new file mode 100644
@@ -0,0 +1,482 @@
+/*
+ * ARM CP registers - common functionality
+ *
+ * This code is licensed under the GNU GPL v2 or later.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "cpregs.h"
+
+static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
+{
+ /*
+ * Return true if the regdef would cause an assertion if you called
+ * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
+ * program bug for it not to have the NO_RAW flag).
+ * NB that returning false here doesn't necessarily mean that calling
+ * read/write_raw_cp_reg() is safe, because we can't distinguish "has
+ * read/write access functions which are safe for raw use" from "has
+ * read/write access functions which have side effects but has forgotten
+ * to provide raw access functions".
+ * The tests here line up with the conditions in read/write_raw_cp_reg()
+ * and assertions in raw_read()/raw_write().
+ */
+ if ((ri->type & ARM_CP_CONST) ||
+ ri->fieldoffset ||
+ ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
+ return false;
+ }
+ return true;
+}
+
+/*
+ * Private utility function for define_one_arm_cp_reg_with_opaque():
+ * add a single reginfo struct to the hash table.
+ */
+static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
+ void *opaque, CPState state,
+ CPSecureState secstate,
+ int crm, int opc1, int opc2,
+ const char *name)
+{
+ CPUARMState *env = &cpu->env;
+ uint32_t key;
+ ARMCPRegInfo *r2;
+ bool is64 = r->type & ARM_CP_64BIT;
+ bool ns = secstate & ARM_CP_SECSTATE_NS;
+ int cp = r->cp;
+ size_t name_len;
+ bool make_const;
+
+ switch (state) {
+ case ARM_CP_STATE_AA32:
+ /* We assume it is a cp15 register if the .cp field is left unset. */
+ if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
+ cp = 15;
+ }
+ key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
+ break;
+ case ARM_CP_STATE_AA64:
+ /*
+ * To allow abbreviation of ARMCPRegInfo definitions, we treat
+ * cp == 0 as equivalent to the value for "standard guest-visible
+ * sysreg". STATE_BOTH definitions are also always "standard sysreg"
+ * in their AArch64 view (the .cp value may be non-zero for the
+ * benefit of the AArch32 view).
+ */
+ if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
+ cp = CP_REG_ARM64_SYSREG_CP;
+ }
+ key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ /* Overriding of an existing definition must be explicitly requested. */
+ if (!(r->type & ARM_CP_OVERRIDE)) {
+ const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
+ if (oldreg) {
+ assert(oldreg->type & ARM_CP_OVERRIDE);
+ }
+ }
+
+ /*
+ * Eliminate registers that are not present because the EL is missing.
+ * Doing this here makes it easier to put all registers for a given
+ * feature into the same ARMCPRegInfo array and define them all at once.
+ */
+ make_const = false;
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /*
+ * An EL2 register without EL2 but with EL3 is (usually) RES0.
+ * See rule RJFFP in section D1.1.3 of DDI0487H.a.
+ */
+ int min_el = ctz32(r->access) / 2;
+ if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
+ if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
+ return;
+ }
+ make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
+ }
+ } else {
+ CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
+ ? PL2_RW : PL1_RW);
+ if ((r->access & max_el) == 0) {
+ return;
+ }
+ }
+
+ /* Combine cpreg and name into one allocation. */
+ name_len = strlen(name) + 1;
+ r2 = g_malloc(sizeof(*r2) + name_len);
+ *r2 = *r;
+ r2->name = memcpy(r2 + 1, name, name_len);
+
+ /*
+ * Update fields to match the instantiation, overwiting wildcards
+ * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
+ */
+ r2->cp = cp;
+ r2->crm = crm;
+ r2->opc1 = opc1;
+ r2->opc2 = opc2;
+ r2->state = state;
+ r2->secure = secstate;
+ if (opaque) {
+ r2->opaque = opaque;
+ }
+
+ if (make_const) {
+ /* This should not have been a very special register to begin. */
+ int old_special = r2->type & ARM_CP_SPECIAL_MASK;
+ assert(old_special == 0 || old_special == ARM_CP_NOP);
+ /*
+ * Set the special function to CONST, retaining the other flags.
+ * This is important for e.g. ARM_CP_SVE so that we still
+ * take the SVE trap if CPTR_EL3.EZ == 0.
+ */
+ r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
+ /*
+ * Usually, these registers become RES0, but there are a few
+ * special cases like VPIDR_EL2 which have a constant non-zero
+ * value with writes ignored.
+ */
+ if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
+ r2->resetvalue = 0;
+ }
+ /*
+ * ARM_CP_CONST has precedence, so removing the callbacks and
+ * offsets are not strictly necessary, but it is potentially
+ * less confusing to debug later.
+ */
+ r2->readfn = NULL;
+ r2->writefn = NULL;
+ r2->raw_readfn = NULL;
+ r2->raw_writefn = NULL;
+ r2->resetfn = NULL;
+ r2->fieldoffset = 0;
+ r2->bank_fieldoffsets[0] = 0;
+ r2->bank_fieldoffsets[1] = 0;
+ } else {
+ bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
+
+ if (isbanked) {
+ /*
+ * Register is banked (using both entries in array).
+ * Overwriting fieldoffset as the array is only used to define
+ * banked registers but later only fieldoffset is used.
+ */
+ r2->fieldoffset = r->bank_fieldoffsets[ns];
+ }
+ if (state == ARM_CP_STATE_AA32) {
+ if (isbanked) {
+ /*
+ * If the register is banked then we don't need to migrate or
+ * reset the 32-bit instance in certain cases:
+ *
+ * 1) If the register has both 32-bit and 64-bit instances
+ * then we can count on the 64-bit instance taking care
+ * of the non-secure bank.
+ * 2) If ARMv8 is enabled then we can count on a 64-bit
+ * version taking care of the secure bank. This requires
+ * that separate 32 and 64-bit definitions are provided.
+ */
+ if ((r->state == ARM_CP_STATE_BOTH && ns) ||
+ (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
+ r2->type |= ARM_CP_ALIAS;
+ }
+ } else if ((secstate != r->secure) && !ns) {
+ /*
+ * The register is not banked so we only want to allow
+ * migration of the non-secure instance.
+ */
+ r2->type |= ARM_CP_ALIAS;
+ }
+
+ if (HOST_BIG_ENDIAN &&
+ r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
+ r2->fieldoffset += sizeof(uint32_t);
+ }
+ }
+ }
+
+ /*
+ * By convention, for wildcarded registers only the first
+ * entry is used for migration; the others are marked as
+ * ALIAS so we don't try to transfer the register
+ * multiple times. Special registers (ie NOP/WFI) are
+ * never migratable and not even raw-accessible.
+ */
+ if (r2->type & ARM_CP_SPECIAL_MASK) {
+ r2->type |= ARM_CP_NO_RAW;
+ }
+ if (((r->crm == CP_ANY) && crm != 0) ||
+ ((r->opc1 == CP_ANY) && opc1 != 0) ||
+ ((r->opc2 == CP_ANY) && opc2 != 0)) {
+ r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
+ }
+
+ /*
+ * Check that raw accesses are either forbidden or handled. Note that
+ * we can't assert this earlier because the setup of fieldoffset for
+ * banked registers has to be done first.
+ */
+ if (!(r2->type & ARM_CP_NO_RAW)) {
+ assert(!raw_accessors_invalid(r2));
+ }
+
+ g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
+}
+
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *r, void *opaque)
+{
+ /*
+ * Define implementations of coprocessor registers.
+ * We store these in a hashtable because typically
+ * there are less than 150 registers in a space which
+ * is 16*16*16*8*8 = 262144 in size.
+ * Wildcarding is supported for the crm, opc1 and opc2 fields.
+ * If a register is defined twice then the second definition is
+ * used, so this can be used to define some generic registers and
+ * then override them with implementation specific variations.
+ * At least one of the original and the second definition should
+ * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
+ * against accidental use.
+ *
+ * The state field defines whether the register is to be
+ * visible in the AArch32 or AArch64 execution state. If the
+ * state is set to ARM_CP_STATE_BOTH then we synthesise a
+ * reginfo structure for the AArch32 view, which sees the lower
+ * 32 bits of the 64 bit register.
+ *
+ * Only registers visible in AArch64 may set r->opc0; opc0 cannot
+ * be wildcarded. AArch64 registers are always considered to be 64
+ * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
+ * the register, if any.
+ */
+ int crm, opc1, opc2;
+ int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
+ int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
+ int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
+ int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
+ int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
+ int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
+ CPState state;
+
+ /* 64 bit registers have only CRm and Opc1 fields */
+ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
+ /* op0 only exists in the AArch64 encodings */
+ assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
+ /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
+ assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
+ /*
+ * This API is only for Arm's system coprocessors (14 and 15) or
+ * (M-profile or v7A-and-earlier only) for implementation defined
+ * coprocessors in the range 0..7. Our decode assumes this, since
+ * 8..13 can be used for other insns including VFP and Neon. See
+ * valid_cp() in translate.c. Assert here that we haven't tried
+ * to use an invalid coprocessor number.
+ */
+ switch (r->state) {
+ case ARM_CP_STATE_BOTH:
+ /* 0 has a special meaning, but otherwise the same rules as AA32. */
+ if (r->cp == 0) {
+ break;
+ }
+ /* fall through */
+ case ARM_CP_STATE_AA32:
+ if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
+ !arm_feature(&cpu->env, ARM_FEATURE_M)) {
+ assert(r->cp >= 14 && r->cp <= 15);
+ } else {
+ assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
+ }
+ break;
+ case ARM_CP_STATE_AA64:
+ assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ /*
+ * The AArch64 pseudocode CheckSystemAccess() specifies that op1
+ * encodes a minimum access level for the register. We roll this
+ * runtime check into our general permission check code, so check
+ * here that the reginfo's specified permissions are strict enough
+ * to encompass the generic architectural permission check.
+ */
+ if (r->state != ARM_CP_STATE_AA32) {
+ CPAccessRights mask;
+ switch (r->opc1) {
+ case 0:
+ /* min_EL EL1, but some accessible to EL0 via kernel ABI */
+ mask = PL0U_R | PL1_RW;
+ break;
+ case 1: case 2:
+ /* min_EL EL1 */
+ mask = PL1_RW;
+ break;
+ case 3:
+ /* min_EL EL0 */
+ mask = PL0_RW;
+ break;
+ case 4:
+ case 5:
+ /* min_EL EL2 */
+ mask = PL2_RW;
+ break;
+ case 6:
+ /* min_EL EL3 */
+ mask = PL3_RW;
+ break;
+ case 7:
+ /* min_EL EL1, secure mode only (we don't check the latter) */
+ mask = PL1_RW;
+ break;
+ default:
+ /* broken reginfo with out-of-range opc1 */
+ g_assert_not_reached();
+ }
+ /* assert our permissions are not too lax (stricter is fine) */
+ assert((r->access & ~mask) == 0);
+ }
+
+ /*
+ * Check that the register definition has enough info to handle
+ * reads and writes if they are permitted.
+ */
+ if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
+ if (r->access & PL3_R) {
+ assert((r->fieldoffset ||
+ (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+ r->readfn);
+ }
+ if (r->access & PL3_W) {
+ assert((r->fieldoffset ||
+ (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
+ r->writefn);
+ }
+ }
+
+ for (crm = crmmin; crm <= crmmax; crm++) {
+ for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
+ for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
+ for (state = ARM_CP_STATE_AA32;
+ state <= ARM_CP_STATE_AA64; state++) {
+ if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
+ continue;
+ }
+ if (state == ARM_CP_STATE_AA32) {
+ /*
+ * Under AArch32 CP registers can be common
+ * (same for secure and non-secure world) or banked.
+ */
+ char *name;
+
+ switch (r->secure) {
+ case ARM_CP_SECSTATE_S:
+ case ARM_CP_SECSTATE_NS:
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ r->secure, crm, opc1, opc2,
+ r->name);
+ break;
+ case ARM_CP_SECSTATE_BOTH:
+ name = g_strdup_printf("%s_S", r->name);
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_S,
+ crm, opc1, opc2, name);
+ g_free(name);
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_NS,
+ crm, opc1, opc2, r->name);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ } else {
+ /*
+ * AArch64 registers get mapped to non-secure instance
+ * of AArch32
+ */
+ add_cpreg_to_hashtable(cpu, r, opaque, state,
+ ARM_CP_SECSTATE_NS,
+ crm, opc1, opc2, r->name);
+ }
+ }
+ }
+ }
+ }
+}
+
+/* Define a whole list of registers */
+void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
+ void *opaque, size_t len)
+{
+ size_t i;
+ for (i = 0; i < len; ++i) {
+ define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
+ }
+}
+
+/*
+ * Modify ARMCPRegInfo for access from userspace.
+ *
+ * This is a data driven modification directed by
+ * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
+ * user-space cannot alter any values and dynamic values pertaining to
+ * execution state are hidden from user space view anyway.
+ */
+void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
+ const ARMCPRegUserSpaceInfo *mods,
+ size_t mods_len)
+{
+ for (size_t mi = 0; mi < mods_len; ++mi) {
+ const ARMCPRegUserSpaceInfo *m = mods + mi;
+ GPatternSpec *pat = NULL;
+
+ if (m->is_glob) {
+ pat = g_pattern_spec_new(m->name);
+ }
+ for (size_t ri = 0; ri < regs_len; ++ri) {
+ ARMCPRegInfo *r = regs + ri;
+
+ if (pat && g_pattern_match_string(pat, r->name)) {
+ r->type = ARM_CP_CONST;
+ r->access = PL0U_R;
+ r->resetvalue = 0;
+ /* continue */
+ } else if (strcmp(r->name, m->name) == 0) {
+ r->type = ARM_CP_CONST;
+ r->access = PL0U_R;
+ r->resetvalue &= m->exported_bits;
+ r->resetvalue |= m->fixed_bits;
+ break;
+ }
+ }
+ if (pat) {
+ g_pattern_spec_free(pat);
+ }
+ }
+}
+
+void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Helper coprocessor write function for write-ignore registers */
+}
+
+uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* Helper coprocessor write function for read-as-zero registers */
+ return 0;
+}
+
+void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
+{
+ /* Helper coprocessor reset function for do-nothing-on-reset registers */
+}
@@ -40,28 +40,6 @@ static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
return (char *)env + ri->fieldoffset;
}
-static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
-{
- /*
- * Return true if the regdef would cause an assertion if you called
- * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
- * program bug for it not to have the NO_RAW flag).
- * NB that returning false here doesn't necessarily mean that calling
- * read/write_raw_cp_reg() is safe, because we can't distinguish "has
- * read/write access functions which are safe for raw use" from "has
- * read/write access functions which have side effects but has forgotten
- * to provide raw access functions".
- * The tests here line up with the conditions in read/write_raw_cp_reg()
- * and assertions in raw_read()/raw_write().
- */
- if ((ri->type & ARM_CP_CONST) ||
- ri->fieldoffset ||
- ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
- return false;
- }
- return true;
-}
-
static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
@@ -8484,456 +8462,6 @@ CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
return cpu_list;
}
-/*
- * Private utility function for define_one_arm_cp_reg_with_opaque():
- * add a single reginfo struct to the hash table.
- */
-static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
- void *opaque, CPState state,
- CPSecureState secstate,
- int crm, int opc1, int opc2,
- const char *name)
-{
- CPUARMState *env = &cpu->env;
- uint32_t key;
- ARMCPRegInfo *r2;
- bool is64 = r->type & ARM_CP_64BIT;
- bool ns = secstate & ARM_CP_SECSTATE_NS;
- int cp = r->cp;
- size_t name_len;
- bool make_const;
-
- switch (state) {
- case ARM_CP_STATE_AA32:
- /* We assume it is a cp15 register if the .cp field is left unset. */
- if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
- cp = 15;
- }
- key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
- break;
- case ARM_CP_STATE_AA64:
- /*
- * To allow abbreviation of ARMCPRegInfo definitions, we treat
- * cp == 0 as equivalent to the value for "standard guest-visible
- * sysreg". STATE_BOTH definitions are also always "standard sysreg"
- * in their AArch64 view (the .cp value may be non-zero for the
- * benefit of the AArch32 view).
- */
- if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
- cp = CP_REG_ARM64_SYSREG_CP;
- }
- key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
- break;
- default:
- g_assert_not_reached();
- }
-
- /* Overriding of an existing definition must be explicitly requested. */
- if (!(r->type & ARM_CP_OVERRIDE)) {
- const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
- if (oldreg) {
- assert(oldreg->type & ARM_CP_OVERRIDE);
- }
- }
-
- /*
- * Eliminate registers that are not present because the EL is missing.
- * Doing this here makes it easier to put all registers for a given
- * feature into the same ARMCPRegInfo array and define them all at once.
- */
- make_const = false;
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- /*
- * An EL2 register without EL2 but with EL3 is (usually) RES0.
- * See rule RJFFP in section D1.1.3 of DDI0487H.a.
- */
- int min_el = ctz32(r->access) / 2;
- if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
- if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
- return;
- }
- make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
- }
- } else {
- CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
- ? PL2_RW : PL1_RW);
- if ((r->access & max_el) == 0) {
- return;
- }
- }
-
- /* Combine cpreg and name into one allocation. */
- name_len = strlen(name) + 1;
- r2 = g_malloc(sizeof(*r2) + name_len);
- *r2 = *r;
- r2->name = memcpy(r2 + 1, name, name_len);
-
- /*
- * Update fields to match the instantiation, overwiting wildcards
- * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
- */
- r2->cp = cp;
- r2->crm = crm;
- r2->opc1 = opc1;
- r2->opc2 = opc2;
- r2->state = state;
- r2->secure = secstate;
- if (opaque) {
- r2->opaque = opaque;
- }
-
- if (make_const) {
- /* This should not have been a very special register to begin. */
- int old_special = r2->type & ARM_CP_SPECIAL_MASK;
- assert(old_special == 0 || old_special == ARM_CP_NOP);
- /*
- * Set the special function to CONST, retaining the other flags.
- * This is important for e.g. ARM_CP_SVE so that we still
- * take the SVE trap if CPTR_EL3.EZ == 0.
- */
- r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
- /*
- * Usually, these registers become RES0, but there are a few
- * special cases like VPIDR_EL2 which have a constant non-zero
- * value with writes ignored.
- */
- if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
- r2->resetvalue = 0;
- }
- /*
- * ARM_CP_CONST has precedence, so removing the callbacks and
- * offsets are not strictly necessary, but it is potentially
- * less confusing to debug later.
- */
- r2->readfn = NULL;
- r2->writefn = NULL;
- r2->raw_readfn = NULL;
- r2->raw_writefn = NULL;
- r2->resetfn = NULL;
- r2->fieldoffset = 0;
- r2->bank_fieldoffsets[0] = 0;
- r2->bank_fieldoffsets[1] = 0;
- } else {
- bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
-
- if (isbanked) {
- /*
- * Register is banked (using both entries in array).
- * Overwriting fieldoffset as the array is only used to define
- * banked registers but later only fieldoffset is used.
- */
- r2->fieldoffset = r->bank_fieldoffsets[ns];
- }
- if (state == ARM_CP_STATE_AA32) {
- if (isbanked) {
- /*
- * If the register is banked then we don't need to migrate or
- * reset the 32-bit instance in certain cases:
- *
- * 1) If the register has both 32-bit and 64-bit instances
- * then we can count on the 64-bit instance taking care
- * of the non-secure bank.
- * 2) If ARMv8 is enabled then we can count on a 64-bit
- * version taking care of the secure bank. This requires
- * that separate 32 and 64-bit definitions are provided.
- */
- if ((r->state == ARM_CP_STATE_BOTH && ns) ||
- (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
- r2->type |= ARM_CP_ALIAS;
- }
- } else if ((secstate != r->secure) && !ns) {
- /*
- * The register is not banked so we only want to allow
- * migration of the non-secure instance.
- */
- r2->type |= ARM_CP_ALIAS;
- }
-
- if (HOST_BIG_ENDIAN &&
- r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
- r2->fieldoffset += sizeof(uint32_t);
- }
- }
- }
-
- /*
- * By convention, for wildcarded registers only the first
- * entry is used for migration; the others are marked as
- * ALIAS so we don't try to transfer the register
- * multiple times. Special registers (ie NOP/WFI) are
- * never migratable and not even raw-accessible.
- */
- if (r2->type & ARM_CP_SPECIAL_MASK) {
- r2->type |= ARM_CP_NO_RAW;
- }
- if (((r->crm == CP_ANY) && crm != 0) ||
- ((r->opc1 == CP_ANY) && opc1 != 0) ||
- ((r->opc2 == CP_ANY) && opc2 != 0)) {
- r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
- }
-
- /*
- * Check that raw accesses are either forbidden or handled. Note that
- * we can't assert this earlier because the setup of fieldoffset for
- * banked registers has to be done first.
- */
- if (!(r2->type & ARM_CP_NO_RAW)) {
- assert(!raw_accessors_invalid(r2));
- }
-
- g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
-}
-
-
-void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
- const ARMCPRegInfo *r, void *opaque)
-{
- /*
- * Define implementations of coprocessor registers.
- * We store these in a hashtable because typically
- * there are less than 150 registers in a space which
- * is 16*16*16*8*8 = 262144 in size.
- * Wildcarding is supported for the crm, opc1 and opc2 fields.
- * If a register is defined twice then the second definition is
- * used, so this can be used to define some generic registers and
- * then override them with implementation specific variations.
- * At least one of the original and the second definition should
- * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
- * against accidental use.
- *
- * The state field defines whether the register is to be
- * visible in the AArch32 or AArch64 execution state. If the
- * state is set to ARM_CP_STATE_BOTH then we synthesise a
- * reginfo structure for the AArch32 view, which sees the lower
- * 32 bits of the 64 bit register.
- *
- * Only registers visible in AArch64 may set r->opc0; opc0 cannot
- * be wildcarded. AArch64 registers are always considered to be 64
- * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
- * the register, if any.
- */
- int crm, opc1, opc2;
- int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
- int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
- int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
- int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
- int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
- int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
- CPState state;
-
- /* 64 bit registers have only CRm and Opc1 fields */
- assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
- /* op0 only exists in the AArch64 encodings */
- assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
- /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
- assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
- /*
- * This API is only for Arm's system coprocessors (14 and 15) or
- * (M-profile or v7A-and-earlier only) for implementation defined
- * coprocessors in the range 0..7. Our decode assumes this, since
- * 8..13 can be used for other insns including VFP and Neon. See
- * valid_cp() in translate.c. Assert here that we haven't tried
- * to use an invalid coprocessor number.
- */
- switch (r->state) {
- case ARM_CP_STATE_BOTH:
- /* 0 has a special meaning, but otherwise the same rules as AA32. */
- if (r->cp == 0) {
- break;
- }
- /* fall through */
- case ARM_CP_STATE_AA32:
- if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
- !arm_feature(&cpu->env, ARM_FEATURE_M)) {
- assert(r->cp >= 14 && r->cp <= 15);
- } else {
- assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
- }
- break;
- case ARM_CP_STATE_AA64:
- assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
- break;
- default:
- g_assert_not_reached();
- }
- /*
- * The AArch64 pseudocode CheckSystemAccess() specifies that op1
- * encodes a minimum access level for the register. We roll this
- * runtime check into our general permission check code, so check
- * here that the reginfo's specified permissions are strict enough
- * to encompass the generic architectural permission check.
- */
- if (r->state != ARM_CP_STATE_AA32) {
- CPAccessRights mask;
- switch (r->opc1) {
- case 0:
- /* min_EL EL1, but some accessible to EL0 via kernel ABI */
- mask = PL0U_R | PL1_RW;
- break;
- case 1: case 2:
- /* min_EL EL1 */
- mask = PL1_RW;
- break;
- case 3:
- /* min_EL EL0 */
- mask = PL0_RW;
- break;
- case 4:
- case 5:
- /* min_EL EL2 */
- mask = PL2_RW;
- break;
- case 6:
- /* min_EL EL3 */
- mask = PL3_RW;
- break;
- case 7:
- /* min_EL EL1, secure mode only (we don't check the latter) */
- mask = PL1_RW;
- break;
- default:
- /* broken reginfo with out-of-range opc1 */
- g_assert_not_reached();
- }
- /* assert our permissions are not too lax (stricter is fine) */
- assert((r->access & ~mask) == 0);
- }
-
- /*
- * Check that the register definition has enough info to handle
- * reads and writes if they are permitted.
- */
- if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
- if (r->access & PL3_R) {
- assert((r->fieldoffset ||
- (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
- r->readfn);
- }
- if (r->access & PL3_W) {
- assert((r->fieldoffset ||
- (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
- r->writefn);
- }
- }
-
- for (crm = crmmin; crm <= crmmax; crm++) {
- for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
- for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
- for (state = ARM_CP_STATE_AA32;
- state <= ARM_CP_STATE_AA64; state++) {
- if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
- continue;
- }
- if (state == ARM_CP_STATE_AA32) {
- /*
- * Under AArch32 CP registers can be common
- * (same for secure and non-secure world) or banked.
- */
- char *name;
-
- switch (r->secure) {
- case ARM_CP_SECSTATE_S:
- case ARM_CP_SECSTATE_NS:
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- r->secure, crm, opc1, opc2,
- r->name);
- break;
- case ARM_CP_SECSTATE_BOTH:
- name = g_strdup_printf("%s_S", r->name);
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_S,
- crm, opc1, opc2, name);
- g_free(name);
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_NS,
- crm, opc1, opc2, r->name);
- break;
- default:
- g_assert_not_reached();
- }
- } else {
- /*
- * AArch64 registers get mapped to non-secure instance
- * of AArch32
- */
- add_cpreg_to_hashtable(cpu, r, opaque, state,
- ARM_CP_SECSTATE_NS,
- crm, opc1, opc2, r->name);
- }
- }
- }
- }
- }
-}
-
-/* Define a whole list of registers */
-void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
- void *opaque, size_t len)
-{
- size_t i;
- for (i = 0; i < len; ++i) {
- define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
- }
-}
-
-/*
- * Modify ARMCPRegInfo for access from userspace.
- *
- * This is a data driven modification directed by
- * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
- * user-space cannot alter any values and dynamic values pertaining to
- * execution state are hidden from user space view anyway.
- */
-void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
- const ARMCPRegUserSpaceInfo *mods,
- size_t mods_len)
-{
- for (size_t mi = 0; mi < mods_len; ++mi) {
- const ARMCPRegUserSpaceInfo *m = mods + mi;
- GPatternSpec *pat = NULL;
-
- if (m->is_glob) {
- pat = g_pattern_spec_new(m->name);
- }
- for (size_t ri = 0; ri < regs_len; ++ri) {
- ARMCPRegInfo *r = regs + ri;
-
- if (pat && g_pattern_match_string(pat, r->name)) {
- r->type = ARM_CP_CONST;
- r->access = PL0U_R;
- r->resetvalue = 0;
- /* continue */
- } else if (strcmp(r->name, m->name) == 0) {
- r->type = ARM_CP_CONST;
- r->access = PL0U_R;
- r->resetvalue &= m->exported_bits;
- r->resetvalue |= m->fixed_bits;
- break;
- }
- }
- if (pat) {
- g_pattern_spec_free(pat);
- }
- }
-}
-
-void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* Helper coprocessor write function for write-ignore registers */
-}
-
-uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* Helper coprocessor write function for read-as-zero registers */
- return 0;
-}
-
-void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
-{
- /* Helper coprocessor reset function for do-nothing-on-reset registers */
-}
-
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
/*
@@ -1,5 +1,6 @@
arm_ss = ss.source_set()
arm_ss.add(files(
+ 'cpregs.c',
'cpu.c',
'cpustate-list.c',
'gdbstub.c',
Code moved verbatim. Signed-off-by: Fabiano Rosas <farosas@suse.de> --- Extracted from: https://lore.kernel.org/r/20210416162824.25131-15-cfontana@suse.de [RFC v14 14/80] target/arm: split cpregs from tcg/helper.c --- target/arm/cpregs.c | 482 +++++++++++++++++++++++++++++++++++++++++ target/arm/helper.c | 472 ---------------------------------------- target/arm/meson.build | 1 + 3 files changed, 483 insertions(+), 472 deletions(-) create mode 100644 target/arm/cpregs.c