diff mbox

[7/7,v4] drivers/virt: introduce Freescale hypervisor management driver

Message ID 1307573154-15838-1-git-send-email-timur@freescale.com (mailing list archive)
State Not Applicable
Headers show

Commit Message

Timur Tabi June 8, 2011, 10:45 p.m. UTC
Add the drivers/virt directory, which houses drivers that support
virtualization environments, and add the Freescale hypervisor management
driver.

The Freescale hypervisor management driver provides several services to
drivers and applications related to the Freescale hypervisor:

1. An ioctl interface for querying and managing partitions

2. A file interface to reading incoming doorbells

3. An interrupt handler for shutting down the partition upon receiving the
   shutdown doorbell from a manager partition

4. An interface for receiving callbacks when a managed partition shuts down.

Signed-off-by: Timur Tabi <timur@freescale.com>
---
 drivers/Kconfig                |    2 +
 drivers/Makefile               |    3 +
 drivers/virt/Kconfig           |   22 +
 drivers/virt/Makefile          |    5 +
 drivers/virt/fsl_hypervisor.c  |  961 ++++++++++++++++++++++++++++++++++++++++
 include/linux/Kbuild           |    1 +
 include/linux/fsl_hypervisor.h |  214 +++++++++
 7 files changed, 1208 insertions(+), 0 deletions(-)
 create mode 100644 drivers/virt/Kconfig
 create mode 100644 drivers/virt/Makefile
 create mode 100644 drivers/virt/fsl_hypervisor.c
 create mode 100644 include/linux/fsl_hypervisor.h

Comments

Randy Dunlap June 8, 2011, 11:10 p.m. UTC | #1
On Wed, 8 Jun 2011 17:45:54 -0500 Timur Tabi wrote:

> Add the drivers/virt directory, which houses drivers that support
> virtualization environments, and add the Freescale hypervisor management
> driver.

It can't go in linux/virt or linux/virt/fsl instead?  why drivers/ ?

or maybe linux/virt should be drivers/virt ?


> The Freescale hypervisor management driver provides several services to
> drivers and applications related to the Freescale hypervisor:
> 
> 1. An ioctl interface for querying and managing partitions
> 
> 2. A file interface to reading incoming doorbells
> 
> 3. An interrupt handler for shutting down the partition upon receiving the
>    shutdown doorbell from a manager partition
> 
> 4. An interface for receiving callbacks when a managed partition shuts down.
> 
> Signed-off-by: Timur Tabi <timur@freescale.com>
> ---
>  drivers/Kconfig                |    2 +
>  drivers/Makefile               |    3 +
>  drivers/virt/Kconfig           |   22 +
>  drivers/virt/Makefile          |    5 +
>  drivers/virt/fsl_hypervisor.c  |  961 ++++++++++++++++++++++++++++++++++++++++
>  include/linux/Kbuild           |    1 +
>  include/linux/fsl_hypervisor.h |  214 +++++++++
>  7 files changed, 1208 insertions(+), 0 deletions(-)
>  create mode 100644 drivers/virt/Kconfig
>  create mode 100644 drivers/virt/Makefile
>  create mode 100644 drivers/virt/fsl_hypervisor.c
>  create mode 100644 include/linux/fsl_hypervisor.h


> diff --git a/include/linux/fsl_hypervisor.h b/include/linux/fsl_hypervisor.h
> new file mode 100644
> index 0000000..4d1e11a
> --- /dev/null
> +++ b/include/linux/fsl_hypervisor.h
> @@ -0,0 +1,214 @@
> +/*
> + * Freescale hypervisor ioctl interface
> + *
> + * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
> + *
> + * Redistribution and use in source and binary forms, with or without
> + * modification, are permitted provided that the following conditions are met:
> + *     * Redistributions of source code must retain the above copyright
> + *       notice, this list of conditions and the following disclaimer.
> + *     * Redistributions in binary form must reproduce the above copyright
> + *       notice, this list of conditions and the following disclaimer in the
> + *       documentation and/or other materials provided with the distribution.
> + *     * Neither the name of Freescale Semiconductor nor the
> + *       names of its contributors may be used to endorse or promote products
> + *       derived from this software without specific prior written permission.
> + *
> + *
> + * ALTERNATIVELY, this software may be distributed under the terms of the
> + * GNU General Public License ("GPL") as published by the Free Software
> + * Foundation, either version 2 of that License or (at your option) any
> + * later version.

Why any later version?  I thought that <powers> decided that Linux
is GPL v2.

> + *
> + * This software is provided by Freescale Semiconductor "as is" and any
> + * express or implied warranties, including, but not limited to, the implied
> + * warranties of merchantability and fitness for a particular purpose are
> + * disclaimed. In no event shall Freescale Semiconductor be liable for any
> + * direct, indirect, incidental, special, exemplary, or consequential damages
> + * (including, but not limited to, procurement of substitute goods or services;
> + * loss of use, data, or profits; or business interruption) however caused and
> + * on any theory of liability, whether in contract, strict liability, or tort
> + * (including negligence or otherwise) arising in any way out of the use of this
> + * software, even if advised of the possibility of such damage.
> + *
> + * This file is used by the Freescale hypervisor management driver.  It can
> + * also be included by applications that need to communicate with the driver
> + * via the ioctl interface.
> + */
> +
> +#ifndef FSL_HYPERVISOR_H
> +#define FSL_HYPERVISOR_H
> +
> +#include <linux/types.h>
> +
> +/**
> + * struct fsl_hv_ioctl_restart: restart a partition

This syntax should be (for all structs here):

 * struct fsl_hv_ioctl_restart - restart a partition

but the struct fields/members do use ':' instead of '-'.

Darn, I checked Documentation/kernel-doc-nano-HOWTO.txt and it says
that ':' is optional but '-' is needed, so you could use

 * struct fsl_hv_ioctl_restart: - restart a partition

> + * @ret: return error code from the hypervisor
> + * @partition: the ID of the partition to restart, or -1 for the
> + *             calling partition
> + *
> + * Used by FSL_HV_IOCTL_PARTITION_RESTART
> + */
> +struct fsl_hv_ioctl_restart {
> +	__u32 ret;
> +	__u32 partition;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_status: get a partition's status
> + * @ret: return error code from the hypervisor
> + * @partition: the ID of the partition to query, or -1 for the
> + *             calling partition
> + * @status: The returned status of the partition
> + *
> + * Used by FSL_HV_IOCTL_PARTITION_GET_STATUS
> + *
> + * Values of 'status':
> + *    0 = Stopped
> + *    1 = Running
> + *    2 = Starting
> + *    3 = Stopping
> + */
> +struct fsl_hv_ioctl_status {
> +	__u32 ret;
> +	__u32 partition;
> +	__u32 status;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_start: start a partition
> + * @ret: return error code from the hypervisor
> + * @partition: the ID of the partition to control
> + * @entry_point: The offset within the guest IMA to start execution
> + * @load: If non-zero, reload the partition's images before starting
> + *
> + * Used by FSL_HV_IOCTL_PARTITION_START
> + */
> +struct fsl_hv_ioctl_start {
> +	__u32 ret;
> +	__u32 partition;
> +	__u32 entry_point;
> +	__u32 load;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_stop: stop a partition
> + * @ret: return error code from the hypervisor
> + * @partition: the ID of the partition to stop, or -1 for the calling
> + *             partition
> + *
> + * Used by FSL_HV_IOCTL_PARTITION_STOP
> + */
> +struct fsl_hv_ioctl_stop {
> +	__u32 ret;
> +	__u32 partition;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_memcpy: copy memory between partitions
> + * @ret: return error code from the hypervisor
> + * @source: the partition ID of the source partition, or -1 for this
> + *          partition
> + * @target: the partition ID of the target partition, or -1 for this
> + *          partition
> + * @local_addr: user-space virtual address of a buffer in the local
> + *              partition
> + * @remote_addr: guest physical address of a buffer in the
> + *           remote partition
> + * @count: the number of bytes to copy.  Both the local and remote
> + *         buffers must be at least 'count' bytes long
> + *
> + * Used by FSL_HV_IOCTL_MEMCPY
> + *
> + * The 'local' partition is the partition that calls this ioctl.  The
> + * 'remote' partition is a different partition.  The data is copied from
> + * the 'source' paritition' to the 'target' partition.
> + *
> + * The buffer in the remote partition must be guest physically
> + * contiguous.
> + *
> + * This ioctl does not support copying memory between two remote
> + * partitions or within the same partition, so either 'source' or
> + * 'target' (but not both) must be -1.  In other words, either
> + *
> + *      source == local and target == remote
> + * or
> + *      source == remote and target == local
> + */
> +struct fsl_hv_ioctl_memcpy {
> +	__u32 ret;
> +	__u32 source;
> +	__u32 target;
> +	__u64 local_vaddr;
> +	__u64 remote_paddr;
> +	__u64 count;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_doorbell: ring a doorbell
> + * @ret: return error code from the hypervisor
> + * @doorbell: the handle of the doorbell to ring doorbell
> + *
> + * Used by FSL_HV_IOCTL_DOORBELL
> + */
> +struct fsl_hv_ioctl_doorbell {
> +	__u32 ret;
> +	__u32 doorbell;
> +};
> +
> +/**
> + * struct fsl_hv_ioctl_prop: get/set a device tree property
> + * @ret: return error code from the hypervisor
> + * @handle: handle of partition whose tree to access
> + * @path: virtual address of path name of node to access
> + * @propname: virtual address of name of property to access
> + * @propval: virtual address of property data buffer
> + * @proplen: Size of property data buffer
> + *
> + * Used by FSL_HV_IOCTL_DOORBELL
> + */
> +struct fsl_hv_ioctl_prop {
> +	__u32 ret;
> +	__u32 handle;
> +	__u64 path;
> +	__u64 propname;
> +	__u64 propval;
> +	__u32 proplen;
> +};
> +
> +/*
> + * ioctl commands.
> + */
> +enum {
> +	FSL_HV_IOCTL_PARTITION_RESTART = 1, /* Boot another partition */
> +	FSL_HV_IOCTL_PARTITION_GET_STATUS = 2, /* Boot another partition */
> +	FSL_HV_IOCTL_PARTITION_START = 3, /* Boot another partition */
> +	FSL_HV_IOCTL_PARTITION_STOP = 4, /* Stop this or another partition */
> +	FSL_HV_IOCTL_MEMCPY = 5, /* Copy data from one partition to another */
> +	FSL_HV_IOCTL_DOORBELL = 6, /* Ring a doorbell */
> +
> +	/* Get a property from another guest's device tree */
> +	FSL_HV_IOCTL_GETPROP = 7,
> +
> +	/* Set a property in another guest's device tree */
> +	FSL_HV_IOCTL_SETPROP = 8,
> +};
> +
> +#ifdef __KERNEL__
> +
> +/**
> + * fsl_hv_event_register -- register a callback for failover events

Documentation/kernel-doc-nano-HOWTO.txt says to use one '-' here, not 2.

> + *
> + * This function is called by device drivers to register their callback
> + * functions for fail-over events.
> + */
> +int fsl_hv_failover_register(struct notifier_block *nb);
> +
> +/**
> + * fsl_hv_event_unregister -- unregister a callback for failover events

ditto.
And function arg descriptions are missing for both of these functions.

> + */
> +int fsl_hv_failover_unregister(struct notifier_block *nb);
> +
> +#endif
> +
> +#endif
> -- 


---
~Randy
*** Remember to use Documentation/SubmitChecklist when testing your code ***
Timur Tabi June 8, 2011, 11:16 p.m. UTC | #2
Randy Dunlap wrote:
>> Add the drivers/virt directory, which houses drivers that support
>> > virtualization environments, and add the Freescale hypervisor management
>> > driver.

> It can't go in linux/virt or linux/virt/fsl instead?  why drivers/ ?
> 
> or maybe linux/virt should be drivers/virt ?

I knew this would happen.  The reason I put it in drivers/virt is because Arnd
told me to put it there.  At this point, I don't give a damn where it goes, but
I wish you all would come to a consensus.

>> > + * ALTERNATIVELY, this software may be distributed under the terms of the
>> > + * GNU General Public License ("GPL") as published by the Free Software
>> > + * Foundation, either version 2 of that License or (at your option) any
>> > + * later version.

> Why any later version?  I thought that <powers> decided that Linux
> is GPL v2.

Um, you do realize that this isn't the only file in the kernel that is
v2-or-later?  Try this command on the Linux source, and you'll see what I mean:

grep -r "\(at your option\)" *

I'm dual-licensing the header file because it's meant for applications as well
as the kernel.  That way, no one needs to worry whether #including the header
file in his application will taint the app with the GPL.

>> > +/**
>> > + * struct fsl_hv_ioctl_restart: restart a partition
> This syntax should be (for all structs here):
> 
>  * struct fsl_hv_ioctl_restart - restart a partition
> 
> but the struct fields/members do use ':' instead of '-'.
> 
> Darn, I checked Documentation/kernel-doc-nano-HOWTO.txt and it says
> that ':' is optional but '-' is needed, so you could use
> 
>  * struct fsl_hv_ioctl_restart: - restart a partition
> 

Ok, I'll change it.

>> > + * fsl_hv_event_register -- register a callback for failover events

> Documentation/kernel-doc-nano-HOWTO.txt says to use one '-' here, not 2.

Ok.  I'll review that document and make sure my comments conform.  I guess I
just wasn't paying attention at the time.
Arnd Bergmann June 9, 2011, 7:29 a.m. UTC | #3
On Thursday 09 June 2011 00:45:54 Timur Tabi wrote:
> +struct fsl_hv_ioctl_memcpy {
> +       __u32 ret;
> +       __u32 source;
> +       __u32 target;
> +       __u64 local_vaddr;
> +       __u64 remote_paddr;
> +       __u64 count;
> +};

> +struct fsl_hv_ioctl_prop {
> +       __u32 ret;
> +       __u32 handle;
> +       __u64 path;
> +       __u64 propname;
> +       __u64 propval;
> +       __u32 proplen;
> +};

These structures have implied padding. Better make it explicit by
adding the appropriate __u32 __pad1 members or similar.

> +/*
> + * ioctl commands.
> + */
> +enum {
> +       FSL_HV_IOCTL_PARTITION_RESTART = 1, /* Boot another partition */
> +       FSL_HV_IOCTL_PARTITION_GET_STATUS = 2, /* Boot another partition */
> +       FSL_HV_IOCTL_PARTITION_START = 3, /* Boot another partition */
> +       FSL_HV_IOCTL_PARTITION_STOP = 4, /* Stop this or another partition */
> +       FSL_HV_IOCTL_MEMCPY = 5, /* Copy data from one partition to another */
> +       FSL_HV_IOCTL_DOORBELL = 6, /* Ring a doorbell */
> +
> +       /* Get a property from another guest's device tree */
> +       FSL_HV_IOCTL_GETPROP = 7,
> +
> +       /* Set a property in another guest's device tree */
> +       FSL_HV_IOCTL_SETPROP = 8,
> +};

As discussed before, this one should really be using the _IOC macros to define
the commands that you use based on the structure definitions above, e.g.

#define FSL_HV_IOCTL_GETPROP _IORW(FSL_HV, 8, struct fsl_hv_ioctl_prop)

Then get rid of all the code that takes apart the ioctl command numbers
again and just do a switch/case based on the command.

	Arnd

	Arnd
Arnd Bergmann June 9, 2011, 7:38 a.m. UTC | #4
On Thursday 09 June 2011 01:10:09 Randy Dunlap wrote:
> On Wed, 8 Jun 2011 17:45:54 -0500 Timur Tabi wrote:
> 
> > Add the drivers/virt directory, which houses drivers that support
> > virtualization environments, and add the Freescale hypervisor management
> > driver.
> 
> It can't go in linux/virt or linux/virt/fsl instead?  why drivers/ ?
> 
> or maybe linux/virt should be drivers/virt ?

See discussion for v2 of this patch. I suggested that drivers/firmware and virt/
as options, the counterarguments were that drivers/firmware is for passive
firmware as opposed to firmware that acts as a hypervisor, and that virt/ is
for the host side of hypervisors like kvm, not for guests.

The driver in here most closely resembles the xen dom0 model, where a
priviledged guest controls other guests, but unlike xen there is a single
driver file, so there is no need to have drivers/fsl-hv directory just
for this one file. We do have a number of other hypervisors that fit in the
same category, so they can be added here later.

	Arnd
Randy Dunlap June 9, 2011, 4:32 p.m. UTC | #5
On 06/09/11 00:38, Arnd Bergmann wrote:
> On Thursday 09 June 2011 01:10:09 Randy Dunlap wrote:
>> On Wed, 8 Jun 2011 17:45:54 -0500 Timur Tabi wrote:
>>
>>> Add the drivers/virt directory, which houses drivers that support
>>> virtualization environments, and add the Freescale hypervisor management
>>> driver.
>>
>> It can't go in linux/virt or linux/virt/fsl instead?  why drivers/ ?
>>
>> or maybe linux/virt should be drivers/virt ?
> 
> See discussion for v2 of this patch. I suggested that drivers/firmware and virt/
> as options, the counterarguments were that drivers/firmware is for passive
> firmware as opposed to firmware that acts as a hypervisor, and that virt/ is
> for the host side of hypervisors like kvm, not for guests.

OK, I read that thread.  Didn't see a real consensus there.

If you were not the drivers/misc/ maintainer, would you mind if this
driver lived in drivers/misc/?  I wouldn't.

But it sounds like virt/ needs virt/host/ and virt/guest/ to me.


> The driver in here most closely resembles the xen dom0 model, where a
> priviledged guest controls other guests, but unlike xen there is a single
> driver file, so there is no need to have drivers/fsl-hv directory just
> for this one file. We do have a number of other hypervisors that fit in the
> same category, so they can be added here later.
Timur Tabi June 9, 2011, 4:36 p.m. UTC | #6
Randy Dunlap wrote:
> But it sounds like virt/ needs virt/host/ and virt/guest/ to me.

I'm okay with that idea, except there's a consensus that drivers should be in
drivers/.
Randy Dunlap June 9, 2011, 4:42 p.m. UTC | #7
On 06/09/11 09:36, Timur Tabi wrote:
> Randy Dunlap wrote:
>> But it sounds like virt/ needs virt/host/ and virt/guest/ to me.
> 
> I'm okay with that idea, except there's a consensus that drivers should be in
> drivers/.
> 

Like sound/ ?

but what makes it a "driver"?
Timur Tabi June 9, 2011, 4:48 p.m. UTC | #8
Randy Dunlap wrote:
>> > I'm okay with that idea, except there's a consensus that drivers should be in
>> > drivers/.
>> > 
> Like sound/ ?

My understanding is that this is something that's considered broken and should
be fixed, but I don't know what the holdup is.

> but what makes it a "driver"?

That's a good point.

Ok, so maybe I don't have any really good answers here. :-)
Timur Tabi June 9, 2011, 6:55 p.m. UTC | #9
Arnd Bergmann wrote:
> Then get rid of all the code that takes apart the ioctl command numbers
> again and just do a switch/case based on the command.

I still need to keep that code to maintain binary compatibility with existing
applications that pass the union as a parameter.

I'll fix that after we've updated the applications.  But we have a
chicken-or-the-egg problem where we need the same application to work with the
new and old ioctl interface for a period of time.
Arnd Bergmann June 9, 2011, 8:20 p.m. UTC | #10
On Thursday 09 June 2011 20:55:17 Timur Tabi wrote:
> Arnd Bergmann wrote:
> > Then get rid of all the code that takes apart the ioctl command numbers
> > again and just do a switch/case based on the command.
> 
> I still need to keep that code to maintain binary compatibility with existing
> applications that pass the union as a parameter.
> 
> I'll fix that after we've updated the applications.  But we have a
> chicken-or-the-egg problem where we need the same application to work with the
> new and old ioctl interface for a period of time.

The lesson to learn here is obviously not to ship binaries of applications
to customers before the driver has been merged in a mainline kernel.

The best way out that I can see is to make the driver carry the proper
interface in the upstream version, but to have a private patch to support
both interface versions in the kernel you ship on machines that require
backwards compatibility. Once you have phased out the user application,
you can then drop that patch and use the upstream version of the
interfaces.

	Arnd
Timur Tabi June 9, 2011, 8:24 p.m. UTC | #11
Arnd Bergmann wrote:
> The lesson to learn here is obviously not to ship binaries of applications
> to customers before the driver has been merged in a mainline kernel.

Believe me, I know this, but unfortunately I have no control over every aspect
of our development cycle.

> The best way out that I can see is to make the driver carry the proper
> interface in the upstream version, but to have a private patch to support
> both interface versions in the kernel you ship on machines that require
> backwards compatibility. Once you have phased out the user application,
> you can then drop that patch and use the upstream version of the
> interfaces.

I think I can make that work.
Chris Metcalf June 10, 2011, 2:17 p.m. UTC | #12
On 6/9/2011 3:38 AM, Arnd Bergmann wrote:
> On Thursday 09 June 2011 01:10:09 Randy Dunlap wrote:
>> On Wed, 8 Jun 2011 17:45:54 -0500 Timur Tabi wrote:
>>
>>> Add the drivers/virt directory, which houses drivers that support
>>> virtualization environments, and add the Freescale hypervisor management
>>> driver.
>> It can't go in linux/virt or linux/virt/fsl instead?  why drivers/ ?
>>
>> or maybe linux/virt should be drivers/virt ?
> See discussion for v2 of this patch. I suggested that drivers/firmware and virt/
> as options, the counterarguments were that drivers/firmware is for passive
> firmware as opposed to firmware that acts as a hypervisor, and that virt/ is
> for the host side of hypervisors like kvm, not for guests.
>
> The driver in here most closely resembles the xen dom0 model, where a
> priviledged guest controls other guests, but unlike xen there is a single
> driver file, so there is no need to have drivers/fsl-hv directory just
> for this one file. We do have a number of other hypervisors that fit in the
> same category, so they can be added here later.

This still leaves open the question of what really should go in this new
directory. Is it just for drivers that manage/control the hypervisor?  Or
is it also for drivers that just use the hypervisor to do I/O of some kind,
but aren't related to any other "family" of drivers, i.e., a driver that
would have been dumped in drivers/char or drivers/misc in the old days?

My specific interest at the moment is the proposed tile-srom.c driver
(https://patchwork.kernel.org/patch/843892/), which uses a simple
hypervisor read/write API to access the portion of the SPI ROM used to hold
the boot stream for a TILE processor.
Arnd Bergmann June 10, 2011, 3:36 p.m. UTC | #13
On Friday 10 June 2011, Chris Metcalf wrote:
> This still leaves open the question of what really should go in this new
> directory. Is it just for drivers that manage/control the hypervisor?  Or
> is it also for drivers that just use the hypervisor to do I/O of some kind,
> but aren't related to any other "family" of drivers, i.e., a driver that
> would have been dumped in drivers/char or drivers/misc in the old days?
> 
> My specific interest at the moment is the proposed tile-srom.c driver
> (https://patchwork.kernel.org/patch/843892/), which uses a simple
> hypervisor read/write API to access the portion of the SPI ROM used to hold
> the boot stream for a TILE processor.

I'd still put that driver in drivers/char for now, because it already contains
similar drivers. We can probaby group them in a subdirectory of drivers/char
at some point or move them out to a new directory.

For your raw hcall passthrough driver, that would be something that should
go into drivers/virt/ IMHO.

	Arnd
diff mbox

Patch

diff --git a/drivers/Kconfig b/drivers/Kconfig
index 557a469..0371680 100644
--- a/drivers/Kconfig
+++ b/drivers/Kconfig
@@ -122,4 +122,6 @@  source "drivers/hwspinlock/Kconfig"
 
 source "drivers/clocksource/Kconfig"
 
+source "drivers/virt/Kconfig"
+
 endmenu
diff --git a/drivers/Makefile b/drivers/Makefile
index 3f135b6..306c80e5 100644
--- a/drivers/Makefile
+++ b/drivers/Makefile
@@ -119,3 +119,6 @@  obj-y				+= ieee802154/
 obj-y				+= clk/
 
 obj-$(CONFIG_HWSPINLOCK)	+= hwspinlock/
+
+# Virtualization drivers
+obj-$(VIRT_DRIVERS)		+= virt/
diff --git a/drivers/virt/Kconfig b/drivers/virt/Kconfig
new file mode 100644
index 0000000..b0cb0b6
--- /dev/null
+++ b/drivers/virt/Kconfig
@@ -0,0 +1,22 @@ 
+#
+# Virtualization support drivers
+#
+
+menuconfig VIRT_DRIVERS
+	bool "Virtualization drivers"
+	---help---
+	  Say Y here to get to see options for device drivers that support
+	  virtualization environments.
+
+	  If you say N, all options in this submenu will be skipped and disabled.
+
+if VIRT_DRIVERS
+
+config FSL_HV_MANAGER
+	tristate "Freescale hypervisor management driver"
+	depends on FSL_SOC
+	help
+	  This driver allows applications to communicate with the Freescale
+	  Hypervisor.
+
+endif
diff --git a/drivers/virt/Makefile b/drivers/virt/Makefile
new file mode 100644
index 0000000..c47f04d
--- /dev/null
+++ b/drivers/virt/Makefile
@@ -0,0 +1,5 @@ 
+#
+# Makefile for drivers that support virtualization
+#
+
+obj-$(CONFIG_FSL_HV_MANAGER)	+= fsl_hypervisor.o
diff --git a/drivers/virt/fsl_hypervisor.c b/drivers/virt/fsl_hypervisor.c
new file mode 100644
index 0000000..2b41d48
--- /dev/null
+++ b/drivers/virt/fsl_hypervisor.c
@@ -0,0 +1,961 @@ 
+/*
+ * Freescale Hypervisor Management Driver
+
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * This file is licensed under the terms of the GNU General Public License
+ * version 2.  This program is licensed "as is" without any warranty of any
+ * kind, whether express or implied.
+ *
+ * This driver contains functions to support the Freescale hypervisor.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/err.h>
+#include <linux/fs.h>
+#include <linux/miscdevice.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/poll.h>
+#include <linux/of.h>
+#include <linux/reboot.h>
+#include <linux/uaccess.h>
+#include <linux/notifier.h>
+
+#include <linux/io.h>
+#include <asm/fsl_hcalls.h>
+
+#include <linux/fsl_hypervisor.h>
+
+static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
+ *
+ * Restart a running partition
+ */
+static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
+{
+	struct fsl_hv_ioctl_restart param;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
+		return -EFAULT;
+
+	param.ret = fh_partition_restart(param.partition);
+
+	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
+		return -EFAULT;
+
+	return 0;
+}
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
+ *
+ * Query the status of a partition
+ */
+static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
+{
+	struct fsl_hv_ioctl_status param;
+	u32 status;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
+		return -EFAULT;
+
+	param.ret = fh_partition_get_status(param.partition, &status);
+	if (!param.ret)
+		param.status = status;
+
+	if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
+		return -EFAULT;
+
+	return 0;
+}
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
+ *
+ * Start a stopped partition.
+ */
+static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
+{
+	struct fsl_hv_ioctl_start param;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
+		return -EFAULT;
+
+	param.ret = fh_partition_start(param.partition, param.entry_point,
+				       param.load);
+
+	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
+		return -EFAULT;
+
+	return 0;
+}
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
+ *
+ * Stop a running partition
+ */
+static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
+{
+	struct fsl_hv_ioctl_stop param;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
+		return -EFAULT;
+
+	param.ret = fh_partition_stop(param.partition);
+
+	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
+		return -EFAULT;
+
+	return 0;
+}
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_MEMCPY
+ *
+ * The FH_MEMCPY hypercall takes an array of address/address/size structures
+ * to represent the data being copied.  As a convenience to the user, this
+ * ioctl takes a user-create buffer and a pointer to a guest physically
+ * contiguous buffer in the remote partition, and creates the
+ * address/address/size array for the hypercall.
+ */
+static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
+{
+	struct fsl_hv_ioctl_memcpy param;
+
+	struct page **pages = NULL;
+	void *sg_list_unaligned = NULL;
+	struct fh_sg_list *sg_list = NULL;
+
+	unsigned int num_pages;
+	unsigned long lb_offset; /* Offset within a page of the local buffer */
+
+	unsigned int i;
+	long ret = 0;
+	int num_pinned; /* return value from get_user_pages() */
+	phys_addr_t remote_paddr; /* The next address in the remote buffer */
+	uint32_t count; /* The number of bytes left to copy */
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
+		return -EFAULT;
+
+	/* One partition must be local, the other must be remote.  In other
+	   words, if source and target are both -1, or are both not -1, then
+	   return an error. */
+	if ((param.source == -1) == (param.target == -1))
+		return -EINVAL;
+
+	/*
+	 * The array of pages returned by get_user_pages() covers only
+	 * page-aligned memory.  Since the user buffer is probably not
+	 * page-aligned, we need to handle the discrepancy.
+	 *
+	 * We calculate the offset within a page of the S/G list, and make
+	 * adjustments accordingly.  This will result in a page list that looks
+	 * like this:
+	 *
+	 *      ----    <-- first page starts before the buffer
+	 *     |    |
+	 *     |////|-> ----
+	 *     |////|  |    |
+	 *      ----   |    |
+	 *             |    |
+	 *      ----   |    |
+	 *     |////|  |    |
+	 *     |////|  |    |
+	 *     |////|  |    |
+	 *      ----   |    |
+	 *             |    |
+	 *      ----   |    |
+	 *     |////|  |    |
+	 *     |////|  |    |
+	 *     |////|  |    |
+	 *      ----   |    |
+	 *             |    |
+	 *      ----   |    |
+	 *     |////|  |    |
+	 *     |////|-> ----
+	 *     |    |   <-- last page ends after the buffer
+	 *      ----
+	 *
+	 * The distance between the start of the first page and the start of the
+	 * buffer is lb_offset.  The hashed (///) areas are the parts of the
+	 * page list that contain the actual buffer.
+	 *
+	 * The advantage of this approach is that the number of pages is
+	 * equal to the number of entries in the S/G list that we give to the
+	 * hypervisor.
+	 */
+	lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
+	num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
+
+	/* Allocate the buffers we need */
+
+	/* pages is an array of struct page pointers that's initialized by
+	   get_user_pages() */
+	pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
+	if (!pages) {
+		pr_debug("fsl-hv: could not allocate page list\n");
+		return -ENOMEM;
+	}
+
+	/* sg_list is the list of fh_sg_list objects that we pass to the
+	   hypervisor */
+	sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
+		sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
+	if (!sg_list_unaligned) {
+		pr_debug("fsl-hv: could not allocate S/G list\n");
+		ret = -ENOMEM;
+		goto exit;
+	}
+	sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
+
+	/* Get the physical addresses of the source buffer */
+	down_read(&current->mm->mmap_sem);
+	num_pinned = get_user_pages(current, current->mm,
+		param.local_vaddr - lb_offset, num_pages,
+		(param.source == -1) ? READ : WRITE,
+		0, pages, NULL);
+	up_read(&current->mm->mmap_sem);
+
+	if (num_pinned != num_pages) {
+		/* get_user_pages() failed */
+		pr_debug("fsl-hv: could not lock source buffer\n");
+		ret = (num_pinned < 0) ? num_pinned : -EFAULT;
+		goto exit;
+	}
+
+	/*
+	 * Build the fh_sg_list[] array.  The first page is special
+	 * because it's misaligned.
+	 */
+	if (param.source == -1) {
+		sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
+		sg_list[0].target = param.remote_paddr;
+	} else {
+		sg_list[0].source = param.remote_paddr;
+		sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
+	}
+	sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
+
+	remote_paddr = param.remote_paddr + sg_list[0].size;
+	count = param.count - sg_list[0].size;
+
+	for (i = 1; i < num_pages; i++) {
+		if (param.source == -1) {
+			/* local to remote */
+			sg_list[i].source = page_to_phys(pages[i]);
+			sg_list[i].target = remote_paddr;
+		} else {
+			/* remote to local */
+			sg_list[i].source = remote_paddr;
+			sg_list[i].target = page_to_phys(pages[i]);
+		}
+		sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
+
+		remote_paddr += sg_list[i].size;
+		count -= sg_list[i].size;
+	}
+
+	param.ret = fh_partition_memcpy(param.source, param.target,
+		virt_to_phys(sg_list), num_pages);
+
+exit:
+	if (pages) {
+		for (i = 0; i < num_pages; i++)
+			if (pages[i])
+				put_page(pages[i]);
+	}
+
+	kfree(sg_list_unaligned);
+	kfree(pages);
+
+	if (!ret)
+		if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
+			return -EFAULT;
+
+	return ret;
+}
+
+/*
+ * Ioctl interface for FSL_HV_IOCTL_DOORBELL
+ *
+ * Ring a doorbell
+ */
+static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
+{
+	struct fsl_hv_ioctl_doorbell param;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
+		return -EFAULT;
+
+	param.ret = ev_doorbell_send(param.doorbell);
+
+	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
+		return -EFAULT;
+
+	return 0;
+}
+
+static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
+{
+	struct fsl_hv_ioctl_prop param;
+	char __user *upath, *upropname;
+	void __user *upropval;
+	char *path = NULL, *propname = NULL;
+	void *propval = NULL;
+	int ret = 0;
+
+	/* Get the parameters from the user */
+	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
+		return -EFAULT;
+
+	upath = (char __user *)(uintptr_t)param.path;
+	upropname = (char __user *)(uintptr_t)param.propname;
+	upropval = (void __user *)(uintptr_t)param.propval;
+
+	path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
+	if (IS_ERR(path)) {
+		ret = PTR_ERR(path);
+		goto out;
+	}
+
+	propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
+	if (IS_ERR(propname)) {
+		ret = PTR_ERR(propname);
+		goto out;
+	}
+
+	if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	propval = kmalloc(param.proplen, GFP_KERNEL);
+	if (!propval) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	if (set) {
+		if (copy_from_user(propval, upropval, param.proplen)) {
+			ret = -EFAULT;
+			goto out;
+		}
+
+		param.ret = fh_partition_set_dtprop(param.handle,
+						    virt_to_phys(path),
+						    virt_to_phys(propname),
+						    virt_to_phys(propval),
+						    param.proplen);
+	} else {
+		param.ret = fh_partition_get_dtprop(param.handle,
+						    virt_to_phys(path),
+						    virt_to_phys(propname),
+						    virt_to_phys(propval),
+						    &param.proplen);
+
+		if (param.ret == 0) {
+			if (copy_to_user(upropval, propval, param.proplen) ||
+			    put_user(param.proplen, &p->proplen)) {
+				ret = -EFAULT;
+				goto out;
+			}
+		}
+	}
+
+	if (put_user(param.ret, &p->ret))
+		ret = -EFAULT;
+
+out:
+	kfree(path);
+	kfree(propval);
+	kfree(propname);
+
+	return ret;
+}
+
+/*
+ * Ioctl main entry point
+ */
+static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
+			 unsigned long argaddr)
+{
+	void __user *arg = (void __user *)argaddr;
+	long ret;
+	size_t size;
+
+	/* Make sure the application is called the right driver. */
+	if (_IOC_TYPE(cmd) != 0) {
+		pr_debug("fsl-hv: ioctl type %u should be 0\n", _IOC_TYPE(cmd));
+		return -EINVAL;
+	}
+
+	/* Make sure the application set the direction flag correctly. */
+	if (_IOC_DIR(cmd) != (_IOC_READ | _IOC_WRITE)) {
+		pr_debug("fsl-hv: ioctl direction should be _IOWR\n");
+		return -EINVAL;
+	}
+
+	/*
+	 * Make sure the application is passing the right structure to us.
+	 * For backwards compatibility with older applications, we only check
+	 * if the size is too small, rather than unequal.
+	 */
+
+	switch (_IOC_NR(cmd)) {
+	case FSL_HV_IOCTL_PARTITION_RESTART:
+		size = sizeof(struct fsl_hv_ioctl_restart);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_restart(arg);
+		break;
+	case FSL_HV_IOCTL_PARTITION_GET_STATUS:
+		size = sizeof(struct fsl_hv_ioctl_status);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_status(arg);
+		break;
+	case FSL_HV_IOCTL_PARTITION_START:
+		size = sizeof(struct fsl_hv_ioctl_start);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_start(arg);
+		break;
+	case FSL_HV_IOCTL_PARTITION_STOP:
+		size = sizeof(struct fsl_hv_ioctl_stop);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_stop(arg);
+		break;
+	case FSL_HV_IOCTL_MEMCPY:
+		size = sizeof(struct fsl_hv_ioctl_memcpy);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_memcpy(arg);
+		break;
+	case FSL_HV_IOCTL_DOORBELL:
+		size = sizeof(struct fsl_hv_ioctl_doorbell);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_doorbell(arg);
+		break;
+	case FSL_HV_IOCTL_GETPROP:
+		size = sizeof(struct fsl_hv_ioctl_prop);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_dtprop(arg, 0);
+		break;
+	case FSL_HV_IOCTL_SETPROP:
+		size = sizeof(struct fsl_hv_ioctl_prop);
+		if (_IOC_SIZE(cmd) < size)
+			goto size_error;
+		ret = ioctl_dtprop(arg, 1);
+		break;
+	default:
+		pr_debug("fsl-hv: unknown ioctl %u\n", _IOC_NR(cmd));
+		return -ENOTTY;
+	}
+
+	return ret;
+
+size_error:
+	pr_debug("fsl-hv: ioctl %u parameter size %u should be %zu\n",
+		 _IOC_NR(cmd), _IOC_SIZE(cmd), size);
+	return -EINVAL;
+}
+
+/* Linked list of processes that have us open */
+static struct list_head db_list;
+
+/* spinlock for db_list */
+static DEFINE_SPINLOCK(db_list_lock);
+
+/* The size of the doorbell event queue.  This must be a power of two. */
+#define QSIZE	16
+
+/* Returns the next head/tail pointer, wrapping around the queue if necessary */
+#define nextp(x) (((x) + 1) & (QSIZE - 1))
+
+/* Per-open data structure */
+struct doorbell_queue {
+	struct list_head list;
+	spinlock_t lock;
+	wait_queue_head_t wait;
+	unsigned int head;
+	unsigned int tail;
+	uint32_t q[QSIZE];
+};
+
+/* Linked list of ISRs that we registered */
+struct list_head isr_list;
+
+/* Per-ISR data structure */
+struct doorbell_isr {
+	struct list_head list;
+	unsigned int irq;
+	uint32_t doorbell;	/* The doorbell handle */
+	uint32_t partition;	/* The partition handle, if used */
+};
+
+/*
+ * Add a doorbell to all of the doorbell queues
+ */
+static void fsl_hv_queue_doorbell(uint32_t doorbell)
+{
+	struct doorbell_queue *dbq;
+	unsigned long flags;
+
+	/* Prevent another core from modifying db_list */
+	spin_lock_irqsave(&db_list_lock, flags);
+
+	list_for_each_entry(dbq, &db_list, list) {
+		if (dbq->head != nextp(dbq->tail)) {
+			dbq->q[dbq->tail] = doorbell;
+			/* This memory barrier eliminates the need to grab
+			 * the spinlock for dbq. */
+			smp_wmb();
+			dbq->tail = nextp(dbq->tail);
+			wake_up_interruptible(&dbq->wait);
+		}
+	}
+
+	spin_unlock_irqrestore(&db_list_lock, flags);
+}
+
+/*
+ * Interrupt handler for all doorbells
+ *
+ * We use the same interrupt handler for all doorbells.  Whenever a doorbell
+ * is rung, and we receive an interrupt, we just put the handle for that
+ * doorbell (passed to us as *data) into all of the queues.
+ */
+static irqreturn_t fsl_hv_isr(int irq, void *data)
+{
+	fsl_hv_queue_doorbell((uintptr_t) data);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * State change thread function
+ *
+ * The state change notification arrives in an interrupt, but we can't call
+ * blocking_notifier_call_chain() in an interrupt handler.  We could call
+ * atomic_notifier_call_chain(), but that would require the clients' call-back
+ * function to run in interrupt context.  Since we don't want to impose that
+ * restriction on the clients, we use a threaded IRQ to process the
+ * notification in kernel context.
+ */
+static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
+{
+	struct doorbell_isr *dbisr = data;
+
+	blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
+				     NULL);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Interrupt handler for state-change doorbells
+ */
+static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
+{
+	unsigned int status;
+	struct doorbell_isr *dbisr = data;
+	int ret;
+
+	/* It's still a doorbell, so add it to all the queues */
+	fsl_hv_queue_doorbell(dbisr->doorbell);
+
+	/* Determine the new state, and if it's stopped, notify the clients. */
+	ret = fh_partition_get_status(dbisr->partition, &status);
+	if (!ret && (status == FH_PARTITION_STOPPED))
+		return IRQ_WAKE_THREAD;
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Returns a bitmask indicating whether a read will block
+ */
+static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
+{
+	struct doorbell_queue *dbq = filp->private_data;
+	unsigned long flags;
+	unsigned int mask;
+
+	spin_lock_irqsave(&dbq->lock, flags);
+
+	poll_wait(filp, &dbq->wait, p);
+	mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
+
+	spin_unlock_irqrestore(&dbq->lock, flags);
+
+	return mask;
+}
+
+/*
+ * Return the handles for any incoming doorbells
+ *
+ * If there are doorbell handles in the queue for this open instance, then
+ * return them to the caller as an array of 32-bit integers.  Otherwise,
+ * block until there is at least one handle to return.
+ */
+static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
+			   loff_t *off)
+{
+	struct doorbell_queue *dbq = filp->private_data;
+	uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
+	unsigned long flags;
+	ssize_t count = 0;
+
+	/* Make sure we stop when the user buffer is full. */
+	while (len >= sizeof(uint32_t)) {
+		uint32_t dbell;	/* Local copy of doorbell queue data */
+
+		spin_lock_irqsave(&dbq->lock, flags);
+
+		/* If the queue is empty, then either we're done or we need
+		 * to block.  If the application specified O_NONBLOCK, then
+		 * we return the appropriate error code.
+		 */
+		if (dbq->head == dbq->tail) {
+			spin_unlock_irqrestore(&dbq->lock, flags);
+			if (count)
+				break;
+			if (filp->f_flags & O_NONBLOCK)
+				return -EAGAIN;
+			if (wait_event_interruptible(dbq->wait,
+						     dbq->head != dbq->tail))
+				return -ERESTARTSYS;
+			continue;
+		}
+
+		/* Even though we have an smp_wmb() in the ISR, the core
+		 * might speculatively execute the "dbell = ..." below while
+		 * it's evaluating the if-statement above.  In that case, the
+		 * value put into dbell could be stale if the core accepts the
+		 * speculation. To prevent that, we need a read memory barrier
+		 * here as well.
+		 */
+		smp_rmb();
+
+		/* Copy the data to a temporary local buffer, because
+		 * we can't call copy_to_user() from inside a spinlock
+		 */
+		dbell = dbq->q[dbq->head];
+		dbq->head = nextp(dbq->head);
+
+		spin_unlock_irqrestore(&dbq->lock, flags);
+
+		if (put_user(dbell, p))
+			return -EFAULT;
+		p++;
+		count += sizeof(uint32_t);
+		len -= sizeof(uint32_t);
+	}
+
+	return count;
+}
+
+/*
+ * Open the driver and prepare for reading doorbells.
+ *
+ * Every time an application opens the driver, we create a doorbell queue
+ * for that file handle.  This queue is used for any incoming doorbells.
+ */
+static int fsl_hv_open(struct inode *inode, struct file *filp)
+{
+	struct doorbell_queue *dbq;
+	unsigned long flags;
+	int ret = 0;
+
+	dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
+	if (!dbq) {
+		pr_err("fsl-hv: out of memory\n");
+		return -ENOMEM;
+	}
+
+	spin_lock_init(&dbq->lock);
+	init_waitqueue_head(&dbq->wait);
+
+	spin_lock_irqsave(&db_list_lock, flags);
+	list_add(&dbq->list, &db_list);
+	spin_unlock_irqrestore(&db_list_lock, flags);
+
+	filp->private_data = dbq;
+
+	return ret;
+}
+
+/*
+ * Close the driver
+ */
+static int fsl_hv_close(struct inode *inode, struct file *filp)
+{
+	struct doorbell_queue *dbq = filp->private_data;
+	unsigned long flags;
+
+	int ret = 0;
+
+	spin_lock_irqsave(&db_list_lock, flags);
+	list_del(&dbq->list);
+	spin_unlock_irqrestore(&db_list_lock, flags);
+
+	kfree(dbq);
+
+	return ret;
+}
+
+static const struct file_operations fsl_hv_fops = {
+	.owner = THIS_MODULE,
+	.open = fsl_hv_open,
+	.release = fsl_hv_close,
+	.poll = fsl_hv_poll,
+	.read = fsl_hv_read,
+	.unlocked_ioctl = fsl_hv_ioctl,
+};
+
+static struct miscdevice fsl_hv_misc_dev = {
+	MISC_DYNAMIC_MINOR,
+	"fsl-hv",
+	&fsl_hv_fops
+};
+
+static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
+{
+	orderly_poweroff(false);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Returns the handle of the parent of the given node
+ *
+ * The handle is the value of the 'hv-handle' property
+ */
+static int get_parent_handle(struct device_node *np)
+{
+	struct device_node *parent;
+	const uint32_t *prop;
+	uint32_t handle;
+	int len;
+
+	parent = of_get_parent(np);
+	if (!parent)
+		/* It's not really possible for this to fail */
+		return -ENODEV;
+
+	/*
+	 * The proper name for the handle property is "hv-handle", but some
+	 * older versions of the hypervisor used "reg".
+	 */
+	prop = of_get_property(parent, "hv-handle", &len);
+	if (!prop)
+		prop = of_get_property(parent, "reg", &len);
+
+	if (!prop || (len != sizeof(uint32_t))) {
+		/* This can happen only if the node is malformed */
+		of_node_put(parent);
+		return -ENODEV;
+	}
+
+	handle = be32_to_cpup(prop);
+	of_node_put(parent);
+
+	return handle;
+}
+
+/*
+ * Register a callback for failover events
+ *
+ * This function is called by device drivers to register their callback
+ * functions for fail-over events.
+ */
+int fsl_hv_failover_register(struct notifier_block *nb)
+{
+	return blocking_notifier_chain_register(&failover_subscribers, nb);
+}
+EXPORT_SYMBOL(fsl_hv_failover_register);
+
+/*
+ * Unregister a callback for failover events
+ */
+int fsl_hv_failover_unregister(struct notifier_block *nb)
+{
+	return blocking_notifier_chain_unregister(&failover_subscribers, nb);
+}
+EXPORT_SYMBOL(fsl_hv_failover_unregister);
+
+/*
+ * Return TRUE if we're running under FSL hypervisor
+ *
+ * This function checks to see if we're running under the Freescale
+ * hypervisor, and returns zero if we're not, or non-zero if we are.
+ *
+ * First, it checks if MSR[GS]==1, which means we're running under some
+ * hypervisor.  Then it checks if there is a hypervisor node in the device
+ * tree.  Currently, that means there needs to be a node in the root called
+ * "hypervisor" and which has a property named "fsl,hv-version".
+ */
+static int has_fsl_hypervisor(void)
+{
+	struct device_node *node;
+	int ret;
+
+	if (!(mfmsr() & MSR_GS))
+		return 0;
+
+	node = of_find_node_by_path("/hypervisor");
+	if (!node)
+		return 0;
+
+	ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
+
+	of_node_put(node);
+
+	return ret;
+}
+
+/*
+ * Freescale hypervisor management driver init
+ *
+ * This function is called when this module is loaded.
+ *
+ * Register ourselves as a miscellaneous driver.  This will register the
+ * fops structure and create the right sysfs entries for udev.
+ */
+static int __init fsl_hypervisor_init(void)
+{
+	struct device_node *np;
+	struct doorbell_isr *dbisr, *n;
+	int ret;
+
+	pr_info("Freescale hypervisor management driver\n");
+
+	if (!has_fsl_hypervisor()) {
+		pr_info("fsl-hv: no hypervisor found\n");
+		return -ENODEV;
+	}
+
+	ret = misc_register(&fsl_hv_misc_dev);
+	if (ret) {
+		pr_err("fsl-hv: cannot register device\n");
+		return ret;
+	}
+
+	INIT_LIST_HEAD(&db_list);
+	INIT_LIST_HEAD(&isr_list);
+
+	for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
+		unsigned int irq;
+		const uint32_t *handle;
+
+		handle = of_get_property(np, "interrupts", NULL);
+		irq = irq_of_parse_and_map(np, 0);
+		if (!handle || (irq == NO_IRQ)) {
+			pr_err("fsl-hv: no 'interrupts' property in %s node\n",
+				np->full_name);
+			continue;
+		}
+
+		dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
+		if (!dbisr)
+			goto out_of_memory;
+
+		dbisr->irq = irq;
+		dbisr->doorbell = be32_to_cpup(handle);
+
+		if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
+			/* The shutdown doorbell gets its own ISR */
+			ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
+					  np->name, NULL);
+		} else if (of_device_is_compatible(np,
+			"fsl,hv-state-change-doorbell")) {
+			/* The state change doorbell triggers a notification if
+			 * the state of the managed partition changes to
+			 * "stopped". We need a separate interrupt handler for
+			 * that, and we also need to know the handle of the
+			 * target partition, not just the handle of the
+			 * doorbell.
+			 */
+			dbisr->partition = ret = get_parent_handle(np);
+			if (ret < 0) {
+				pr_err("fsl-hv: node %s has missing or "
+				       "malformed parent\n", np->full_name);
+				kfree(dbisr);
+				continue;
+			}
+			ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
+						   fsl_hv_state_change_thread,
+						   0, np->name, dbisr);
+		} else
+			ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
+
+		if (ret < 0) {
+			pr_err("fsl-hv: could not request irq %u for node %s\n",
+			       irq, np->full_name);
+			kfree(dbisr);
+			continue;
+		}
+
+		list_add(&dbisr->list, &isr_list);
+
+		pr_info("fsl-hv: registered handler for doorbell %u\n",
+			*handle);
+	}
+
+	return 0;
+
+out_of_memory:
+	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
+		free_irq(dbisr->irq, dbisr);
+		list_del(&dbisr->list);
+		kfree(dbisr);
+	}
+
+	misc_deregister(&fsl_hv_misc_dev);
+
+	return -ENOMEM;
+}
+
+/*
+ * Freescale hypervisor management driver termination
+ *
+ * This function is called when this driver is unloaded.
+ */
+static void __exit fsl_hypervisor_exit(void)
+{
+	struct doorbell_isr *dbisr, *n;
+
+	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
+		free_irq(dbisr->irq, dbisr);
+		list_del(&dbisr->list);
+		kfree(dbisr);
+	}
+
+	misc_deregister(&fsl_hv_misc_dev);
+}
+
+module_init(fsl_hypervisor_init);
+module_exit(fsl_hypervisor_exit);
+
+MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
+MODULE_DESCRIPTION("Freescale hypervisor management driver");
+MODULE_LICENSE("GPL v2");
diff --git a/include/linux/Kbuild b/include/linux/Kbuild
index 75cf611..68c341a 100644
--- a/include/linux/Kbuild
+++ b/include/linux/Kbuild
@@ -134,6 +134,7 @@  header-y += firewire-cdev.h
 header-y += firewire-constants.h
 header-y += flat.h
 header-y += fs.h
+header-y += fsl_hypervisor.h
 header-y += fuse.h
 header-y += futex.h
 header-y += gameport.h
diff --git a/include/linux/fsl_hypervisor.h b/include/linux/fsl_hypervisor.h
new file mode 100644
index 0000000..4d1e11a
--- /dev/null
+++ b/include/linux/fsl_hypervisor.h
@@ -0,0 +1,214 @@ 
+/*
+ * Freescale hypervisor ioctl interface
+ *
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in the
+ *       documentation and/or other materials provided with the distribution.
+ *     * Neither the name of Freescale Semiconductor nor the
+ *       names of its contributors may be used to endorse or promote products
+ *       derived from this software without specific prior written permission.
+ *
+ *
+ * ALTERNATIVELY, this software may be distributed under the terms of the
+ * GNU General Public License ("GPL") as published by the Free Software
+ * Foundation, either version 2 of that License or (at your option) any
+ * later version.
+ *
+ * This software is provided by Freescale Semiconductor "as is" and any
+ * express or implied warranties, including, but not limited to, the implied
+ * warranties of merchantability and fitness for a particular purpose are
+ * disclaimed. In no event shall Freescale Semiconductor be liable for any
+ * direct, indirect, incidental, special, exemplary, or consequential damages
+ * (including, but not limited to, procurement of substitute goods or services;
+ * loss of use, data, or profits; or business interruption) however caused and
+ * on any theory of liability, whether in contract, strict liability, or tort
+ * (including negligence or otherwise) arising in any way out of the use of this
+ * software, even if advised of the possibility of such damage.
+ *
+ * This file is used by the Freescale hypervisor management driver.  It can
+ * also be included by applications that need to communicate with the driver
+ * via the ioctl interface.
+ */
+
+#ifndef FSL_HYPERVISOR_H
+#define FSL_HYPERVISOR_H
+
+#include <linux/types.h>
+
+/**
+ * struct fsl_hv_ioctl_restart: restart a partition
+ * @ret: return error code from the hypervisor
+ * @partition: the ID of the partition to restart, or -1 for the
+ *             calling partition
+ *
+ * Used by FSL_HV_IOCTL_PARTITION_RESTART
+ */
+struct fsl_hv_ioctl_restart {
+	__u32 ret;
+	__u32 partition;
+};
+
+/**
+ * struct fsl_hv_ioctl_status: get a partition's status
+ * @ret: return error code from the hypervisor
+ * @partition: the ID of the partition to query, or -1 for the
+ *             calling partition
+ * @status: The returned status of the partition
+ *
+ * Used by FSL_HV_IOCTL_PARTITION_GET_STATUS
+ *
+ * Values of 'status':
+ *    0 = Stopped
+ *    1 = Running
+ *    2 = Starting
+ *    3 = Stopping
+ */
+struct fsl_hv_ioctl_status {
+	__u32 ret;
+	__u32 partition;
+	__u32 status;
+};
+
+/**
+ * struct fsl_hv_ioctl_start: start a partition
+ * @ret: return error code from the hypervisor
+ * @partition: the ID of the partition to control
+ * @entry_point: The offset within the guest IMA to start execution
+ * @load: If non-zero, reload the partition's images before starting
+ *
+ * Used by FSL_HV_IOCTL_PARTITION_START
+ */
+struct fsl_hv_ioctl_start {
+	__u32 ret;
+	__u32 partition;
+	__u32 entry_point;
+	__u32 load;
+};
+
+/**
+ * struct fsl_hv_ioctl_stop: stop a partition
+ * @ret: return error code from the hypervisor
+ * @partition: the ID of the partition to stop, or -1 for the calling
+ *             partition
+ *
+ * Used by FSL_HV_IOCTL_PARTITION_STOP
+ */
+struct fsl_hv_ioctl_stop {
+	__u32 ret;
+	__u32 partition;
+};
+
+/**
+ * struct fsl_hv_ioctl_memcpy: copy memory between partitions
+ * @ret: return error code from the hypervisor
+ * @source: the partition ID of the source partition, or -1 for this
+ *          partition
+ * @target: the partition ID of the target partition, or -1 for this
+ *          partition
+ * @local_addr: user-space virtual address of a buffer in the local
+ *              partition
+ * @remote_addr: guest physical address of a buffer in the
+ *           remote partition
+ * @count: the number of bytes to copy.  Both the local and remote
+ *         buffers must be at least 'count' bytes long
+ *
+ * Used by FSL_HV_IOCTL_MEMCPY
+ *
+ * The 'local' partition is the partition that calls this ioctl.  The
+ * 'remote' partition is a different partition.  The data is copied from
+ * the 'source' paritition' to the 'target' partition.
+ *
+ * The buffer in the remote partition must be guest physically
+ * contiguous.
+ *
+ * This ioctl does not support copying memory between two remote
+ * partitions or within the same partition, so either 'source' or
+ * 'target' (but not both) must be -1.  In other words, either
+ *
+ *      source == local and target == remote
+ * or
+ *      source == remote and target == local
+ */
+struct fsl_hv_ioctl_memcpy {
+	__u32 ret;
+	__u32 source;
+	__u32 target;
+	__u64 local_vaddr;
+	__u64 remote_paddr;
+	__u64 count;
+};
+
+/**
+ * struct fsl_hv_ioctl_doorbell: ring a doorbell
+ * @ret: return error code from the hypervisor
+ * @doorbell: the handle of the doorbell to ring doorbell
+ *
+ * Used by FSL_HV_IOCTL_DOORBELL
+ */
+struct fsl_hv_ioctl_doorbell {
+	__u32 ret;
+	__u32 doorbell;
+};
+
+/**
+ * struct fsl_hv_ioctl_prop: get/set a device tree property
+ * @ret: return error code from the hypervisor
+ * @handle: handle of partition whose tree to access
+ * @path: virtual address of path name of node to access
+ * @propname: virtual address of name of property to access
+ * @propval: virtual address of property data buffer
+ * @proplen: Size of property data buffer
+ *
+ * Used by FSL_HV_IOCTL_DOORBELL
+ */
+struct fsl_hv_ioctl_prop {
+	__u32 ret;
+	__u32 handle;
+	__u64 path;
+	__u64 propname;
+	__u64 propval;
+	__u32 proplen;
+};
+
+/*
+ * ioctl commands.
+ */
+enum {
+	FSL_HV_IOCTL_PARTITION_RESTART = 1, /* Boot another partition */
+	FSL_HV_IOCTL_PARTITION_GET_STATUS = 2, /* Boot another partition */
+	FSL_HV_IOCTL_PARTITION_START = 3, /* Boot another partition */
+	FSL_HV_IOCTL_PARTITION_STOP = 4, /* Stop this or another partition */
+	FSL_HV_IOCTL_MEMCPY = 5, /* Copy data from one partition to another */
+	FSL_HV_IOCTL_DOORBELL = 6, /* Ring a doorbell */
+
+	/* Get a property from another guest's device tree */
+	FSL_HV_IOCTL_GETPROP = 7,
+
+	/* Set a property in another guest's device tree */
+	FSL_HV_IOCTL_SETPROP = 8,
+};
+
+#ifdef __KERNEL__
+
+/**
+ * fsl_hv_event_register -- register a callback for failover events
+ *
+ * This function is called by device drivers to register their callback
+ * functions for fail-over events.
+ */
+int fsl_hv_failover_register(struct notifier_block *nb);
+
+/**
+ * fsl_hv_event_unregister -- unregister a callback for failover events
+ */
+int fsl_hv_failover_unregister(struct notifier_block *nb);
+
+#endif
+
+#endif