not_reached();
-#endif /* CONFIG_TCG */
-}
-
-static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
-#ifdef CONFIG_TCG
- MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
- uint64_t par64;
-
- /* There is no SecureEL2 for AArch32. */
- par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
-
- A32_BANKED_CURRENT_REG_SET(env, par, par64);
-#else
- /* Handled by hardware accelerator. */
- g_assert_not_reached();
-#endif /* CONFIG_TCG */
-}
-
-static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 3 &&
- !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
- return CP_ACCESS_TRAP;
- }
- return CP_ACCESS_OK;
-}
-
-static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
-#ifdef CONFIG_TCG
- MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
- ARMMMUIdx mmu_idx;
- int secure = arm_is_secure_below_el3(env);
- uint64_t hcr_el2 = arm_hcr_el2_eff(env);
- bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
-
- switch (ri->opc2 & 6) {
- case 0:
- switch (ri->opc1) {
- case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
- if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
- mmu_idx = regime_e20 ?
- ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
- } else {
- mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
- }
- break;
- case 4: /* AT S1E2R, AT S1E2W */
- mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
- break;
- case 6: /* AT S1E3R, AT S1E3W */
- mmu_idx = ARMMMUIdx_E3;
- secure = true;
- break;
- default:
- g_assert_not_reached();
- }
- break;
- case 2: /* AT S1E0R, AT S1E0W */
- mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
- break;
- case 4: /* AT S12E1R, AT S12E1W */
- mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
- break;
- case 6: /* AT S12E0R, AT S12E0W */
- mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
- break;
- default:
- g_assert_not_reached();
- }
-
- env->cp15.par_el[1] = do_ats_write(env, value, access_type,
- mmu_idx, secure);
-#else
- /* Handled by hardware accelerator. */
- g_assert_not_reached();
-#endif /* CONFIG_TCG */
-}
-#endif
-
-static const ARMCPRegInfo vapa_cp_reginfo[] = {
- { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .resetvalue = 0,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
- offsetoflow32(CPUARMState, cp15.par_ns) },
- .writefn = par_write },
-#ifndef CONFIG_USER_ONLY
- /* This underdecoding is safe because the reginfo is NO_RAW. */
- { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_W, .accessfn = ats_access,
- .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
-#endif
-};
-
-/* Return basic MPU access permission bits. */
-static uint32_t simple_mpu_ap_bits(uint32_t val)
-{
- uint32_t ret;
- uint32_t mask;
- int i;
- ret = 0;
- mask = 3;
- for (i = 0; i < 16; i += 2) {
- ret |= (val >> i) & mask;
- mask <<= 2;
- }
- return ret;
-}
-
-/* Pad basic MPU access permission bits to extended format. */
-static uint32_t extended_mpu_ap_bits(uint32_t val)
-{
- uint32_t ret;
- uint32_t mask;
- int i;
- ret = 0;
- mask = 3;
- for (i = 0; i < 16; i += 2) {
- ret |= (val & mask) << i;
- mask <<= 2;
- }
- return ret;
-}
-
-static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
-}
-
-static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
-}
-
-static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
-}
-
-static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
-}
-
-static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
-
- if (!u32p) {
- return 0;
- }
-
- u32p += env->pmsav7.rnr[M_REG_NS];
- return *u32p;
-}
-
-static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
-
- if (!u32p) {
- return;
- }
-
- u32p += env->pmsav7.rnr[M_REG_NS];
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
- *u32p = value;
-}
-
-static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint32_t nrgs = cpu->pmsav7_dregion;
-
- if (value >= nrgs) {
- qemu_log_mask(LOG_GUEST_ERROR,
- "PMSAv7 RGNR write >= # supported regions, %" PRIu32
- " > %" PRIu32 "\n", (uint32_t)value, nrgs);
- return;
- }
-
- raw_write(env, ri, value);
-}
-
-static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
- env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
-}
-
-static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
-}
-
-static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
- env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
-}
-
-static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
-}
-
-static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- /*
- * Ignore writes that would select not implemented region.
- * This is architecturally UNPREDICTABLE.
- */
- if (value >= cpu->pmsav7_dregion) {
- return;
- }
-
- env->pmsav7.rnr[M_REG_NS] = value;
-}
-
-static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
- env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
-}
-
-static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pmsav8.hprbar[env->pmsav8.hprselr];
-}
-
-static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
- env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
-}
-
-static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pmsav8.hprlar[env->pmsav8.hprselr];
-}
-
-static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint32_t n;
- uint32_t bit;
- ARMCPU *cpu = env_archcpu(env);
-
- /* Ignore writes to unimplemented regions */
- int rmax = MIN(cpu->pmsav8r_hdregion, 32);
- value &= MAKE_64BIT_MASK(0, rmax);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
-
- /* Register alias is only valid for first 32 indexes */
- for (n = 0; n < rmax; ++n) {
- bit = extract32(value, n, 1);
- env->pmsav8.hprlar[n] = deposit32(
- env->pmsav8.hprlar[n], 0, 1, bit);
- }
-}
-
-static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint32_t n;
- uint32_t result = 0x0;
- ARMCPU *cpu = env_archcpu(env);
-
- /* Register alias is only valid for first 32 indexes */
- for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
- if (env->pmsav8.hprlar[n] & 0x1) {
- result |= (0x1 << n);
- }
- }
- return result;
-}
-
-static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- /*
- * Ignore writes that would select not implemented region.
- * This is architecturally UNPREDICTABLE.
- */
- if (value >= cpu->pmsav8r_hdregion) {
- return;
- }
-
- env->pmsav8.hprselr = value;
-}
-
-static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
- (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
-
- tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
-
- if (ri->opc1 & 4) {
- if (index >= cpu->pmsav8r_hdregion) {
- return;
- }
- if (ri->opc2 & 0x1) {
- env->pmsav8.hprlar[index] = value;
- } else {
- env->pmsav8.hprbar[index] = value;
- }
- } else {
- if (index >= cpu->pmsav7_dregion) {
- return;
- }
- if (ri->opc2 & 0x1) {
- env->pmsav8.rlar[M_REG_NS][index] = value;
- } else {
- env->pmsav8.rbar[M_REG_NS][index] = value;
- }
- }
-}
-
-static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
- (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
-
- if (ri->opc1 & 4) {
- if (index >= cpu->pmsav8r_hdregion) {
- return 0x0;
- }
- if (ri->opc2 & 0x1) {
- return env->pmsav8.hprlar[index];
- } else {
- return env->pmsav8.hprbar[index];
- }
- } else {
- if (index >= cpu->pmsav7_dregion) {
- return 0x0;
- }
- if (ri->opc2 & 0x1) {
- return env->pmsav8.rlar[M_REG_NS][index];
- } else {
- return env->pmsav8.rbar[M_REG_NS][index];
- }
- }
-}
-
-static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
- { .name = "PRBAR",
- .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_NO_RAW,
- .accessfn = access_tvm_trvm,
- .readfn = prbar_read, .writefn = prbar_write },
- { .name = "PRLAR",
- .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
- .access = PL1_RW, .type = ARM_CP_NO_RAW,
- .accessfn = access_tvm_trvm,
- .readfn = prlar_read, .writefn = prlar_write },
- { .name = "PRSELR", .resetvalue = 0,
- .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .writefn = prselr_write,
- .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
- { .name = "HPRBAR", .resetvalue = 0,
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
- .access = PL2_RW, .type = ARM_CP_NO_RAW,
- .readfn = hprbar_read, .writefn = hprbar_write },
- { .name = "HPRLAR",
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_NO_RAW,
- .readfn = hprlar_read, .writefn = hprlar_write },
- { .name = "HPRSELR", .resetvalue = 0,
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
- .access = PL2_RW,
- .writefn = hprselr_write,
- .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
- { .name = "HPRENR",
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_NO_RAW,
- .readfn = hprenr_read, .writefn = hprenr_write },
-};
-
-static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
- /*
- * Reset for all these registers is handled in arm_cpu_reset(),
- * because the PMSAv7 is also used by M-profile CPUs, which do
- * not register cpregs but still need the state to be reset.
- */
- { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_NO_RAW,
- .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
- .readfn = pmsav7_read, .writefn = pmsav7_write,
- .resetfn = arm_cp_reset_ignore },
- { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
- .access = PL1_RW, .type = ARM_CP_NO_RAW,
- .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
- .readfn = pmsav7_read, .writefn = pmsav7_write,
- .resetfn = arm_cp_reset_ignore },
- { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
- .access = PL1_RW, .type = ARM_CP_NO_RAW,
- .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
- .readfn = pmsav7_read, .writefn = pmsav7_write,
- .resetfn = arm_cp_reset_ignore },
- { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
- .writefn = pmsav7_rgnr_write,
- .resetfn = arm_cp_reset_ignore },
-};
-
-static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
- { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
- .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
- { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
- .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
- { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
- .resetvalue = 0, },
- { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
- .resetvalue = 0, },
- { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
- { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
- /* Protection region base and size registers */
- { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
- { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
- { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
- { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
- { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
- { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
- { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
- { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
- .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
-};
-
-static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- if (!arm_feature(env, ARM_FEATURE_V8)) {
- if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
- /*
- * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
- * using Long-descriptor translation table format
- */
- value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
- } else if (arm_feature(env, ARM_FEATURE_EL3)) {
- /*
- * In an implementation that includes the Security Extensions
- * TTBCR has additional fields PD0 [4] and PD1 [5] for
- * Short-descriptor translation table format.
- */
- value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
- } else {
- value &= TTBCR_N;
- }
- }
-
- if (arm_feature(env, ARM_FEATURE_LPAE)) {
- /*
- * With LPAE the TTBCR could result in a change of ASID
- * via the TTBCR.A1 bit, so do a TLB flush.
- */
- tlb_flush(CPU(cpu));
- }
- raw_write(env, ri, value);
-}
-
-static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
- tlb_flush(CPU(cpu));
- raw_write(env, ri, value);
-}
-
-static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
- if (cpreg_field_is_64bit(ri) &&
- extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
- ARMCPU *cpu = env_archcpu(env);
- tlb_flush(CPU(cpu));
- }
- raw_write(env, ri, value);
-}
-
-static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * If we are running with E2&0 regime, then an ASID is active.
- * Flush if that might be changing. Note we're not checking
- * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
- * holds the active ASID, only checking the field that might.
- */
- if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
- (arm_hcr_el2_eff(env) & HCR_E2H)) {
- uint16_t mask = ARMMMUIdxBit_E20_2 |
- ARMMMUIdxBit_E20_2_PAN |
- ARMMMUIdxBit_E20_0;
- tlb_flush_by_mmuidx(env_cpu(env), mask);
- }
- raw_write(env, ri, value);
-}
-
-static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- CPUState *cs = CPU(cpu);
-
- /*
- * A change in VMID to the stage2 page table (Stage2) invalidates
- * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
- */
- if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
- tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
- }
- raw_write(env, ri, value);
-}
-
-static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
- { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
- offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
- { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
- offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
- { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
- offsetof(CPUARMState, cp15.dfar_ns) } },
- { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
- .resetvalue = 0, },
-};
-
-static const ARMCPRegInfo vmsa_cp_reginfo[] = {
- { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
- { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .writefn = vmsa_ttbr_write, .resetvalue = 0,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
- offsetof(CPUARMState, cp15.ttbr0_ns) } },
- { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .writefn = vmsa_ttbr_write, .resetvalue = 0,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
- offsetof(CPUARMState, cp15.ttbr1_ns) } },
- { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .writefn = vmsa_tcr_el12_write,
- .raw_writefn = raw_write,
- .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
- { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
- .raw_writefn = raw_write,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
- offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
-};
-
-/*
- * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
- * qemu tlbs nor adjusting cached masks.
- */
-static const ARMCPRegInfo ttbcr2_reginfo = {
- .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_ALIAS,
- .bank_fieldoffsets = {
- offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
- offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
- },
-};
-
-static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->cp15.c15_ticonfig = value & 0xe7;
- /* The OS_TYPE bit in this register changes the reported CPUID! */
- env->cp15.c0_cpuid = (value & (1 << 5)) ?
- ARM_CPUID_TI915T : ARM_CPUID_TI925T;
-}
-
-static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->cp15.c15_threadid = value & 0xffff;
-}
-
-static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Wait-for-interrupt (deprecated) */
- cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
-}
-
-static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * On OMAP there are registers indicating the max/min index of dcache lines
- * containing a dirty line; cache flush operations have to reset these.
- */
- env->cp15.c15_i_max = 0x000;
- env->cp15.c15_i_min = 0xff0;
-}
-
-static const ARMCPRegInfo omap_cp_reginfo[] = {
- { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
- .resetvalue = 0, },
- { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
- .writefn = omap_ticonfig_write },
- { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
- { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .resetvalue = 0xff0,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
- { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
- .writefn = omap_threadid_write },
- { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
- .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
- .type = ARM_CP_NO_RAW,
- .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
- /*
- * TODO: Peripheral port remap register:
- * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
- * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
- * when MMU is off.
- */
- { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
- .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
- .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
- .writefn = omap_cachemaint_write },
- { .name = "C9", .cp = 15, .crn = 9,
- .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
- .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
-};
-
-static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->cp15.c15_cpar = value & 0x3fff;
-}
-
-static const ARMCPRegInfo xscale_cp_reginfo[] = {
- { .name = "XSCALE_CPAR",
- .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
- .writefn = xscale_cpar_write, },
- { .name = "XSCALE_AUXCR",
- .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
- .resetvalue = 0, },
- /*
- * XScale specific cache-lockdown: since we have no cache we NOP these
- * and hope the guest does not really rely on cache behaviour.
- */
- { .name = "XSCALE_LOCK_ICACHE_LINE",
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NOP },
- { .name = "XSCALE_UNLOCK_ICACHE",
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NOP },
- { .name = "XSCALE_DCACHE_LOCK",
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_NOP },
- { .name = "XSCALE_UNLOCK_DCACHE",
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NOP },
-};
-
-static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
- /*
- * RAZ/WI the whole crn=15 space, when we don't have a more specific
- * implementation of this implementation-defined space.
- * Ideally this should eventually disappear in favour of actually
- * implementing the correct behaviour for all cores.
- */
- { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
- .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
- .access = PL1_RW,
- .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
- .resetvalue = 0 },
-};
-
-static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
- /* Cache status: RAZ because we have no cache so it's always clean */
- { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
- .resetvalue = 0 },
-};
-
-static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
- /* We never have a block transfer operation in progress */
- { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
- .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
- .resetvalue = 0 },
- /* The cache ops themselves: these all NOP for QEMU */
- { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
- .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
- { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
- .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
- { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
- .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
- { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
- .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
- { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
- .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
- { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
- .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
-};
-
-static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
- /*
- * The cache test-and-clean instructions always return (1 << 30)
- * to indicate that there are no dirty cache lines.
- */
- { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
- .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
- .resetvalue = (1 << 30) },
- { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
- .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
- .resetvalue = (1 << 30) },
-};
-
-static const ARMCPRegInfo strongarm_cp_reginfo[] = {
- /* Ignore ReadBuffer accesses */
- { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
- .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
- .access = PL1_RW, .resetvalue = 0,
- .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
-};
-
-static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- unsigned int cur_el = arm_current_el(env);
-
- if (arm_is_el2_enabled(env) && cur_el == 1) {
- return env->cp15.vpidr_el2;
- }
- return raw_read(env, ri);
-}
-
-static uint64_t mpidr_read_val(CPUARMState *env)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint64_t mpidr = cpu->mp_affinity;
-
- if (arm_feature(env, ARM_FEATURE_V7MP)) {
- mpidr |= (1U << 31);
- /*
- * Cores which are uniprocessor (non-coherent)
- * but still implement the MP extensions set
- * bit 30. (For instance, Cortex-R5).
- */
- if (cpu->mp_is_up) {
- mpidr |= (1u << 30);
- }
- }
- return mpidr;
-}
-
-static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- unsigned int cur_el = arm_current_el(env);
-
- if (arm_is_el2_enabled(env) && cur_el == 1) {
- return env->cp15.vmpidr_el2;
- }
- return mpidr_read_val(env);
-}
-
-static const ARMCPRegInfo lpae_cp_reginfo[] = {
- /* NOP AMAIR0/1 */
- { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
- { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
- .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
- offsetof(CPUARMState, cp15.par_ns)} },
- { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_64BIT | ARM_CP_ALIAS,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
- offsetof(CPUARMState, cp15.ttbr0_ns) },
- .writefn = vmsa_ttbr_write, },
- { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .type = ARM_CP_64BIT | ARM_CP_ALIAS,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
- offsetof(CPUARMState, cp15.ttbr1_ns) },
- .writefn = vmsa_ttbr_write, },
-};
-
-static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return vfp_get_fpcr(env);
-}
-
-static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- vfp_set_fpcr(env, value);
-}
-
-static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return vfp_get_fpsr(env);
-}
-
-static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- vfp_set_fpsr(env, value);
-}
-
-static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
- return CP_ACCESS_TRAP;
- }
- return CP_ACCESS_OK;
-}
-
-static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->daif = value & PSTATE_DAIF;
-}
-
-static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_PAN;
-}
-
-static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
-}
-
-static const ARMCPRegInfo pan_reginfo = {
- .name = "PAN", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
- .type = ARM_CP_NO_RAW, .access = PL1_RW,
- .readfn = aa64_pan_read, .writefn = aa64_pan_write
-};
-
-static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_UAO;
-}
-
-static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
-}
-
-static const ARMCPRegInfo uao_reginfo = {
- .name = "UAO", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
- .type = ARM_CP_NO_RAW, .access = PL1_RW,
- .readfn = aa64_uao_read, .writefn = aa64_uao_write
-};
-
-static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_DIT;
-}
-
-static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
-}
-
-static const ARMCPRegInfo dit_reginfo = {
- .name = "DIT", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL0_RW,
- .readfn = aa64_dit_read, .writefn = aa64_dit_write
-};
-
-static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_SSBS;
-}
-
-static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
-}
-
-static const ARMCPRegInfo ssbs_reginfo = {
- .name = "SSBS", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
- .type = ARM_CP_NO_RAW, .access = PL0_RW,
- .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
-};
-
-static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* Cache invalidate/clean to Point of Coherency or Persistence... */
- switch (arm_current_el(env)) {
- case 0:
- /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
- if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
- return CP_ACCESS_TRAP;
- }
- /* fall through */
- case 1:
- /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
- if (arm_hcr_el2_eff(env) & HCR_TPCP) {
- return CP_ACCESS_TRAP_EL2;
- }
- break;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
-{
- /* Cache invalidate/clean to Point of Unification... */
- switch (arm_current_el(env)) {
- case 0:
- /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
- if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
- return CP_ACCESS_TRAP;
- }
- /* fall through */
- case 1:
- /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
- if (arm_hcr_el2_eff(env) & hcrflags) {
- return CP_ACCESS_TRAP_EL2;
- }
- break;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
-}
-
-static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
-}
-
-/*
- * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
- * Page D4-1736 (DDI0487A.b)
- */
-
-static int vae1_tlbmask(CPUARMState *env)
-{
- uint64_t hcr = arm_hcr_el2_eff(env);
- uint16_t mask;
-
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- mask = ARMMMUIdxBit_E20_2 |
- ARMMMUIdxBit_E20_2_PAN |
- ARMMMUIdxBit_E20_0;
- } else {
- mask = ARMMMUIdxBit_E10_1 |
- ARMMMUIdxBit_E10_1_PAN |
- ARMMMUIdxBit_E10_0;
- }
- return mask;
-}
-
-/* Return 56 if TBI is enabled, 64 otherwise. */
-static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
- uint64_t addr)
-{
- uint64_t tcr = regime_tcr(env, mmu_idx);
- int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
- int select = extract64(addr, 55, 1);
-
- return (tbi >> select) & 1 ? 56 : 64;
-}
-
-static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
-{
- uint64_t hcr = arm_hcr_el2_eff(env);
- ARMMMUIdx mmu_idx;
-
- /* Only the regime of the mmu_idx below is significant. */
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- mmu_idx = ARMMMUIdx_E20_0;
- } else {
- mmu_idx = ARMMMUIdx_E10_0;
- }
-
- return tlbbits_for_regime(env, mmu_idx, addr);
-}
-
-static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = vae1_tlbmask(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
-}
-
-static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = vae1_tlbmask(env);
-
- if (tlb_force_broadcast(env)) {
- tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
- } else {
- tlb_flush_by_mmuidx(cs, mask);
- }
-}
-
-static int e2_tlbmask(CPUARMState *env)
-{
- return (ARMMMUIdxBit_E20_0 |
- ARMMMUIdxBit_E20_2 |
- ARMMMUIdxBit_E20_2_PAN |
- ARMMMUIdxBit_E2);
-}
-
-static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = alle1_tlbmask(env);
-
- tlb_flush_by_mmuidx(cs, mask);
-}
-
-static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = e2_tlbmask(env);
-
- tlb_flush_by_mmuidx(cs, mask);
-}
-
-static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- CPUState *cs = CPU(cpu);
-
- tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
-}
-
-static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = alle1_tlbmask(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
-}
-
-static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = e2_tlbmask(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
-}
-
-static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
-
- tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
-}
-
-static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA, EL2
- * Currently handles both VAE2 and VALE2, since we don't support
- * flush-last-level-only.
- */
- CPUState *cs = env_cpu(env);
- int mask = e2_tlbmask(env);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
-
- tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
-}
-
-static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA, EL3
- * Currently handles both VAE3 and VALE3, since we don't support
- * flush-last-level-only.
- */
- ARMCPU *cpu = env_archcpu(env);
- CPUState *cs = CPU(cpu);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
-
- tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
-}
-
-static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = vae1_tlbmask(env);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
- int bits = vae1_tlbbits(env, pageaddr);
-
- tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
-}
-
-static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA, EL1&0 (AArch64 version).
- * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
- * since we don't support flush-for-specific-ASID-only or
- * flush-last-level-only.
- */
- CPUState *cs = env_cpu(env);
- int mask = vae1_tlbmask(env);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
- int bits = vae1_tlbbits(env, pageaddr);
-
- if (tlb_force_broadcast(env)) {
- tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
- } else {
- tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
- }
-}
-
-static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
- int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
-
- tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
- ARMMMUIdxBit_E2, bits);
-}
-
-static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
- int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
-
- tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
- ARMMMUIdxBit_E3, bits);
-}
-
-static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
-{
- /*
- * The MSB of value is the NS field, which only applies if SEL2
- * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
- */
- return (value >= 0
- && cpu_isar_feature(aa64_sel2, env_archcpu(env))
- && arm_is_secure_below_el3(env)
- ? ARMMMUIdxBit_Stage2_S
- : ARMMMUIdxBit_Stage2);
-}
-
-static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = ipas2e1_tlbmask(env, value);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
-
- if (tlb_force_broadcast(env)) {
- tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
- } else {
- tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
- }
-}
-
-static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPUState *cs = env_cpu(env);
- int mask = ipas2e1_tlbmask(env, value);
- uint64_t pageaddr = sextract64(value << 12, 0, 56);
-
- tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
-}
-
-#ifdef TARGET_AARCH64
-typedef struct {
- uint64_t base;
- uint64_t length;
-} TLBIRange;
-
-static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
-{
- /*
- * Note that the TLBI range TG field encoding differs from both
- * TG0 and TG1 encodings.
- */
- switch (tg) {
- case 1:
- return Gran4K;
- case 2:
- return Gran16K;
- case 3:
- return Gran64K;
- default:
- return GranInvalid;
- }
-}
-
-static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
- uint64_t value)
-{
- unsigned int page_size_granule, page_shift, num, scale, exponent;
- /* Extract one bit to represent the va selector in use. */
- uint64_t select = sextract64(value, 36, 1);
- ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
- TLBIRange ret = { };
- ARMGranuleSize gran;
-
- page_size_granule = extract64(value, 46, 2);
- gran = tlbi_range_tg_to_gran_size(page_size_granule);
-
- /* The granule encoded in value must match the granule in use. */
- if (gran != param.gran) {
- qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
- page_size_granule);
- return ret;
- }
-
- page_shift = arm_granule_bits(gran);
- num = extract64(value, 39, 5);
- scale = extract64(value, 44, 2);
- exponent = (5 * scale) + 1;
-
- ret.length = (num + 1) << (exponent + page_shift);
-
- if (param.select) {
- ret.base = sextract64(value, 0, 37);
- } else {
- ret.base = extract64(value, 0, 37);
- }
- if (param.ds) {
- /*
- * With DS=1, BaseADDR is always shifted 16 so that it is able
- * to address all 52 va bits. The input address is perforce
- * aligned on a 64k boundary regardless of translation granule.
- */
- page_shift = 16;
- }
- ret.base <<= page_shift;
-
- return ret;
-}
-
-static void do_rvae_write(CPUARMState *env, uint64_t value,
- int idxmap, bool synced)
-{
- ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
- TLBIRange range;
- int bits;
-
- range = tlbi_aa64_get_range(env, one_idx, value);
- bits = tlbbits_for_regime(env, one_idx, range.base);
-
- if (synced) {
- tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
- range.base,
- range.length,
- idxmap,
- bits);
- } else {
- tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
- range.length, idxmap, bits);
- }
-}
-
-static void tlbi_aa64_rvae1_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, EL1&0.
- * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
- * since we don't support flush-for-specific-ASID-only or
- * flush-last-level-only.
- */
-
- do_rvae_write(env, value, vae1_tlbmask(env),
- tlb_force_broadcast(env));
-}
-
-static void tlbi_aa64_rvae1is_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, Inner/Outer Shareable EL1&0.
- * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
- * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
- * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
- * shareable specific flushes.
- */
-
- do_rvae_write(env, value, vae1_tlbmask(env), true);
-}
-
-static int vae2_tlbmask(CPUARMState *env)
-{
- return ARMMMUIdxBit_E2;
-}
-
-static void tlbi_aa64_rvae2_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, EL2.
- * Currently handles all of RVAE2 and RVALE2,
- * since we don't support flush-for-specific-ASID-only or
- * flush-last-level-only.
- */
-
- do_rvae_write(env, value, vae2_tlbmask(env),
- tlb_force_broadcast(env));
-
-
-}
-
-static void tlbi_aa64_rvae2is_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, Inner/Outer Shareable, EL2.
- * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
- * since we don't support flush-for-specific-ASID-only,
- * flush-last-level-only or inner/outer shareable specific flushes.
- */
-
- do_rvae_write(env, value, vae2_tlbmask(env), true);
-
-}
-
-static void tlbi_aa64_rvae3_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, EL3.
- * Currently handles all of RVAE3 and RVALE3,
- * since we don't support flush-for-specific-ASID-only or
- * flush-last-level-only.
- */
-
- do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
-}
-
-static void tlbi_aa64_rvae3is_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Invalidate by VA range, EL3, Inner/Outer Shareable.
- * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
- * since we don't support flush-for-specific-ASID-only,
- * flush-last-level-only or inner/outer specific flushes.
- */
-
- do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
-}
-
-static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
- tlb_force_broadcast(env));
-}
-
-static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
- const ARMCPRegInfo *ri,
- uint64_t value)
-{
- do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
-}
-#endif
-
-static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int cur_el = arm_current_el(env);
-
- if (cur_el < 2) {
- uint64_t hcr = arm_hcr_el2_eff(env);
-
- if (cur_el == 0) {
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
- return CP_ACCESS_TRAP_EL2;
- }
- } else {
- if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
- return CP_ACCESS_TRAP;
- }
- if (hcr & HCR_TDZ) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- } else if (hcr & HCR_TDZ) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- return CP_ACCESS_OK;
-}
-
-static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
- int dzp_bit = 1 << 4;
-
- /* DZP indicates whether DC ZVA access is allowed */
- if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
- dzp_bit = 0;
- }
- return cpu->dcz_blocksize | dzp_bit;
-}
-
-static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (!(env->pstate & PSTATE_SP)) {
- /*
- * Access to SP_EL0 is undefined if it's being used as
- * the stack pointer.
- */
- return CP_ACCESS_TRAP_UNCATEGORIZED;
- }
- return CP_ACCESS_OK;
-}
-
-static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_SP;
-}
-
-static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
-{
- update_spsel(env, val);
-}
-
-static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
- /* M bit is RAZ/WI for PMSA with no MPU implemented */
- value &= ~SCTLR_M;
- }
-
- /* ??? Lots of these bits are not implemented. */
-
- if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
- if (ri->opc1 == 6) { /* SCTLR_EL3 */
- value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
- } else {
- value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
- SCTLR_ATA0 | SCTLR_ATA);
- }
- }
-
- if (raw_read(env, ri) == value) {
- /*
- * Skip the TLB flush if nothing actually changed; Linux likes
- * to do a lot of pointless SCTLR writes.
- */
- return;
- }
-
- raw_write(env, ri, value);
-
- /* This may enable/disable the MMU, so do a TLB flush. */
- tlb_flush(CPU(cpu));
-
- if (ri->type & ARM_CP_SUPPRESS_TB_END) {
- /*
- * Normally we would always end the TB on an SCTLR write; see the
- * comment in ARMCPRegInfo sctlr initialization below for why Xscale
- * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
- * of hflags from the translator, so do it here.
- */
- arm_rebuild_hflags(env);
- }
-}
-
-static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Some MDCR_EL3 bits affect whether PMU counters are running:
- * if we are trying to change any of those then we must
- * bracket this update with PMU start/finish calls.
- */
- bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
-
- if (pmu_op) {
- pmu_op_start(env);
- }
- env->cp15.mdcr_el3 = value;
- if (pmu_op) {
- pmu_op_finish(env);
- }
-}
-
-static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
- mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
-}
-
-static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * Some MDCR_EL2 bits affect whether PMU counters are running:
- * if we are trying to change any of those then we must
- * bracket this update with PMU start/finish calls.
- */
- bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
-
- if (pmu_op) {
- pmu_op_start(env);
- }
- env->cp15.mdcr_el2 = value;
- if (pmu_op) {
- pmu_op_finish(env);
- }
-}
-
-static const ARMCPRegInfo v8_cp_reginfo[] = {
- /*
- * Minimal set of EL0-visible registers. This will need to be expanded
- * significantly for system emulation of AArch64 CPUs.
- */
- { .name = "NZCV", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
- .access = PL0_RW, .type = ARM_CP_NZCV },
- { .name = "DAIF", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
- .type = ARM_CP_NO_RAW,
- .access = PL0_RW, .accessfn = aa64_daif_access,
- .fieldoffset = offsetof(CPUARMState, daif),
- .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
- { .name = "FPCR", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
- .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
- .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
- { .name = "FPSR", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
- .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
- .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
- { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
- .access = PL0_R, .type = ARM_CP_NO_RAW,
- .readfn = aa64_dczid_read },
- { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_DC_ZVA,
-#ifndef CONFIG_USER_ONLY
- /* Avoid overhead of an access check that always passes in user-mode */
- .accessfn = aa64_zva_access,
-#endif
- },
- { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
- .access = PL1_R, .type = ARM_CP_CURRENTEL },
- /* Cache ops: all NOPs since we don't emulate caches */
- { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NOP,
- .accessfn = access_ticab },
- { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NOP,
- .accessfn = access_tocu },
- { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NOP,
- .accessfn = access_tocu },
- { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
- .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
- .type = ARM_CP_NOP },
- { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
- .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
- { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NOP,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
- .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
- { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NOP,
- .accessfn = access_tocu },
- { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NOP,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
- .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
- /* TLBI operations */
- { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1is_write },
- { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1is_write },
- { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1_write },
- { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1_write },
- { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1_write },
- { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1_write },
- { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1_write },
- { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1_write },
- { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ipas2e1is_write },
- { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ipas2e1is_write },
- { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1is_write },
- { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1is_write },
- { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ipas2e1_write },
- { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ipas2e1_write },
- { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1_write },
- { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1is_write },
-#ifndef CONFIG_USER_ONLY
- /* 64 bit address translation operations */
- { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
- { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
- .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
- .access = PL1_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
- .writefn = par_write },
-#endif
- /* TLB invalidate last level of translation table walk */
- { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbimva_is_write },
- { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
- .writefn = tlbimvaa_is_write },
- { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimva_write },
- { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
- .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
- .writefn = tlbimvaa_write },
- { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbimva_hyp_write },
- { .name = "TLBIMVALHIS",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbimva_hyp_is_write },
- { .name = "TLBIIPAS2",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiipas2_hyp_write },
- { .name = "TLBIIPAS2IS",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiipas2is_hyp_write },
- { .name = "TLBIIPAS2L",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiipas2_hyp_write },
- { .name = "TLBIIPAS2LIS",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiipas2is_hyp_write },
- /* 32 bit cache operations */
- { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
- { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
- .type = ARM_CP_NOP, .access = PL1_W },
- { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
- { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
- { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
- .type = ARM_CP_NOP, .access = PL1_W },
- { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
- .type = ARM_CP_NOP, .access = PL1_W },
- { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
- { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
- { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
- { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
- { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- /* MMU Domain access control / MPU write buffer control */
- { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
- .writefn = dacr_write, .raw_writefn = raw_write,
- .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
- offsetoflow32(CPUARMState, cp15.dacr_ns) } },
- { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
- { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
- .access = PL1_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
- /*
- * We rely on the access checks not allowing the guest to write to the
- * state field when SPSel indicates that it's being used as the stack
- * pointer.
- */
- { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
- .access = PL1_RW, .accessfn = sp_el0_access,
- .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
- { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
- .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
- .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
- { .name = "SPSel", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
- .type = ARM_CP_NO_RAW,
- .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
- { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
- .access = PL2_RW,
- .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
- .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
- { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
- .writefn = dacr_write, .raw_writefn = raw_write,
- .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
- { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
- .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
- .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
- { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
- { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
- { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
- { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
- { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
- .resetvalue = 0,
- .access = PL3_RW,
- .writefn = mdcr_el3_write,
- .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
- { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
- .writefn = sdcr_write,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
-};
-
-static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
-{
- ARMCPU *cpu = env_archcpu(env);
-
- if (arm_feature(env, ARM_FEATURE_V8)) {
- valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
- } else {
- valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
- }
-
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- valid_mask &= ~HCR_HCD;
- } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
- /*
- * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
- * However, if we're using the SMC PSCI conduit then QEMU is
- * effectively acting like EL3 firmware and so the guest at
- * EL2 should retain the ability to prevent EL1 from being
- * able to make SMC calls into the ersatz firmware, so in
- * that case HCR.TSC should be read/write.
- */
- valid_mask &= ~HCR_TSC;
- }
-
- if (arm_feature(env, ARM_FEATURE_AARCH64)) {
- if (cpu_isar_feature(aa64_vh, cpu)) {
- valid_mask |= HCR_E2H;
- }
- if (cpu_isar_feature(aa64_ras, cpu)) {
- valid_mask |= HCR_TERR | HCR_TEA;
- }
- if (cpu_isar_feature(aa64_lor, cpu)) {
- valid_mask |= HCR_TLOR;
- }
- if (cpu_isar_feature(aa64_pauth, cpu)) {
- valid_mask |= HCR_API | HCR_APK;
- }
- if (cpu_isar_feature(aa64_mte, cpu)) {
- valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
- }
- if (cpu_isar_feature(aa64_scxtnum, cpu)) {
- valid_mask |= HCR_ENSCXT;
- }
- if (cpu_isar_feature(aa64_fwb, cpu)) {
- valid_mask |= HCR_FWB;
- }
- }
-
- if (cpu_isar_feature(any_evt, cpu)) {
- valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
- } else if (cpu_isar_feature(any_half_evt, cpu)) {
- valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
- }
-
- /* Clear RES0 bits. */
- value &= valid_mask;
-
- /*
- * These bits change the MMU setup:
- * HCR_VM enables stage 2 translation
- * HCR_PTW forbids certain page-table setups
- * HCR_DC disables stage1 and enables stage2 translation
- * HCR_DCT enables tagging on (disabled) stage1 translation
- * HCR_FWB changes the interpretation of stage2 descriptor bits
- */
- if ((env->cp15.hcr_el2 ^ value) &
- (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
- tlb_flush(CPU(cpu));
- }
- env->cp15.hcr_el2 = value;
-
- /*
- * Updates to VI and VF require us to update the status of
- * virtual interrupts, which are the logical OR of these bits
- * and the state of the input lines from the GIC. (This requires
- * that we have the iothread lock, which is done by marking the
- * reginfo structs as ARM_CP_IO.)
- * Note that if a write to HCR pends a VIRQ or VFIQ it is never
- * possible for it to be taken immediately, because VIRQ and
- * VFIQ are masked unless running at EL0 or EL1, and HCR
- * can only be written at EL2.
- */
- g_assert(qemu_mutex_iothread_locked());
- arm_cpu_update_virq(cpu);
- arm_cpu_update_vfiq(cpu);
- arm_cpu_update_vserr(cpu);
-}
-
-static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
-{
- do_hcr_write(env, value, 0);
-}
-
-static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
- value = deposit64(env->cp15.hcr_el2, 32, 32, value);
- do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
-}
-
-static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Handle HCR write, i.e. write to low half of HCR_EL2 */
- value = deposit64(env->cp15.hcr_el2, 0, 32, value);
- do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
-}
-
/*
* Return the effective value of HCR_EL2, at the given security state.
* Bits that are not included here:
@@ -5743,747 +134,6 @@ bool el_is_in_host(CPUARMState *env, int el)
return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
}
-static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint64_t valid_mask = 0;
-
- /* No features adding bits to HCRX are implemented. */
-
- /* Clear RES0 bits. */
- env->cp15.hcrx_el2 = value & valid_mask;
-}
-
-static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) < 3
- && arm_feature(env, ARM_FEATURE_EL3)
- && !(env->cp15.scr_el3 & SCR_HXEN)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo hcrx_el2_reginfo = {
- .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
- .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
- .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
-};
-
-/* Return the effective value of HCRX_EL2. */
-uint64_t arm_hcrx_el2_eff(CPUARMState *env)
-{
- /*
- * The bits in this register behave as 0 for all purposes other than
- * direct reads of the register if:
- * - EL2 is not enabled in the current security state,
- * - SCR_EL3.HXEn is 0.
- */
- if (!arm_is_el2_enabled(env)
- || (arm_feature(env, ARM_FEATURE_EL3)
- && !(env->cp15.scr_el3 & SCR_HXEN))) {
- return 0;
- }
- return env->cp15.hcrx_el2;
-}
-
-static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * For A-profile AArch32 EL3, if NSACR.CP10
- * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
- */
- if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
- !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
- uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
- value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
- }
- env->cp15.cptr_el[2] = value;
-}
-
-static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /*
- * For A-profile AArch32 EL3, if NSACR.CP10
- * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
- */
- uint64_t value = env->cp15.cptr_el[2];
-
- if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
- !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
- value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
- }
- return value;
-}
-
-static const ARMCPRegInfo el2_cp_reginfo[] = {
- { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
- .writefn = hcr_write },
- { .name = "HCR", .state = ARM_CP_STATE_AA32,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
- .writefn = hcr_writelow },
- { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
- .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
- { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
- { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
- { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
- .type = ARM_CP_ALIAS,
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
- .access = PL2_RW,
- .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
- { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
- { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .writefn = vbar_write,
- .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
- .resetvalue = 0 },
- { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
- .access = PL3_RW, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
- { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
- .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
- .readfn = cptr_el2_read, .writefn = cptr_el2_write },
- { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
- .resetvalue = 0 },
- { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
- { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
- { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
- .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
- .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
- { .name = "VTCR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
- .type = ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = access_el3_aa32ns,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
- { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
- .access = PL2_RW,
- /* no .writefn needed as this can't cause an ASID change */
- .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
- { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 6, .crm = 2,
- .type = ARM_CP_64BIT | ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = access_el3_aa32ns,
- .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
- .writefn = vttbr_write },
- { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
- .access = PL2_RW, .writefn = vttbr_write,
- .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
- { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
- .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
- { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
- .access = PL2_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
- { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
- .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
- { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
- .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
- { .name = "TLBIALLNSNH",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiall_nsnh_write },
- { .name = "TLBIALLNSNHIS",
- .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiall_nsnh_is_write },
- { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiall_hyp_write },
- { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbiall_hyp_is_write },
- { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbimva_hyp_write },
- { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
- .type = ARM_CP_NO_RAW, .access = PL2_W,
- .writefn = tlbimva_hyp_is_write },
- { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_alle2_write },
- { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2_write },
- { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2_write },
- { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_alle2is_write },
- { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2is_write },
- { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2is_write },
-#ifndef CONFIG_USER_ONLY
- /*
- * Unlike the other EL2-related AT operations, these must
- * UNDEF from EL3 if EL2 is not implemented, which is why we
- * define them here rather than with the rest of the AT ops.
- */
- { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
- .access = PL2_W, .accessfn = at_s1e2_access,
- .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = ats_write64 },
- { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
- .access = PL2_W, .accessfn = at_s1e2_access,
- .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = ats_write64 },
- /*
- * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
- * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
- * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
- * to behave as if SCR.NS was 1.
- */
- { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
- .access = PL2_W,
- .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
- { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
- .access = PL2_W,
- .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
- { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
- /*
- * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
- * reset values as IMPDEF. We choose to reset to 3 to comply with
- * both ARMv7 and ARMv8.
- */
- .access = PL2_RW, .resetvalue = 3,
- .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
- { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
- .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
- .writefn = gt_cntvoff_write,
- .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
- { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
- .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
- .writefn = gt_cntvoff_write,
- .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
- { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
- .type = ARM_CP_IO, .access = PL2_RW,
- .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
- { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
- .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
- .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
- { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
- .resetfn = gt_hyp_timer_reset,
- .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
- { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
- .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
- .resetvalue = 0,
- .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
-#endif
- { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
- .access = PL2_RW, .accessfn = access_el3_aa32ns,
- .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
- { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
- { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
- .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
-};
-
-static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
- { .name = "HCR2", .state = ARM_CP_STATE_AA32,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
- .access = PL2_RW,
- .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
- .writefn = hcr_writehigh },
-};
-
-static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
- return CP_ACCESS_OK;
- }
- return CP_ACCESS_TRAP_UNCATEGORIZED;
-}
-
-static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
- { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
- .access = PL2_RW, .accessfn = sel2_access,
- .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
- { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
- .access = PL2_RW, .accessfn = sel2_access,
- .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
-};
-
-static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
- * At Secure EL1 it traps to EL3 or EL2.
- */
- if (arm_current_el(env) == 3) {
- return CP_ACCESS_OK;
- }
- if (arm_is_secure_below_el3(env)) {
- if (env->cp15.scr_el3 & SCR_EEL2) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_TRAP_EL3;
- }
- /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
- if (isread) {
- return CP_ACCESS_OK;
- }
- return CP_ACCESS_TRAP_UNCATEGORIZED;
-}
-
-static const ARMCPRegInfo el3_cp_reginfo[] = {
- { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
- .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
- .resetfn = scr_reset, .writefn = scr_write },
- { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
- .writefn = scr_write },
- { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
- .access = PL3_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.sder) },
- { .name = "SDER",
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
- .access = PL3_RW, .resetvalue = 0,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
- { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
- .writefn = vbar_write, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
- { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
- .access = PL3_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
- { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
- .access = PL3_RW,
- /* no .writefn needed as this can't cause an ASID change */
- .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
- { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
- .access = PL3_RW,
- .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
- { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
- .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
- { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
- .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
- { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_ALIAS,
- .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
- .access = PL3_RW,
- .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
- { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
- .access = PL3_RW, .writefn = vbar_write,
- .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
- .resetvalue = 0 },
- { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
- .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
- { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
- .access = PL3_RW, .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
- { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
- .access = PL3_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
- .access = PL3_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
- .access = PL3_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle3is_write },
- { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3is_write },
- { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3is_write },
- { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle3_write },
- { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3_write },
- { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3_write },
-};
-
-#ifndef CONFIG_USER_ONLY
-/* Test if system register redirection is to occur in the current state. */
-static bool redirect_for_e2h(CPUARMState *env)
-{
- return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
-}
-
-static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- CPReadFn *readfn;
-
- if (redirect_for_e2h(env)) {
- /* Switch to the saved EL2 version of the register. */
- ri = ri->opaque;
- readfn = ri->readfn;
- } else {
- readfn = ri->orig_readfn;
- }
- if (readfn == NULL) {
- readfn = raw_read;
- }
- return readfn(env, ri);
-}
-
-static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- CPWriteFn *writefn;
-
- if (redirect_for_e2h(env)) {
- /* Switch to the saved EL2 version of the register. */
- ri = ri->opaque;
- writefn = ri->writefn;
- } else {
- writefn = ri->orig_writefn;
- }
- if (writefn == NULL) {
- writefn = raw_write;
- }
- writefn(env, ri, value);
-}
-
-static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
-{
- struct E2HAlias {
- uint32_t src_key, dst_key, new_key;
- const char *src_name, *dst_name, *new_name;
- bool (*feature)(const ARMISARegisters *id);
- };
-
-#define K(op0, op1, crn, crm, op2) \
- ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
-
- static const struct E2HAlias aliases[] = {
- { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
- "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
- { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
- "CPACR", "CPTR_EL2", "CPACR_EL12" },
- { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
- "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
- { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
- "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
- { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
- "TCR_EL1", "TCR_EL2", "TCR_EL12" },
- { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
- "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
- { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
- "ELR_EL1", "ELR_EL2", "ELR_EL12" },
- { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
- "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
- { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
- "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
- { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
- "ESR_EL1", "ESR_EL2", "ESR_EL12" },
- { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
- "FAR_EL1", "FAR_EL2", "FAR_EL12" },
- { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
- "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
- { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
- "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
- { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
- "VBAR", "VBAR_EL2", "VBAR_EL12" },
- { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
- "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
- { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
- "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
-
- /*
- * Note that redirection of ZCR is mentioned in the description
- * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
- * not in the summary table.
- */
- { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
- "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
- { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
- "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
-
- { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
- "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
-
- { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
- "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
- isar_feature_aa64_scxtnum },
-
- /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
- /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
- };
-#undef K
-
- size_t i;
-
- for (i = 0; i < ARRAY_SIZE(aliases); i++) {
- const struct E2HAlias *a = &aliases[i];
- ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
- bool ok;
-
- if (a->feature && !a->feature(&cpu->isar)) {
- continue;
- }
-
- src_reg = g_hash_table_lookup(cpu->cp_regs,
- (gpointer)(uintptr_t)a->src_key);
- dst_reg = g_hash_table_lookup(cpu->cp_regs,
- (gpointer)(uintptr_t)a->dst_key);
- g_assert(src_reg != NULL);
- g_assert(dst_reg != NULL);
-
- /* Cross-compare names to detect typos in the keys. */
- g_assert(strcmp(src_reg->name, a->src_name) == 0);
- g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
-
- /* None of the core system registers use opaque; we will. */
- g_assert(src_reg->opaque == NULL);
-
- /* Create alias before redirection so we dup the right data. */
- new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
-
- new_reg->name = a->new_name;
- new_reg->type |= ARM_CP_ALIAS;
- /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
- new_reg->access &= PL2_RW | PL3_RW;
-
- ok = g_hash_table_insert(cpu->cp_regs,
- (gpointer)(uintptr_t)a->new_key, new_reg);
- g_assert(ok);
-
- src_reg->opaque = dst_reg;
- src_reg->orig_readfn = src_reg->readfn ?: raw_read;
- src_reg->orig_writefn = src_reg->writefn ?: raw_write;
- if (!src_reg->raw_readfn) {
- src_reg->raw_readfn = raw_read;
- }
- if (!src_reg->raw_writefn) {
- src_reg->raw_writefn = raw_write;
- }
- src_reg->readfn = el2_e2h_read;
- src_reg->writefn = el2_e2h_write;
- }
-}
-#endif
-
-static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int cur_el = arm_current_el(env);
-
- if (cur_el < 2) {
- uint64_t hcr = arm_hcr_el2_eff(env);
-
- if (cur_el == 0) {
- if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
- if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
- return CP_ACCESS_TRAP_EL2;
- }
- } else {
- if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
- return CP_ACCESS_TRAP;
- }
- if (hcr & HCR_TID2) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- } else if (hcr & HCR_TID2) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
-
- if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-/*
- * Check for traps to RAS registers, which are controlled
- * by HCR_EL2.TERR and SCR_EL3.TERR.
- */
-static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
- return env->cp15.vdisr_el2;
- }
- if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
- return 0; /* RAZ/WI */
- }
- return env->cp15.disr_el1;
-}
-
-static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
- env->cp15.vdisr_el2 = val;
- return;
- }
- if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
- return; /* RAZ/WI */
- }
- env->cp15.disr_el1 = val;
-}
-
-/*
- * Minimal RAS implementation with no Error Records.
- * Which means that all of the Error Record registers:
- * ERXADDR_EL1
- * ERXCTLR_EL1
- * ERXFR_EL1
- * ERXMISC0_EL1
- * ERXMISC1_EL1
- * ERXMISC2_EL1
- * ERXMISC3_EL1
- * ERXPFGCDN_EL1 (RASv1p1)
- * ERXPFGCTL_EL1 (RASv1p1)
- * ERXPFGF_EL1 (RASv1p1)
- * ERXSTATUS_EL1
- * and
- * ERRSELR_EL1
- * may generate UNDEFINED, which is the effect we get by not
- * listing them at all.
- */
-static const ARMCPRegInfo minimal_ras_reginfo[] = {
- { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
- .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
- .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
- { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
- .access = PL1_R, .accessfn = access_terr,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
- { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
- .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
-};
-
/*
* Return the exception level to which exceptions should be taken
* via SVEAccessTrap. This excludes the check for whether the exception
@@ -6654,78 +304,7 @@ uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
}
-static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int cur_el = arm_current_el(env);
- int old_len = sve_vqm1_for_el(env, cur_el);
- int new_len;
-
- /* Bits other than [3:0] are RAZ/WI. */
- QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
- raw_write(env, ri, value & 0xf);
-
- /*
- * Because we arrived here, we know both FP and SVE are enabled;
- * otherwise we would have trapped access to the ZCR_ELn register.
- */
- new_len = sve_vqm1_for_el(env, cur_el);
- if (new_len < old_len) {
- aarch64_sve_narrow_vq(env, new_len + 1);
- }
-}
-
-static const ARMCPRegInfo zcr_reginfo[] = {
- { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
- .access = PL1_RW, .type = ARM_CP_SVE,
- .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
- .writefn = zcr_write, .raw_writefn = raw_write },
- { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
- .access = PL2_RW, .type = ARM_CP_SVE,
- .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
- .writefn = zcr_write, .raw_writefn = raw_write },
- { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
- .access = PL3_RW, .type = ARM_CP_SVE,
- .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
- .writefn = zcr_write, .raw_writefn = raw_write },
-};
-
#ifdef TARGET_AARCH64
-static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
-
- if (el == 0) {
- uint64_t sctlr = arm_sctlr(env, el);
- if (!(sctlr & SCTLR_EnTP2)) {
- return CP_ACCESS_TRAP;
- }
- }
- /* TODO: FEAT_FGT */
- if (el < 3
- && arm_feature(env, ARM_FEATURE_EL3)
- && !(env->cp15.scr_el3 & SCR_ENTP2)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
- if (arm_current_el(env) < 3
- && arm_feature(env, ARM_FEATURE_EL3)
- && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
/* ResetSVEState */
static void arm_reset_sve_state(CPUARMState *env)
{
@@ -6762,2199 +341,8 @@ void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
arm_rebuild_hflags(env);
}
-
-static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- aarch64_set_svcr(env, value, -1);
-}
-
-static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- int cur_el = arm_current_el(env);
- int old_len = sve_vqm1_for_el(env, cur_el);
- int new_len;
-
- QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
- value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
- raw_write(env, ri, value);
-
- /*
- * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
- * when SVL is widened (old values kept, or zeros). Choose to keep the
- * current values for simplicity. But for QEMU internals, we must still
- * apply the narrower SVL to the Zregs and Pregs -- see the comment
- * above aarch64_sve_narrow_vq.
- */
- new_len = sve_vqm1_for_el(env, cur_el);
- if (new_len < old_len) {
- aarch64_sve_narrow_vq(env, new_len + 1);
- }
-}
-
-static const ARMCPRegInfo sme_reginfo[] = {
- { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
- .access = PL0_RW, .accessfn = access_tpidr2,
- .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
- { .name = "SVCR", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
- .access = PL0_RW, .type = ARM_CP_SME,
- .fieldoffset = offsetof(CPUARMState, svcr),
- .writefn = svcr_write, .raw_writefn = raw_write },
- { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
- .access = PL1_RW, .type = ARM_CP_SME,
- .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
- .writefn = smcr_write, .raw_writefn = raw_write },
- { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
- .access = PL2_RW, .type = ARM_CP_SME,
- .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
- .writefn = smcr_write, .raw_writefn = raw_write },
- { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
- .access = PL3_RW, .type = ARM_CP_SME,
- .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
- .writefn = smcr_write, .raw_writefn = raw_write },
- { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
- .access = PL1_R, .accessfn = access_aa64_tid1,
- /*
- * IMPLEMENTOR = 0 (software)
- * REVISION = 0 (implementation defined)
- * SMPS = 0 (no streaming execution priority in QEMU)
- * AFFINITY = 0 (streaming sve mode not shared with other PEs)
- */
- .type = ARM_CP_CONST, .resetvalue = 0, },
- /*
- * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
- */
- { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
- .access = PL1_RW, .accessfn = access_esm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
- .access = PL2_RW, .accessfn = access_esm,
- .type = ARM_CP_CONST, .resetvalue = 0 },
-};
#endif /* TARGET_AARCH64 */
-static void define_pmu_regs(ARMCPU *cpu)
-{
- /*
- * v7 performance monitor control register: same implementor
- * field as main ID register, and we implement four counters in
- * addition to the cycle count register.
- */
- unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
- ARMCPRegInfo pmcr = {
- .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
- .access = PL0_RW,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
- .accessfn = pmreg_access, .writefn = pmcr_write,
- .raw_writefn = raw_write,
- };
- ARMCPRegInfo pmcr64 = {
- .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
- .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
- .resetvalue = cpu->isar.reset_pmcr_el0,
- .writefn = pmcr_write, .raw_writefn = raw_write,
- };
-
- define_one_arm_cp_reg(cpu, &pmcr);
- define_one_arm_cp_reg(cpu, &pmcr64);
- for (i = 0; i < pmcrn; i++) {
- char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
- char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
- char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
- char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
- ARMCPRegInfo pmev_regs[] = {
- { .name = pmevcntr_name, .cp = 15, .crn = 14,
- .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
- .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
- .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
- .accessfn = pmreg_access_xevcntr },
- { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
- .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
- .type = ARM_CP_IO,
- .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
- .raw_readfn = pmevcntr_rawread,
- .raw_writefn = pmevcntr_rawwrite },
- { .name = pmevtyper_name, .cp = 15, .crn = 14,
- .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
- .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
- .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
- .accessfn = pmreg_access },
- { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
- .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_IO,
- .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
- .raw_writefn = pmevtyper_rawwrite },
- };
- define_arm_cp_regs(cpu, pmev_regs);
- g_free(pmevcntr_name);
- g_free(pmevcntr_el0_name);
- g_free(pmevtyper_name);
- g_free(pmevtyper_el0_name);
- }
- if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
- ARMCPRegInfo v81_pmu_regs[] = {
- { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = extract64(cpu->pmceid0, 32, 32) },
- { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = extract64(cpu->pmceid1, 32, 32) },
- };
- define_arm_cp_regs(cpu, v81_pmu_regs);
- }
- if (cpu_isar_feature(any_pmuv3p4, cpu)) {
- static const ARMCPRegInfo v84_pmmir = {
- .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
- .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = 0
- };
- define_one_arm_cp_reg(cpu, &v84_pmmir);
- }
-}
-
-/*
- * We don't know until after realize whether there's a GICv3
- * attached, and that is what registers the gicv3 sysregs.
- * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
- * at runtime.
- */
-static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint64_t pfr1 = cpu->isar.id_pfr1;
-
- if (env->gicv3state) {
- pfr1 |= 1 << 28;
- }
- return pfr1;
-}
-
-#ifndef CONFIG_USER_ONLY
-static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- ARMCPU *cpu = env_archcpu(env);
- uint64_t pfr0 = cpu->isar.id_aa64pfr0;
-
- if (env->gicv3state) {
- pfr0 |= 1 << 24;
- }
- return pfr0;
-}
-#endif
-
-/*
- * Shared logic between LORID and the rest of the LOR* registers.
- * Secure state exclusion has already been dealt with.
- */
-static CPAccessResult access_lor_ns(CPUARMState *env,
- const ARMCPRegInfo *ri, bool isread)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_lor_other(CPUARMState *env,
- const ARMCPRegInfo *ri, bool isread)
-{
- if (arm_is_secure_below_el3(env)) {
- /* Access denied in secure mode. */
- return CP_ACCESS_TRAP;
- }
- return access_lor_ns(env, ri, isread);
-}
-
-/*
- * A trivial implementation of ARMv8.1-LOR leaves all of these
- * registers fixed at 0, which indicates that there are zero
- * supported Limited Ordering regions.
- */
-static const ARMCPRegInfo lor_reginfo[] = {
- { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_lor_other,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_lor_other,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_lor_other,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
- .access = PL1_RW, .accessfn = access_lor_other,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
- .access = PL1_R, .accessfn = access_lor_ns,
- .type = ARM_CP_CONST, .resetvalue = 0 },
-};
-
-#ifdef TARGET_AARCH64
-static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
-
- if (el < 2 &&
- arm_is_el2_enabled(env) &&
- !(arm_hcr_el2_eff(env) & HCR_APK)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 &&
- arm_feature(env, ARM_FEATURE_EL3) &&
- !(env->cp15.scr_el3 & SCR_APK)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo pauth_reginfo[] = {
- { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
- { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
- { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
- { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
- { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
- { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
- { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
- { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
- { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
- { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
- .access = PL1_RW, .accessfn = access_pauth,
- .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
-};
-
-static const ARMCPRegInfo tlbirange_reginfo[] = {
- { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1is_write },
- { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1_write },
- { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1_write },
- { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1_write },
- { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae1_write },
- { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ripas2e1is_write },
- { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ripas2e1is_write },
- { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2is_write },
- { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2is_write },
- { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ripas2e1_write },
- { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_ripas2e1_write },
- { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2is_write },
- { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2is_write },
- { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2_write },
- { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_rvae2_write },
- { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3is_write },
- { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3is_write },
- { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3is_write },
- { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3is_write },
- { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3_write },
- { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_rvae3_write },
-};
-
-static const ARMCPRegInfo tlbios_reginfo[] = {
- { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1is_write },
- { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vmalle1is_write },
- { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
- .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae1is_write },
- { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_alle2is_write },
- { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2is_write },
- { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1is_write },
- { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
- .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
- .writefn = tlbi_aa64_vae2is_write },
- { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
- .access = PL2_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle1is_write },
- { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
- .access = PL2_W, .type = ARM_CP_NOP },
- { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
- .access = PL2_W, .type = ARM_CP_NOP },
- { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
- .access = PL2_W, .type = ARM_CP_NOP },
- { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
- .access = PL2_W, .type = ARM_CP_NOP },
- { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_alle3is_write },
- { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3is_write },
- { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
- .access = PL3_W, .type = ARM_CP_NO_RAW,
- .writefn = tlbi_aa64_vae3is_write },
-};
-
-static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- Error *err = NULL;
- uint64_t ret;
-
- /* Success sets NZCV = 0000. */
- env->NF = env->CF = env->VF = 0, env->ZF = 1;
-
- if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
- /*
- * ??? Failed, for unknown reasons in the crypto subsystem.
- * The best we can do is log the reason and return the
- * timed-out indication to the guest. There is no reason
- * we know to expect this failure to be transitory, so the
- * guest may well hang retrying the operation.
- */
- qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
- ri->name, error_get_pretty(err));
- error_free(err);
-
- env->ZF = 0; /* NZCF = 0100 */
- return 0;
- }
- return ret;
-}
-
-/* We do not support re-seeding, so the two registers operate the same. */
-static const ARMCPRegInfo rndr_reginfo[] = {
- { .name = "RNDR", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
- .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
- .access = PL0_R, .readfn = rndr_readfn },
- { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
- .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
- .access = PL0_R, .readfn = rndr_readfn },
-};
-
-#ifndef CONFIG_USER_ONLY
-static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
- uint64_t value)
-{
- ARMCPU *cpu = env_archcpu(env);
- /* CTR_EL0 System register -> DminLine, bits [19:16] */
- uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
- uint64_t vaddr_in = (uint64_t) value;
- uint64_t vaddr = vaddr_in & ~(dline_size - 1);
- void *haddr;
- int mem_idx = cpu_mmu_index(env, false);
-
- /* This won't be crossing page boundaries */
- haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
- if (haddr) {
-
- ram_addr_t offset;
- MemoryRegion *mr;
-
- /* RCU lock is already being held */
- mr = memory_region_from_host(haddr, &offset);
-
- if (mr) {
- memory_region_writeback(mr, offset, dline_size);
- }
- }
-}
-
-static const ARMCPRegInfo dcpop_reg[] = {
- { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
- .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
-};
-
-static const ARMCPRegInfo dcpodp_reg[] = {
- { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
- .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
- .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
-};
-#endif /*CONFIG_USER_ONLY*/
-
-static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
-
- if (el < 2 && arm_is_el2_enabled(env)) {
- uint64_t hcr = arm_hcr_el2_eff(env);
- if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- if (el < 3 &&
- arm_feature(env, ARM_FEATURE_EL3) &&
- !(env->cp15.scr_el3 & SCR_ATA)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return env->pstate & PSTATE_TCO;
-}
-
-static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
-{
- env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
-}
-
-static const ARMCPRegInfo mte_reginfo[] = {
- { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_mte,
- .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
- { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_mte,
- .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
- { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
- .access = PL2_RW, .accessfn = access_mte,
- .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
- { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
- .access = PL3_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
- { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
- .access = PL1_RW, .accessfn = access_mte,
- .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
- { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
- .access = PL1_RW, .accessfn = access_mte,
- .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
- { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
- .access = PL1_R, .accessfn = access_aa64_tid5,
- .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
- { .name = "TCO", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
- .type = ARM_CP_NO_RAW,
- .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
- { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
- .type = ARM_CP_NOP, .access = PL1_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL1_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
- { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
- .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
-};
-
-static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
- { .name = "TCO", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
- .type = ARM_CP_CONST, .access = PL0_RW, },
-};
-
-static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
- { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W,
- .accessfn = aa64_cacheop_poc_access },
- { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
- .access = PL0_W, .type = ARM_CP_DC_GVA,
-#ifndef CONFIG_USER_ONLY
- /* Avoid overhead of an access check that always passes in user-mode */
- .accessfn = aa64_zva_access,
-#endif
- },
- { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
- .access = PL0_W, .type = ARM_CP_DC_GZVA,
-#ifndef CONFIG_USER_ONLY
- /* Avoid overhead of an access check that always passes in user-mode */
- .accessfn = aa64_zva_access,
-#endif
- },
-};
-
-static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- uint64_t hcr = arm_hcr_el2_eff(env);
- int el = arm_current_el(env);
-
- if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
- if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
- if (hcr & HCR_TGE) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_TRAP;
- }
- } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3
- && arm_feature(env, ARM_FEATURE_EL3)
- && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo scxtnum_reginfo[] = {
- { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
- .access = PL0_RW, .accessfn = access_scxtnum,
- .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
- { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
- .access = PL1_RW, .accessfn = access_scxtnum,
- .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
- { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
- .access = PL2_RW, .accessfn = access_scxtnum,
- .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
- { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
- .access = PL3_RW,
- .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
-};
-#endif /* TARGET_AARCH64 */
-
-static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
-
- if (el == 0) {
- uint64_t sctlr = arm_sctlr(env, el);
- if (!(sctlr & SCTLR_EnRCTX)) {
- return CP_ACCESS_TRAP;
- }
- } else if (el == 1) {
- uint64_t hcr = arm_hcr_el2_eff(env);
- if (hcr & HCR_NV) {
- return CP_ACCESS_TRAP_EL2;
- }
- }
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo predinv_reginfo[] = {
- { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
- { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
- { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
- /*
- * Note the AArch32 opcodes have a different OPC1.
- */
- { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
- { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
- { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
- .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
-};
-
-static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* Read the high 32 bits of the current CCSIDR */
- return extract64(ccsidr_read(env, ri), 32, 32);
-}
-
-static const ARMCPRegInfo ccsidr2_reginfo[] = {
- { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
- .access = PL1_R,
- .accessfn = access_tid4,
- .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
-};
-
-static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_feature(env, ARM_FEATURE_V8)) {
- return access_aa64_tid3(env, ri, isread);
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
- return CP_ACCESS_TRAP_EL2;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult access_joscr_jmcr(CPUARMState *env,
- const ARMCPRegInfo *ri, bool isread)
-{
- /*
- * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
- * in v7A, not in v8A.
- */
- if (!arm_feature(env, ARM_FEATURE_V8) &&
- arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
- (env->cp15.hstr_el2 & HSTR_TJDBX)) {
- return CP_ACCESS_TRAP_EL2;
- }
- return CP_ACCESS_OK;
-}
-
-static const ARMCPRegInfo jazelle_regs[] = {
- { .name = "JIDR",
- .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
- .access = PL1_R, .accessfn = access_jazelle,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "JOSCR",
- .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
- .accessfn = access_joscr_jmcr,
- .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "JMCR",
- .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
- .accessfn = access_joscr_jmcr,
- .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
-};
-
-static const ARMCPRegInfo contextidr_el2 = {
- .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
-};
-
-static const ARMCPRegInfo vhe_reginfo[] = {
- { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
- .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
- .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
-#ifndef CONFIG_USER_ONLY
- { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
- .fieldoffset =
- offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
- .type = ARM_CP_IO, .access = PL2_RW,
- .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
- { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
- .resetfn = gt_hv_timer_reset,
- .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
- { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
- .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
- .access = PL2_RW,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
- .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
- { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = e2h_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
- .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
- { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = e2h_access,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
- .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
- { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = e2h_access,
- .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
- { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
- .access = PL2_RW, .accessfn = e2h_access,
- .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
- { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
- .access = PL2_RW, .accessfn = e2h_access,
- .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
- { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
- .access = PL2_RW, .accessfn = e2h_access,
- .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
-#endif
-};
-
-#ifndef CONFIG_USER_ONLY
-static const ARMCPRegInfo ats1e1_reginfo[] = {
- { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
- { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
- .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write64 },
-};
-
-static const ARMCPRegInfo ats1cp_reginfo[] = {
- { .name = "ATS1CPRP",
- .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write },
- { .name = "ATS1CPWP",
- .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
- .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
- .writefn = ats_write },
-};
-#endif
-
-/*
- * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
- * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
- * is non-zero, which is never for ARMv7, optionally in ARMv8
- * and mandatorily for ARMv8.2 and up.
- * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
- * implementation is RAZ/WI we can ignore this detail, as we
- * do for ACTLR.
- */
-static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
- { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
- .access = PL1_RW, .accessfn = access_tacr,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
-};
-
-void register_cp_regs_for_features(ARMCPU *cpu)
-{
- /* Register all the coprocessor registers based on feature bits */
- CPUARMState *env = &cpu->env;
- if (arm_feature(env, ARM_FEATURE_M)) {
- /* M profile has no coprocessor registers */
- return;
- }
-
- define_arm_cp_regs(cpu, cp_reginfo);
- if (!arm_feature(env, ARM_FEATURE_V8)) {
- /*
- * Must go early as it is full of wildcards that may be
- * overridden by later definitions.
- */
- define_arm_cp_regs(cpu, not_v8_cp_reginfo);
- }
-
- if (arm_feature(env, ARM_FEATURE_V6)) {
- /* The ID registers all have impdef reset values */
- ARMCPRegInfo v6_idregs[] = {
- { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_pfr0 },
- /*
- * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
- * the value of the GIC field until after we define these regs.
- */
- { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_NO_RAW,
- .accessfn = access_aa32_tid3,
- .readfn = id_pfr1_read,
- .writefn = arm_cp_write_ignore },
- { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_dfr0 },
- { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->id_afr0 },
- { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_mmfr0 },
- { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_mmfr1 },
- { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_mmfr2 },
- { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_mmfr3 },
- { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar0 },
- { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar1 },
- { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar2 },
- { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar3 },
- { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar4 },
- { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar5 },
- { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_mmfr4 },
- { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa32_tid3,
- .resetvalue = cpu->isar.id_isar6 },
- };
- define_arm_cp_regs(cpu, v6_idregs);
- define_arm_cp_regs(cpu, v6_cp_reginfo);
- } else {
- define_arm_cp_regs(cpu, not_v6_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_V6K)) {
- define_arm_cp_regs(cpu, v6k_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_V7MP) &&
- !arm_feature(env, ARM_FEATURE_PMSA)) {
- define_arm_cp_regs(cpu, v7mp_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_V7VE)) {
- define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_V7)) {
- ARMCPRegInfo clidr = {
- .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_tid4,
- .resetvalue = cpu->clidr
- };
- define_one_arm_cp_reg(cpu, &clidr);
- define_arm_cp_regs(cpu, v7_cp_reginfo);
- define_debug_regs(cpu);
- define_pmu_regs(cpu);
- } else {
- define_arm_cp_regs(cpu, not_v7_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_V8)) {
- /*
- * v8 ID registers, which all have impdef reset values.
- * Note that within the ID register ranges the unused slots
- * must all RAZ, not UNDEF; future architecture versions may
- * define new registers here.
- * ID registers which are AArch64 views of the AArch32 ID registers
- * which already existed in v6 and v7 are handled elsewhere,
- * in v6_idregs[].
- */
- int i;
- ARMCPRegInfo v8_idregs[] = {
- /*
- * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
- * emulation because we don't know the right value for the
- * GIC field until after we define these regs.
- */
- { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
- .access = PL1_R,
-#ifdef CONFIG_USER_ONLY
- .type = ARM_CP_CONST,
- .resetvalue = cpu->isar.id_aa64pfr0
-#else
- .type = ARM_CP_NO_RAW,
- .accessfn = access_aa64_tid3,
- .readfn = id_aa64pfr0_read,
- .writefn = arm_cp_write_ignore
-#endif
- },
- { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64pfr1},
- { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64zfr0 },
- { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64smfr0 },
- { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64dfr0 },
- { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64dfr1 },
- { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->id_aa64afr0 },
- { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->id_aa64afr1 },
- { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64isar0 },
- { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64isar1 },
- { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64mmfr0 },
- { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64mmfr1 },
- { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_aa64mmfr2 },
- { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.mvfr0 },
- { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.mvfr1 },
- { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.mvfr2 },
- /*
- * "0, c0, c3, {0,1,2}" are the encodings corresponding to
- * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
- * as RAZ, since it is in the "reserved for future ID
- * registers, RAZ" part of the AArch32 encoding space.
- */
- { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- /*
- * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
- * they're also RAZ for AArch64, and in v8 are gradually
- * being filled with AArch64-view-of-AArch32-ID-register
- * for new ID registers.
- */
- { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_pfr2 },
- { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_dfr1 },
- { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = cpu->isar.id_mmfr5 },
- { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 },
- { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = extract64(cpu->pmceid0, 0, 32) },
- { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = cpu->pmceid0 },
- { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = extract64(cpu->pmceid1, 0, 32) },
- { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .resetvalue = cpu->pmceid1 },
- };
-#ifdef CONFIG_USER_ONLY
- static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
- { .name = "ID_AA64PFR0_EL1",
- .exported_bits = R_ID_AA64PFR0_FP_MASK |
- R_ID_AA64PFR0_ADVSIMD_MASK |
- R_ID_AA64PFR0_SVE_MASK |
- R_ID_AA64PFR0_DIT_MASK,
- .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
- (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
- { .name = "ID_AA64PFR1_EL1",
- .exported_bits = R_ID_AA64PFR1_BT_MASK |
- R_ID_AA64PFR1_SSBS_MASK |
- R_ID_AA64PFR1_MTE_MASK |
- R_ID_AA64PFR1_SME_MASK },
- { .name = "ID_AA64PFR*_EL1_RESERVED",
- .is_glob = true },
- { .name = "ID_AA64ZFR0_EL1",
- .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
- R_ID_AA64ZFR0_AES_MASK |
- R_ID_AA64ZFR0_BITPERM_MASK |
- R_ID_AA64ZFR0_BFLOAT16_MASK |
- R_ID_AA64ZFR0_SHA3_MASK |
- R_ID_AA64ZFR0_SM4_MASK |
- R_ID_AA64ZFR0_I8MM_MASK |
- R_ID_AA64ZFR0_F32MM_MASK |
- R_ID_AA64ZFR0_F64MM_MASK },
- { .name = "ID_AA64SMFR0_EL1",
- .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
- R_ID_AA64SMFR0_B16F32_MASK |
- R_ID_AA64SMFR0_F16F32_MASK |
- R_ID_AA64SMFR0_I8I32_MASK |
- R_ID_AA64SMFR0_F64F64_MASK |
- R_ID_AA64SMFR0_I16I64_MASK |
- R_ID_AA64SMFR0_FA64_MASK },
- { .name = "ID_AA64MMFR0_EL1",
- .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
- .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
- (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
- { .name = "ID_AA64MMFR1_EL1",
- .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
- { .name = "ID_AA64MMFR2_EL1",
- .exported_bits = R_ID_AA64MMFR2_AT_MASK },
- { .name = "ID_AA64MMFR*_EL1_RESERVED",
- .is_glob = true },
- { .name = "ID_AA64DFR0_EL1",
- .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
- { .name = "ID_AA64DFR1_EL1" },
- { .name = "ID_AA64DFR*_EL1_RESERVED",
- .is_glob = true },
- { .name = "ID_AA64AFR*",
- .is_glob = true },
- { .name = "ID_AA64ISAR0_EL1",
- .exported_bits = R_ID_AA64ISAR0_AES_MASK |
- R_ID_AA64ISAR0_SHA1_MASK |
- R_ID_AA64ISAR0_SHA2_MASK |
- R_ID_AA64ISAR0_CRC32_MASK |
- R_ID_AA64ISAR0_ATOMIC_MASK |
- R_ID_AA64ISAR0_RDM_MASK |
- R_ID_AA64ISAR0_SHA3_MASK |
- R_ID_AA64ISAR0_SM3_MASK |
- R_ID_AA64ISAR0_SM4_MASK |
- R_ID_AA64ISAR0_DP_MASK |
- R_ID_AA64ISAR0_FHM_MASK |
- R_ID_AA64ISAR0_TS_MASK |
- R_ID_AA64ISAR0_RNDR_MASK },
- { .name = "ID_AA64ISAR1_EL1",
- .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
- R_ID_AA64ISAR1_APA_MASK |
- R_ID_AA64ISAR1_API_MASK |
- R_ID_AA64ISAR1_JSCVT_MASK |
- R_ID_AA64ISAR1_FCMA_MASK |
- R_ID_AA64ISAR1_LRCPC_MASK |
- R_ID_AA64ISAR1_GPA_MASK |
- R_ID_AA64ISAR1_GPI_MASK |
- R_ID_AA64ISAR1_FRINTTS_MASK |
- R_ID_AA64ISAR1_SB_MASK |
- R_ID_AA64ISAR1_BF16_MASK |
- R_ID_AA64ISAR1_DGH_MASK |
- R_ID_AA64ISAR1_I8MM_MASK },
- { .name = "ID_AA64ISAR2_EL1",
- .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
- R_ID_AA64ISAR2_RPRES_MASK |
- R_ID_AA64ISAR2_GPA3_MASK |
- R_ID_AA64ISAR2_APA3_MASK },
- { .name = "ID_AA64ISAR*_EL1_RESERVED",
- .is_glob = true },
- };
- modify_arm_cp_regs(v8_idregs, v8_user_idregs);
-#endif
- /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
- if (!arm_feature(env, ARM_FEATURE_EL3) &&
- !arm_feature(env, ARM_FEATURE_EL2)) {
- ARMCPRegInfo rvbar = {
- .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
- .access = PL1_R,
- .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
- };
- define_one_arm_cp_reg(cpu, &rvbar);
- }
- define_arm_cp_regs(cpu, v8_idregs);
- define_arm_cp_regs(cpu, v8_cp_reginfo);
-
- for (i = 4; i < 16; i++) {
- /*
- * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
- * For pre-v8 cores there are RAZ patterns for these in
- * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
- * v8 extends the "must RAZ" part of the ID register space
- * to also cover c0, 0, c{8-15}, {0-7}.
- * These are STATE_AA32 because in the AArch64 sysreg space
- * c4-c7 is where the AArch64 ID registers live (and we've
- * already defined those in v8_idregs[]), and c8-c15 are not
- * "must RAZ" for AArch64.
- */
- g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
- ARMCPRegInfo v8_aa32_raz_idregs = {
- .name = name,
- .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST,
- .accessfn = access_aa64_tid3,
- .resetvalue = 0 };
- define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
- }
- }
-
- /*
- * Register the base EL2 cpregs.
- * Pre v8, these registers are implemented only as part of the
- * Virtualization Extensions (EL2 present). Beginning with v8,
- * if EL2 is missing but EL3 is enabled, mostly these become
- * RES0 from EL3, with some specific exceptions.
- */
- if (arm_feature(env, ARM_FEATURE_EL2)
- || (arm_feature(env, ARM_FEATURE_EL3)
- && arm_feature(env, ARM_FEATURE_V8))) {
- uint64_t vmpidr_def = mpidr_read_val(env);
- ARMCPRegInfo vpidr_regs[] = {
- { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .accessfn = access_el3_aa32ns,
- .resetvalue = cpu->midr,
- .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
- { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .resetvalue = cpu->midr,
- .type = ARM_CP_EL3_NO_EL2_C_NZ,
- .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
- { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
- .access = PL2_RW, .accessfn = access_el3_aa32ns,
- .resetvalue = vmpidr_def,
- .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
- { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
- .access = PL2_RW, .resetvalue = vmpidr_def,
- .type = ARM_CP_EL3_NO_EL2_C_NZ,
- .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
- };
- /*
- * The only field of MDCR_EL2 that has a defined architectural reset
- * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
- */
- ARMCPRegInfo mdcr_el2 = {
- .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
- .writefn = mdcr_el2_write,
- .access = PL2_RW, .resetvalue = pmu_num_counters(env),
- .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
- };
- define_one_arm_cp_reg(cpu, &mdcr_el2);
- define_arm_cp_regs(cpu, vpidr_regs);
- define_arm_cp_regs(cpu, el2_cp_reginfo);
- if (arm_feature(env, ARM_FEATURE_V8)) {
- define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
- }
- if (cpu_isar_feature(aa64_sel2, cpu)) {
- define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
- }
- /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
- if (!arm_feature(env, ARM_FEATURE_EL3)) {
- ARMCPRegInfo rvbar[] = {
- {
- .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
- .access = PL2_R,
- .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
- },
- { .name = "RVBAR", .type = ARM_CP_ALIAS,
- .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
- .access = PL2_R,
- .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
- },
- };
- define_arm_cp_regs(cpu, rvbar);
- }
- }
-
- /* Register the base EL3 cpregs. */
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- define_arm_cp_regs(cpu, el3_cp_reginfo);
- ARMCPRegInfo el3_regs[] = {
- { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
- .access = PL3_R,
- .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
- },
- { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
- .access = PL3_RW,
- .raw_writefn = raw_write, .writefn = sctlr_write,
- .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
- .resetvalue = cpu->reset_sctlr },
- };
-
- define_arm_cp_regs(cpu, el3_regs);
- }
- /*
- * The behaviour of NSACR is sufficiently various that we don't
- * try to describe it in a single reginfo:
- * if EL3 is 64 bit, then trap to EL3 from S EL1,
- * reads as constant 0xc00 from NS EL1 and NS EL2
- * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
- * if v7 without EL3, register doesn't exist
- * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
- */
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- if (arm_feature(env, ARM_FEATURE_AARCH64)) {
- static const ARMCPRegInfo nsacr = {
- .name = "NSACR", .type = ARM_CP_CONST,
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
- .access = PL1_RW, .accessfn = nsacr_access,
- .resetvalue = 0xc00
- };
- define_one_arm_cp_reg(cpu, &nsacr);
- } else {
- static const ARMCPRegInfo nsacr = {
- .name = "NSACR",
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
- .access = PL3_RW | PL1_R,
- .resetvalue = 0,
- .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
- };
- define_one_arm_cp_reg(cpu, &nsacr);
- }
- } else {
- if (arm_feature(env, ARM_FEATURE_V8)) {
- static const ARMCPRegInfo nsacr = {
- .name = "NSACR", .type = ARM_CP_CONST,
- .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
- .access = PL1_R,
- .resetvalue = 0xc00
- };
- define_one_arm_cp_reg(cpu, &nsacr);
- }
- }
-
- if (arm_feature(env, ARM_FEATURE_PMSA)) {
- if (arm_feature(env, ARM_FEATURE_V6)) {
- /* PMSAv6 not implemented */
- assert(arm_feature(env, ARM_FEATURE_V7));
- define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
- define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
- } else {
- define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
- }
- } else {
- define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
- define_arm_cp_regs(cpu, vmsa_cp_reginfo);
- /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
- if (cpu_isar_feature(aa32_hpd, cpu)) {
- define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
- }
- }
- if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
- define_arm_cp_regs(cpu, t2ee_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
- define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_VAPA)) {
- define_arm_cp_regs(cpu, vapa_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
- define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
- define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
- define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
- define_arm_cp_regs(cpu, omap_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
- define_arm_cp_regs(cpu, strongarm_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- define_arm_cp_regs(cpu, xscale_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
- define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
- }
- if (arm_feature(env, ARM_FEATURE_LPAE)) {
- define_arm_cp_regs(cpu, lpae_cp_reginfo);
- }
- if (cpu_isar_feature(aa32_jazelle, cpu)) {
- define_arm_cp_regs(cpu, jazelle_regs);
- }
- /*
- * Slightly awkwardly, the OMAP and StrongARM cores need all of
- * cp15 crn=0 to be writes-ignored, whereas for other cores they should
- * be read-only (ie write causes UNDEF exception).
- */
- {
- ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
- /*
- * Pre-v8 MIDR space.
- * Note that the MIDR isn't a simple constant register because
- * of the TI925 behaviour where writes to another register can
- * cause the MIDR value to change.
- *
- * Unimplemented registers in the c15 0 0 0 space default to
- * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
- * and friends override accordingly.
- */
- { .name = "MIDR",
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .resetvalue = cpu->midr,
- .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
- .readfn = midr_read,
- .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
- .type = ARM_CP_OVERRIDE },
- /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
- { .name = "DUMMY",
- .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "DUMMY",
- .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "DUMMY",
- .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "DUMMY",
- .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- { .name = "DUMMY",
- .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
- .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- };
- ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
- { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
- .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
- .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
- .readfn = midr_read },
- /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
- { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
- .access = PL1_R, .resetvalue = cpu->midr },
- { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
- .access = PL1_R,
- .accessfn = access_aa64_tid1,
- .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
- };
- ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
- .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
- .access = PL1_R, .resetvalue = cpu->midr
- };
- ARMCPRegInfo id_cp_reginfo[] = {
- /* These are common to v8 and pre-v8 */
- { .name = "CTR",
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
- .access = PL1_R, .accessfn = ctr_el0_access,
- .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
- { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
- .access = PL0_R, .accessfn = ctr_el0_access,
- .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
- /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
- { .name = "TCMTR",
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
- .access = PL1_R,
- .accessfn = access_aa32_tid1,
- .type = ARM_CP_CONST, .resetvalue = 0 },
- };
- /* TLBTR is specific to VMSA */
- ARMCPRegInfo id_tlbtr_reginfo = {
- .name = "TLBTR",
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
- .access = PL1_R,
- .accessfn = access_aa32_tid1,
- .type = ARM_CP_CONST, .resetvalue = 0,
- };
- /* MPUIR is specific to PMSA V6+ */
- ARMCPRegInfo id_mpuir_reginfo = {
- .name = "MPUIR",
- .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
- .access = PL1_R, .type = ARM_CP_CONST,
- .resetvalue = cpu->pmsav7_dregion << 8
- };
- /* HMPUIR is specific to PMSA V8 */
- ARMCPRegInfo id_hmpuir_reginfo = {
- .name = "HMPUIR",
- .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
- .access = PL2_R, .type = ARM_CP_CONST,
- .resetvalue = cpu->pmsav8r_hdregion
- };
- static const ARMCPRegInfo crn0_wi_reginfo = {
- .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
- .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
- .type = ARM_CP_NOP | ARM_CP_OVERRIDE
- };
-#ifdef CONFIG_USER_ONLY
- static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
- { .name = "MIDR_EL1",
- .exported_bits = R_MIDR_EL1_REVISION_MASK |
- R_MIDR_EL1_PARTNUM_MASK |
- R_MIDR_EL1_ARCHITECTURE_MASK |
- R_MIDR_EL1_VARIANT_MASK |
- R_MIDR_EL1_IMPLEMENTER_MASK },
- { .name = "REVIDR_EL1" },
- };
- modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
-#endif
- if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
- arm_feature(env, ARM_FEATURE_STRONGARM)) {
- size_t i;
- /*
- * Register the blanket "writes ignored" value first to cover the
- * whole space. Then update the specific ID registers to allow write
- * access, so that they ignore writes rather than causing them to
- * UNDEF.
- */
- define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
- for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
- id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
- }
- for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
- id_cp_reginfo[i].access = PL1_RW;
- }
- id_mpuir_reginfo.access = PL1_RW;
- id_tlbtr_reginfo.access = PL1_RW;
- }
- if (arm_feature(env, ARM_FEATURE_V8)) {
- define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
- if (!arm_feature(env, ARM_FEATURE_PMSA)) {
- define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
- }
- } else {
- define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
- }
- define_arm_cp_regs(cpu, id_cp_reginfo);
- if (!arm_feature(env, ARM_FEATURE_PMSA)) {
- define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
- } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
- arm_feature(env, ARM_FEATURE_V8)) {
- uint32_t i = 0;
- char *tmp_string;
-
- define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
- define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
- define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
-
- /* Register alias is only valid for first 32 indexes */
- for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
- uint8_t crm = 0b1000 | extract32(i, 1, 3);
- uint8_t opc1 = extract32(i, 4, 1);
- uint8_t opc2 = extract32(i, 0, 1) << 2;
-
- tmp_string = g_strdup_printf("PRBAR%u", i);
- ARMCPRegInfo tmp_prbarn_reginfo = {
- .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
- .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
- .access = PL1_RW, .resetvalue = 0,
- .accessfn = access_tvm_trvm,
- .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
- };
- define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
- g_free(tmp_string);
-
- opc2 = extract32(i, 0, 1) << 2 | 0x1;
- tmp_string = g_strdup_printf("PRLAR%u", i);
- ARMCPRegInfo tmp_prlarn_reginfo = {
- .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
- .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
- .access = PL1_RW, .resetvalue = 0,
- .accessfn = access_tvm_trvm,
- .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
- };
- define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
- g_free(tmp_string);
- }
-
- /* Register alias is only valid for first 32 indexes */
- for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
- uint8_t crm = 0b1000 | extract32(i, 1, 3);
- uint8_t opc1 = 0b100 | extract32(i, 4, 1);
- uint8_t opc2 = extract32(i, 0, 1) << 2;
-
- tmp_string = g_strdup_printf("HPRBAR%u", i);
- ARMCPRegInfo tmp_hprbarn_reginfo = {
- .name = tmp_string,
- .type = ARM_CP_NO_RAW,
- .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
- .access = PL2_RW, .resetvalue = 0,
- .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
- };
- define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
- g_free(tmp_string);
-
- opc2 = extract32(i, 0, 1) << 2 | 0x1;
- tmp_string = g_strdup_printf("HPRLAR%u", i);
- ARMCPRegInfo tmp_hprlarn_reginfo = {
- .name = tmp_string,
- .type = ARM_CP_NO_RAW,
- .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
- .access = PL2_RW, .resetvalue = 0,
- .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
- };
- define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
- g_free(tmp_string);
- }
- } else if (arm_feature(env, ARM_FEATURE_V7)) {
- define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
- }
- }
-
- if (arm_feature(env, ARM_FEATURE_MPIDR)) {
- ARMCPRegInfo mpidr_cp_reginfo[] = {
- { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
- .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
- };
-#ifdef CONFIG_USER_ONLY
- static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
- { .name = "MPIDR_EL1",
- .fixed_bits = 0x0000000080000000 },
- };
- modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
-#endif
- define_arm_cp_regs(cpu, mpidr_cp_reginfo);
- }
-
- if (arm_feature(env, ARM_FEATURE_AUXCR)) {
- ARMCPRegInfo auxcr_reginfo[] = {
- { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tacr,
- .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
- { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
- .access = PL2_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
- .access = PL3_RW, .type = ARM_CP_CONST,
- .resetvalue = 0 },
- };
- define_arm_cp_regs(cpu, auxcr_reginfo);
- if (cpu_isar_feature(aa32_ac2, cpu)) {
- define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
- }
- }
-
- if (arm_feature(env, ARM_FEATURE_CBAR)) {
- /*
- * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
- * There are two flavours:
- * (1) older 32-bit only cores have a simple 32-bit CBAR
- * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
- * 32-bit register visible to AArch32 at a different encoding
- * to the "flavour 1" register and with the bits rearranged to
- * be able to squash a 64-bit address into the 32-bit view.
- * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
- * in future if we support AArch32-only configs of some of the
- * AArch64 cores we might need to add a specific feature flag
- * to indicate cores with "flavour 2" CBAR.
- */
- if (arm_feature(env, ARM_FEATURE_AARCH64)) {
- /* 32 bit view is [31:18] 0...0 [43:32]. */
- uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
- | extract64(cpu->reset_cbar, 32, 12);
- ARMCPRegInfo cbar_reginfo[] = {
- { .name = "CBAR",
- .type = ARM_CP_CONST,
- .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
- .access = PL1_R, .resetvalue = cbar32 },
- { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
- .type = ARM_CP_CONST,
- .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
- .access = PL1_R, .resetvalue = cpu->reset_cbar },
- };
- /* We don't implement a r/w 64 bit CBAR currently */
- assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
- define_arm_cp_regs(cpu, cbar_reginfo);
- } else {
- ARMCPRegInfo cbar = {
- .name = "CBAR",
- .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
- .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
- .fieldoffset = offsetof(CPUARMState,
- cp15.c15_config_base_address)
- };
- if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
- cbar.access = PL1_R;
- cbar.fieldoffset = 0;
- cbar.type = ARM_CP_CONST;
- }
- define_one_arm_cp_reg(cpu, &cbar);
- }
- }
-
- if (arm_feature(env, ARM_FEATURE_VBAR)) {
- static const ARMCPRegInfo vbar_cp_reginfo[] = {
- { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
- .access = PL1_RW, .writefn = vbar_write,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
- offsetof(CPUARMState, cp15.vbar_ns) },
- .resetvalue = 0 },
- };
- define_arm_cp_regs(cpu, vbar_cp_reginfo);
- }
-
- /* Generic registers whose values depend on the implementation */
- {
- ARMCPRegInfo sctlr = {
- .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
- .access = PL1_RW, .accessfn = access_tvm_trvm,
- .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
- offsetof(CPUARMState, cp15.sctlr_ns) },
- .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
- .raw_writefn = raw_write,
- };
- if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- /*
- * Normally we would always end the TB on an SCTLR write, but Linux
- * arch/arm/mach-pxa/sleep.S expects two instructions following
- * an MMU enable to execute from cache. Imitate this behaviour.
- */
- sctlr.type |= ARM_CP_SUPPRESS_TB_END;
- }
- define_one_arm_cp_reg(cpu, &sctlr);
-
- if (arm_feature(env, ARM_FEATURE_PMSA) &&
- arm_feature(env, ARM_FEATURE_V8)) {
- ARMCPRegInfo vsctlr = {
- .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .resetvalue = 0x0,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
- };
- define_one_arm_cp_reg(cpu, &vsctlr);
- }
- }
-
- if (cpu_isar_feature(aa64_lor, cpu)) {
- define_arm_cp_regs(cpu, lor_reginfo);
- }
- if (cpu_isar_feature(aa64_pan, cpu)) {
- define_one_arm_cp_reg(cpu, &pan_reginfo);
- }
-#ifndef CONFIG_USER_ONLY
- if (cpu_isar_feature(aa64_ats1e1, cpu)) {
- define_arm_cp_regs(cpu, ats1e1_reginfo);
- }
- if (cpu_isar_feature(aa32_ats1e1, cpu)) {
- define_arm_cp_regs(cpu, ats1cp_reginfo);
- }
-#endif
- if (cpu_isar_feature(aa64_uao, cpu)) {
- define_one_arm_cp_reg(cpu, &uao_reginfo);
- }
-
- if (cpu_isar_feature(aa64_dit, cpu)) {
- define_one_arm_cp_reg(cpu, &dit_reginfo);
- }
- if (cpu_isar_feature(aa64_ssbs, cpu)) {
- define_one_arm_cp_reg(cpu, &ssbs_reginfo);
- }
- if (cpu_isar_feature(any_ras, cpu)) {
- define_arm_cp_regs(cpu, minimal_ras_reginfo);
- }
-
- if (cpu_isar_feature(aa64_vh, cpu) ||
- cpu_isar_feature(aa64_debugv8p2, cpu)) {
- define_one_arm_cp_reg(cpu, &contextidr_el2);
- }
- if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
- define_arm_cp_regs(cpu, vhe_reginfo);
- }
-
- if (cpu_isar_feature(aa64_sve, cpu)) {
- define_arm_cp_regs(cpu, zcr_reginfo);
- }
-
- if (cpu_isar_feature(aa64_hcx, cpu)) {
- define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
- }
-
-#ifdef TARGET_AARCH64
- if (cpu_isar_feature(aa64_sme, cpu)) {
- define_arm_cp_regs(cpu, sme_reginfo);
- }
- if (cpu_isar_feature(aa64_pauth, cpu)) {
- define_arm_cp_regs(cpu, pauth_reginfo);
- }
- if (cpu_isar_feature(aa64_rndr, cpu)) {
- define_arm_cp_regs(cpu, rndr_reginfo);
- }
- if (cpu_isar_feature(aa64_tlbirange, cpu)) {
- define_arm_cp_regs(cpu, tlbirange_reginfo);
- }
- if (cpu_isar_feature(aa64_tlbios, cpu)) {
- define_arm_cp_regs(cpu, tlbios_reginfo);
- }
-#ifndef CONFIG_USER_ONLY
- /* Data Cache clean instructions up to PoP */
- if (cpu_isar_feature(aa64_dcpop, cpu)) {
- define_one_arm_cp_reg(cpu, dcpop_reg);
-
- if (cpu_isar_feature(aa64_dcpodp, cpu)) {
- define_one_arm_cp_reg(cpu, dcpodp_reg);
- }
- }
-#endif /*CONFIG_USER_ONLY*/
-
- /*
- * If full MTE is enabled, add all of the system registers.
- * If only "instructions available at EL0" are enabled,
- * then define only a RAZ/WI version of PSTATE.TCO.
- */
- if (cpu_isar_feature(aa64_mte, cpu)) {
- define_arm_cp_regs(cpu, mte_reginfo);
- define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
- } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
- define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
- define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
- }
-
- if (cpu_isar_feature(aa64_scxtnum, cpu)) {
- define_arm_cp_regs(cpu, scxtnum_reginfo);
- }
-#endif
-
- if (cpu_isar_feature(any_predinv, cpu)) {
- define_arm_cp_regs(cpu, predinv_reginfo);
- }
-
- if (cpu_isar_feature(any_ccidx, cpu)) {
- define_arm_cp_regs(cpu, ccsidr2_reginfo);
- }
-
-#ifndef CONFIG_USER_ONLY
- /*
- * Register redirections and aliases must be done last,
- * after the registers from the other extensions have been defined.
- */
- if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
- define_arm_vh_e2h_redirects_aliases(cpu);
- }
-#endif
-}
-
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
{
@@ -9029,461 +417,6 @@ CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
return cpu_list;
}
-/*
- * Private utility function for define_one_arm_cp_reg_with_opaque():
- * add a single reginfo struct to the hash table.
- */
-static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
- void *opaque, CPState state,
- CPSecureState secstate,
- int crm, int opc1, int opc2,
- const char *name)
-{
- CPUARMState *env = &cpu->env;
- uint32_t key;
- ARMCPRegInfo *r2;
- bool is64 = r->type & ARM_CP_64BIT;
- bool ns = secstate & ARM_CP_SECSTATE_NS;
- int cp = r->cp;
- size_t name_len;
- bool make_const;
-
- switch (state) {
- case ARM_CP_STATE_AA32:
- /* We assume it is a cp15 register if the .cp field is left unset. */
- if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
- cp = 15;
- }
- key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
- break;
- case ARM_CP_STATE_AA64:
- /*
- * To allow abbreviation of ARMCPRegInfo definitions, we treat
- * cp == 0 as equivalent to the value for "standard guest-visible
- * sysreg". STATE_BOTH definitions are also always "standard sysreg"
- * in their AArch64 view (the .cp value may be non-zero for the
- * benefit of the AArch32 view).
- */
- if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
- cp = CP_REG_ARM64_SYSREG_CP;
- }
- key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
- break;
- default:
- g_assert_not_reached();
- }
-
- /* Overriding of an existing definition must be explicitly requested. */
- if (!(r->type & ARM_CP_OVERRIDE)) {
- const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
- if (oldreg) {
- assert(oldreg->type & ARM_CP_OVERRIDE);
- }
- }
-
- /*
- * Eliminate registers that are not present because the EL is missing.
- * Doing this here makes it easier to put all registers for a given
- * feature into the same ARMCPRegInfo array and define them all at once.
- */
- make_const = false;
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- /*
- * An EL2 register without EL2 but with EL3 is (usually) RES0.
- * See rule RJFFP in section D1.1.3 of DDI0487H.a.
- */
- int min_el = ctz32(r->access) / 2;
- if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
- if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
- return;
- }
- make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
- }
- } else {
- CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
- ? PL2_RW : PL1_RW);
- if ((r->access & max_el) == 0) {
- return;
- }
- }
-
- /* Combine cpreg and name into one allocation. */
- name_len = strlen(name) + 1;
- r2 = g_malloc(sizeof(*r2) + name_len);
- *r2 = *r;
- r2->name = memcpy(r2 + 1, name, name_len);
-
- /*
- * Update fields to match the instantiation, overwiting wildcards
- * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
- */
- r2->cp = cp;
- r2->crm = crm;
- r2->opc1 = opc1;
- r2->opc2 = opc2;
- r2->state = state;
- r2->secure = secstate;
- if (opaque) {
- r2->opaque = opaque;
- }
-
- if (make_const) {
- /* This should not have been a very special register to begin. */
- int old_special = r2->type & ARM_CP_SPECIAL_MASK;
- assert(old_special == 0 || old_special == ARM_CP_NOP);
- /*
- * Set the special function to CONST, retaining the other flags.
- * This is important for e.g. ARM_CP_SVE so that we still
- * take the SVE trap if CPTR_EL3.EZ == 0.
- */
- r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
- /*
- * Usually, these registers become RES0, but there are a few
- * special cases like VPIDR_EL2 which have a constant non-zero
- * value with writes ignored.
- */
- if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
- r2->resetvalue = 0;
- }
- /*
- * ARM_CP_CONST has precedence, so removing the callbacks and
- * offsets are not strictly necessary, but it is potentially
- * less confusing to debug later.
- */
- r2->readfn = NULL;
- r2->writefn = NULL;
- r2->raw_readfn = NULL;
- r2->raw_writefn = NULL;
- r2->resetfn = NULL;
- r2->fieldoffset = 0;
- r2->bank_fieldoffsets[0] = 0;
- r2->bank_fieldoffsets[1] = 0;
- } else {
- bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
-
- if (isbanked) {
- /*
- * Register is banked (using both entries in array).
- * Overwriting fieldoffset as the array is only used to define
- * banked registers but later only fieldoffset is used.
- */
- r2->fieldoffset = r->bank_fieldoffsets[ns];
- }
- if (state == ARM_CP_STATE_AA32) {
- if (isbanked) {
- /*
- * If the register is banked then we don't need to migrate or
- * reset the 32-bit instance in certain cases:
- *
- * 1) If the register has both 32-bit and 64-bit instances
- * then we can count on the 64-bit instance taking care
- * of the non-secure bank.
- * 2) If ARMv8 is enabled then we can count on a 64-bit
- * version taking care of the secure bank. This requires
- * that separate 32 and 64-bit definitions are provided.
- */
- if ((r->state == ARM_CP_STATE_BOTH && ns) ||
- (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
- r2->type |= ARM_CP_ALIAS;
- }
- } else if ((secstate != r->secure) && !ns) {
- /*
- * The register is not banked so we only want to allow
- * migration of the non-secure instance.
- */
- r2->type |= ARM_CP_ALIAS;
- }
-
- if (HOST_BIG_ENDIAN &&
- r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
- r2->fieldoffset += sizeof(uint32_t);
- }
- }
- }
-
- /*
- * By convention, for wildcarded registers only the first
- * entry is used for migration; the others are marked as
- * ALIAS so we don't try to transfer the register
- * multiple times. Special registers (ie NOP/WFI) are
- * never migratable and not even raw-accessible.
- */
- if (r2->type & ARM_CP_SPECIAL_MASK) {
- r2->type |= ARM_CP_NO_RAW;
- }
- if (((r->crm == CP_ANY) && crm != 0) ||
- ((r->opc1 == CP_ANY) && opc1 != 0) ||
- ((r->opc2 == CP_ANY) && opc2 != 0)) {
- r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
- }
-
- /*
- * Check that raw accesses are either forbidden or handled. Note that
- * we can't assert this earlier because the setup of fieldoffset for
- * banked registers has to be done first.
- */
- if (!(r2->type & ARM_CP_NO_RAW)) {
- assert(!raw_accessors_invalid(r2));
- }
-
- g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
-}
-
-
-void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
- const ARMCPRegInfo *r, void *opaque)
-{
- /*
- * Define implementations of coprocessor registers.
- * We store these in a hashtable because typically
- * there are less than 150 registers in a space which
- * is 16*16*16*8*8 = 262144 in size.
- * Wildcarding is supported for the crm, opc1 and opc2 fields.
- * If a register is defined twice then the second definition is
- * used, so this can be used to define some generic registers and
- * then override them with implementation specific variations.
- * At least one of the original and the second definition should
- * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
- * against accidental use.
- *
- * The state field defines whether the register is to be
- * visible in the AArch32 or AArch64 execution state. If the
- * state is set to ARM_CP_STATE_BOTH then we synthesise a
- * reginfo structure for the AArch32 view, which sees the lower
- * 32 bits of the 64 bit register.
- *
- * Only registers visible in AArch64 may set r->opc0; opc0 cannot
- * be wildcarded. AArch64 registers are always considered to be 64
- * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
- * the register, if any.
- */
- int crm, opc1, opc2;
- int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
- int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
- int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
- int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
- int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
- int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
- CPState state;
-
- /* 64 bit registers have only CRm and Opc1 fields */
- assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
- /* op0 only exists in the AArch64 encodings */
- assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
- /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
- assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
- /*
- * This API is only for Arm's system coprocessors (14 and 15) or
- * (M-profile or v7A-and-earlier only) for implementation defined
- * coprocessors in the range 0..7. Our decode assumes this, since
- * 8..13 can be used for other insns including VFP and Neon. See
- * valid_cp() in translate.c. Assert here that we haven't tried
- * to use an invalid coprocessor number.
- */
- switch (r->state) {
- case ARM_CP_STATE_BOTH:
- /* 0 has a special meaning, but otherwise the same rules as AA32. */
- if (r->cp == 0) {
- break;
- }
- /* fall through */
- case ARM_CP_STATE_AA32:
- if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
- !arm_feature(&cpu->env, ARM_FEATURE_M)) {
- assert(r->cp >= 14 && r->cp <= 15);
- } else {
- assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
- }
- break;
- case ARM_CP_STATE_AA64:
- assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
- break;
- default:
- g_assert_not_reached();
- }
- /*
- * The AArch64 pseudocode CheckSystemAccess() specifies that op1
- * encodes a minimum access level for the register. We roll this
- * runtime check into our general permission check code, so check
- * here that the reginfo's specified permissions are strict enough
- * to encompass the generic architectural permission check.
- */
- if (r->state != ARM_CP_STATE_AA32) {
- CPAccessRights mask;
- switch (r->opc1) {
- case 0:
- /* min_EL EL1, but some accessible to EL0 via kernel ABI */
- mask = PL0U_R | PL1_RW;
- break;
- case 1: case 2:
- /* min_EL EL1 */
- mask = PL1_RW;
- break;
- case 3:
- /* min_EL EL0 */
- mask = PL0_RW;
- break;
- case 4:
- case 5:
- /* min_EL EL2 */
- mask = PL2_RW;
- break;
- case 6:
- /* min_EL EL3 */
- mask = PL3_RW;
- break;
- case 7:
- /* min_EL EL1, secure mode only (we don't check the latter) */
- mask = PL1_RW;
- break;
- default:
- /* broken reginfo with out-of-range opc1 */
- g_assert_not_reached();
- }
- /* assert our permissions are not too lax (stricter is fine) */
- assert((r->access & ~mask) == 0);
- }
-
- /*
- * Check that the register definition has enough info to handle
- * reads and writes if they are permitted.
- */
- if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
- if (r->access & PL3_R) {
- assert((r->fieldoffset ||
- (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
- r->readfn);
- }
- if (r->access & PL3_W) {
- assert((r->fieldoffset ||
- (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
- r->writefn);
- }
- }
-
- for (crm = crmmin; crm <= crmmax; crm++) {
- for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
- for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
- for (state = ARM_CP_STATE_AA32;
- state <= ARM_CP_STATE_AA64; state++) {
- if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
- continue;
- }
- if (state == ARM_CP_STATE_AA32) {
- /*
- * Under AArch32 CP registers can be common
- * (same for secure and non-secure world) or banked.
- */
- char *name;
-
- switch (r->secure) {
- case ARM_CP_SECSTATE_S:
- case ARM_CP_SECSTATE_NS:
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- r->secure, crm, opc1, opc2,
- r->name);
- break;
- case ARM_CP_SECSTATE_BOTH:
- name = g_strdup_printf("%s_S", r->name);
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_S,
- crm, opc1, opc2, name);
- g_free(name);
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_NS,
- crm, opc1, opc2, r->name);
- break;
- default:
- g_assert_not_reached();
- }
- } else {
- /*
- * AArch64 registers get mapped to non-secure instance
- * of AArch32
- */
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_NS,
- crm, opc1, opc2, r->name);
- }
- }
- }
- }
- }
-}
-
-/* Define a whole list of registers */
-void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
- void *opaque, size_t len)
-{
- size_t i;
- for (i = 0; i < len; ++i) {
- define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
- }
-}
-
-/*
- * Modify ARMCPRegInfo for access from userspace.
- *
- * This is a data driven modification directed by
- * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
- * user-space cannot alter any values and dynamic values pertaining to
- * execution state are hidden from user space view anyway.
- */
-void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
- const ARMCPRegUserSpaceInfo *mods,
- size_t mods_len)
-{
- for (size_t mi = 0; mi < mods_len; ++mi) {
- const ARMCPRegUserSpaceInfo *m = mods + mi;
- GPatternSpec *pat = NULL;
-
- if (m->is_glob) {
- pat = g_pattern_spec_new(m->name);
- }
- for (size_t ri = 0; ri < regs_len; ++ri) {
- ARMCPRegInfo *r = regs + ri;
-
- if (pat && g_pattern_match_string(pat, r->name)) {
- r->type = ARM_CP_CONST;
- r->access = PL0U_R;
- r->resetvalue = 0;
- /* continue */
- } else if (strcmp(r->name, m->name) == 0) {
- r->type = ARM_CP_CONST;
- r->access = PL0U_R;
- r->resetvalue &= m->exported_bits;
- r->resetvalue |= m->fixed_bits;
- break;
- }
- }
- if (pat) {
- g_pattern_spec_free(pat);
- }
- }
-}
-
-const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
-{
- return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
-}
-
-void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Helper coprocessor write function for write-ignore registers */
-}
-
-uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* Helper coprocessor write function for read-as-zero registers */
- return 0;
-}
-
-void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
-{
- /* Helper coprocessor reset function for do-nothing-on-reset registers */
-}
-
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
/*
@@ -18,6 +18,7 @@ gen = [
arm_ss = ss.source_set()
arm_ss.add(gen)
arm_ss.add(files(
+ 'cpregs.c',
'cpu.c',
'crypto_helper.c',
'debug_helper.c',
@@ -1,6 +1,6 @@
# See docs/devel/tracing.rst for syntax documentation.
-# helper.c
+# cpregs.c
arm_gt_recalc(int timer, int irqstate, uint64_t nexttick) "gt recalc: timer %d irqstate %d next tick 0x%" PRIx64
arm_gt_recalc_disabled(int timer) "gt recalc: timer %d irqstate 0 timer disabled"
arm_gt_cval_write(int timer, uint64_t value) "gt_cval_write: timer %d value 0x%" PRIx64