From patchwork Tue Nov 8 16:21:14 2016 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Maxime Ripard X-Patchwork-Id: 692360 X-Patchwork-Delegate: hdegoede@redhat.com Return-Path: X-Original-To: incoming@patchwork.ozlabs.org Delivered-To: patchwork-incoming@bilbo.ozlabs.org Received: from theia.denx.de (theia.denx.de [85.214.87.163]) by ozlabs.org (Postfix) with ESMTP id 3tCvjq3SDwz9t2D for ; Wed, 9 Nov 2016 03:22:55 +1100 (AEDT) Received: from localhost (localhost [127.0.0.1]) by theia.denx.de (Postfix) with ESMTP id CAB9BA75D2; Tue, 8 Nov 2016 17:22:15 +0100 (CET) X-Amavis-Alert: BAD HEADER SECTION, Duplicate header field: "References" Received: from theia.denx.de ([127.0.0.1]) by localhost (theia.denx.de [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id LP4qozsfbWvO; Tue, 8 Nov 2016 17:22:15 +0100 (CET) Received: from theia.denx.de (localhost [127.0.0.1]) by theia.denx.de (Postfix) with ESMTP id E2707B3877; Tue, 8 Nov 2016 17:21:55 +0100 (CET) Received: from localhost (localhost [127.0.0.1]) by theia.denx.de (Postfix) with ESMTP id 33644A75D2 for ; Tue, 8 Nov 2016 17:21:35 +0100 (CET) X-Amavis-Alert: BAD HEADER SECTION, Duplicate header field: "References" Received: from theia.denx.de ([127.0.0.1]) by localhost (theia.denx.de [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id TyisWRcu6b-f for ; Tue, 8 Nov 2016 17:21:35 +0100 (CET) X-policyd-weight: NOT_IN_SBL_XBL_SPAMHAUS=-1.5 NOT_IN_SPAMCOP=-1.5 NOT_IN_BL_NJABL=-1.5 (only DNSBL check requested) Received: from mail.free-electrons.com (up.free-electrons.com [163.172.77.33]) by theia.denx.de (Postfix) with ESMTP id 44C82A75A9 for ; Tue, 8 Nov 2016 17:21:31 +0100 (CET) Received: by mail.free-electrons.com (Postfix, from userid 110) id 2B3CC20CEA; Tue, 8 Nov 2016 17:21:31 +0100 (CET) X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on mail.free-electrons.com X-Spam-Level: X-Spam-Status: No, score=-1.0 required=5.0 tests=ALL_TRUSTED,SHORTCIRCUIT, URIBL_BLOCKED shortcircuit=ham autolearn=disabled version=3.4.0 Received: from localhost (LFbn-1-2281-83.w90-76.abo.wanadoo.fr [90.76.98.83]) by mail.free-electrons.com (Postfix) with ESMTPSA id E14AB20D42; Tue, 8 Nov 2016 17:21:20 +0100 (CET) From: Maxime Ripard To: Scott Wood , Hans de Goede Date: Tue, 8 Nov 2016 17:21:14 +0100 Message-Id: <312ad66b8bd78b877f82ebd2fb16efcbb51e0a15.1478621974.git-series.maxime.ripard@free-electrons.com> X-Mailer: git-send-email 2.10.1 In-Reply-To: References: MIME-Version: 1.0 In-Reply-To: References: Cc: Thomas Petazzoni , u-boot@lists.denx.de, Alexander Kaplan Subject: [U-Boot] [PATCH 4/7] tools: sunxi: Add spl image builder X-BeenThere: u-boot@lists.denx.de X-Mailman-Version: 2.1.15 Precedence: list List-Id: U-Boot discussion List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: u-boot-bounces@lists.denx.de Sender: "U-Boot" This program generates raw SPL images that can be flashed on the NAND with the ECC and randomizer properly set up. Signed-off-by: Maxime Ripard Acked-by: Boris Brezillon Reviewed-by: Hans de Goede --- tools/.gitignore | 1 +- tools/Makefile | 1 +- tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- 3 files changed, 1115 insertions(+), 0 deletions(-) create mode 100644 tools/sunxi-spl-image-builder.c diff --git a/tools/.gitignore b/tools/.gitignore index cb1e722d4575..16574467544c 100644 --- a/tools/.gitignore +++ b/tools/.gitignore @@ -15,6 +15,7 @@ /mkexynosspl /mxsboot /mksunxiboot +/sunxi-spl-image-builder /ncb /proftool /relocate-rela diff --git a/tools/Makefile b/tools/Makefile index 400588cf0f5c..dfeeb23484ce 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot HOSTCFLAGS_mxsboot.o := -pedantic hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder hostprogs-$(CONFIG_NETCONSOLE) += ncb hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c new file mode 100644 index 000000000000..0f915eb2bdf5 --- /dev/null +++ b/tools/sunxi-spl-image-builder.c @@ -0,0 +1,1113 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * For the BCH implementation: + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic + * + * See also: + * http://lxr.free-electrons.com/source/lib/bch.c + * + * For the randomizer and image builder implementation: + * + * Copyright © 2016 NextThing Co. + * Copyright © 2016 Free Electrons + * + * Author: Boris Brezillon + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p) (CONFIG_BCH_CONST_M) +#define GF_T(_p) (CONFIG_BCH_CONST_T) +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p) ((_p)->m) +#define GF_T(_p) ((_p)->t) +#define GF_N(_p) ((_p)->n) +#endif + +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) + +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) + +#ifndef dbg +#define dbg(_fmt, args...) do {} while (0) +#endif + +#define cpu_to_be32 htobe32 +#define kfree free +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) + +#define BCH_PRIMITIVE_POLY 0x5803 + +struct image_info { + int ecc_strength; + int ecc_step_size; + int page_size; + int oob_size; + int usable_page_size; + int eraseblock_size; + int scramble; + int boot0; + off_t offset; + const char *source; + const char *dest; +}; + +/** + * struct bch_control - BCH control structure + * @m: Galois field order + * @n: maximum codeword size in bits (= 2^m-1) + * @t: error correction capability in bits + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t) + * @ecc_bytes: ecc max size (m*t bits) in bytes + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table + * @a_log_tab: Galois field GF(2^m) log lookup table + * @mod8_tab: remainder generator polynomial lookup tables + * @ecc_buf: ecc parity words buffer + * @ecc_buf2: ecc parity words buffer + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots + * @syn: syndrome buffer + * @cache: log-based polynomial representation buffer + * @elp: error locator polynomial + * @poly_2t: temporary polynomials of degree 2t + */ +struct bch_control { + unsigned int m; + unsigned int n; + unsigned int t; + unsigned int ecc_bits; + unsigned int ecc_bytes; +/* private: */ + uint16_t *a_pow_tab; + uint16_t *a_log_tab; + uint32_t *mod8_tab; + uint32_t *ecc_buf; + uint32_t *ecc_buf2; + unsigned int *xi_tab; + unsigned int *syn; + int *cache; + struct gf_poly *elp; + struct gf_poly *poly_2t[4]; +}; + +static int fls(int x) +{ + int r = 32; + + if (!x) + return 0; + if (!(x & 0xffff0000u)) { + x <<= 16; + r -= 16; + } + if (!(x & 0xff000000u)) { + x <<= 8; + r -= 8; + } + if (!(x & 0xf0000000u)) { + x <<= 4; + r -= 4; + } + if (!(x & 0xc0000000u)) { + x <<= 2; + r -= 2; + } + if (!(x & 0x80000000u)) { + x <<= 1; + r -= 1; + } + return r; +} + +/* + * represent a polynomial over GF(2^m) + */ +struct gf_poly { + unsigned int deg; /* polynomial degree */ + unsigned int c[0]; /* polynomial terms */ +}; + +/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) + +/* polynomial of degree 1 */ +struct gf_poly_deg1 { + struct gf_poly poly; + unsigned int c[2]; +}; + +/* + * same as encode_bch(), but process input data one byte at a time + */ +static void encode_bch_unaligned(struct bch_control *bch, + const unsigned char *data, unsigned int len, + uint32_t *ecc) +{ + int i; + const uint32_t *p; + const int l = BCH_ECC_WORDS(bch)-1; + + while (len--) { + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); + + for (i = 0; i < l; i++) + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); + + ecc[l] = (ecc[l] << 8)^(*p); + } +} + +/* + * convert ecc bytes to aligned, zero-padded 32-bit ecc words + */ +static void load_ecc8(struct bch_control *bch, uint32_t *dst, + const uint8_t *src) +{ + uint8_t pad[4] = {0, 0, 0, 0}; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++, src += 4) + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; + + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; +} + +/* + * convert 32-bit ecc words to ecc bytes + */ +static void store_ecc8(struct bch_control *bch, uint8_t *dst, + const uint32_t *src) +{ + uint8_t pad[4]; + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + + for (i = 0; i < nwords; i++) { + *dst++ = (src[i] >> 24); + *dst++ = (src[i] >> 16) & 0xff; + *dst++ = (src[i] >> 8) & 0xff; + *dst++ = (src[i] >> 0) & 0xff; + } + pad[0] = (src[nwords] >> 24); + pad[1] = (src[nwords] >> 16) & 0xff; + pad[2] = (src[nwords] >> 8) & 0xff; + pad[3] = (src[nwords] >> 0) & 0xff; + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); +} + +/** + * encode_bch - calculate BCH ecc parity of data + * @bch: BCH control structure + * @data: data to encode + * @len: data length in bytes + * @ecc: ecc parity data, must be initialized by caller + * + * The @ecc parity array is used both as input and output parameter, in order to + * allow incremental computations. It should be of the size indicated by member + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. + * + * The exact number of computed ecc parity bits is given by member @ecc_bits of + * @bch; it may be less than m*t for large values of t. + */ +static void encode_bch(struct bch_control *bch, const uint8_t *data, + unsigned int len, uint8_t *ecc) +{ + const unsigned int l = BCH_ECC_WORDS(bch)-1; + unsigned int i, mlen; + unsigned long m; + uint32_t w, r[l+1]; + const uint32_t * const tab0 = bch->mod8_tab; + const uint32_t * const tab1 = tab0 + 256*(l+1); + const uint32_t * const tab2 = tab1 + 256*(l+1); + const uint32_t * const tab3 = tab2 + 256*(l+1); + const uint32_t *pdata, *p0, *p1, *p2, *p3; + + if (ecc) { + /* load ecc parity bytes into internal 32-bit buffer */ + load_ecc8(bch, bch->ecc_buf, ecc); + } else { + memset(bch->ecc_buf, 0, sizeof(r)); + } + + /* process first unaligned data bytes */ + m = ((uintptr_t)data) & 3; + if (m) { + mlen = (len < (4-m)) ? len : 4-m; + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); + data += mlen; + len -= mlen; + } + + /* process 32-bit aligned data words */ + pdata = (uint32_t *)data; + mlen = len/4; + data += 4*mlen; + len -= 4*mlen; + memcpy(r, bch->ecc_buf, sizeof(r)); + + /* + * split each 32-bit word into 4 polynomials of weight 8 as follows: + * + * 31 ...24 23 ...16 15 ... 8 7 ... 0 + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt + * tttttttt mod g = r0 (precomputed) + * zzzzzzzz 00000000 mod g = r1 (precomputed) + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 + */ + while (mlen--) { + /* input data is read in big-endian format */ + w = r[0]^cpu_to_be32(*pdata++); + p0 = tab0 + (l+1)*((w >> 0) & 0xff); + p1 = tab1 + (l+1)*((w >> 8) & 0xff); + p2 = tab2 + (l+1)*((w >> 16) & 0xff); + p3 = tab3 + (l+1)*((w >> 24) & 0xff); + + for (i = 0; i < l; i++) + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; + + r[l] = p0[l]^p1[l]^p2[l]^p3[l]; + } + memcpy(bch->ecc_buf, r, sizeof(r)); + + /* process last unaligned bytes */ + if (len) + encode_bch_unaligned(bch, data, len, bch->ecc_buf); + + /* store ecc parity bytes into original parity buffer */ + if (ecc) + store_ecc8(bch, ecc, bch->ecc_buf); +} + +static inline int modulo(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + while (v >= n) { + v -= n; + v = (v & n) + (v >> GF_M(bch)); + } + return v; +} + +/* + * shorter and faster modulo function, only works when v < 2N. + */ +static inline int mod_s(struct bch_control *bch, unsigned int v) +{ + const unsigned int n = GF_N(bch); + return (v < n) ? v : v-n; +} + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly)-1; +} + +/* Galois field basic operations: multiply, divide, inverse, etc. */ + +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, + unsigned int b) +{ + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ + bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{ + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; +} + +static inline unsigned int a_pow(struct bch_control *bch, int i) +{ + return bch->a_pow_tab[modulo(bch, i)]; +} + +static inline int a_log(struct bch_control *bch, unsigned int x) +{ + return bch->a_log_tab[x]; +} + +/* + * generate Galois field lookup tables + */ +static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{ + unsigned int i, x = 1; + const unsigned int k = 1 << deg(poly); + + /* primitive polynomial must be of degree m */ + if (k != (1u << GF_M(bch))) + return -1; + + for (i = 0; i < GF_N(bch); i++) { + bch->a_pow_tab[i] = x; + bch->a_log_tab[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0a_pow_tab[GF_N(bch)] = 1; + bch->a_log_tab[0] = 0; + + return 0; +} + +/* + * compute generator polynomial remainder tables for fast encoding + */ +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{ + int i, j, b, d; + uint32_t data, hi, lo, *tab; + const int l = BCH_ECC_WORDS(bch); + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); + + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); + + for (i = 0; i < 256; i++) { + /* p(X)=i is a small polynomial of weight <= 8 */ + for (b = 0; b < 4; b++) { + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ + tab = bch->mod8_tab + (b*256+i)*l; + data = i << (8*b); + while (data) { + d = deg(data); + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ + data ^= g[0] >> (31-d); + for (j = 0; j < ecclen; j++) { + hi = (d < 31) ? g[j] << (d+1) : 0; + lo = (j+1 < plen) ? + g[j+1] >> (31-d) : 0; + tab[j] ^= hi|lo; + } + } + } + } +} + +/* + * build a base for factoring degree 2 polynomials + */ +static int build_deg2_base(struct bch_control *bch) +{ + const int m = GF_M(bch); + int i, j, r; + unsigned int sum, x, y, remaining, ak = 0, xi[m]; + + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ + for (i = 0; i < m; i++) { + for (j = 0, sum = 0; j < m; j++) + sum ^= a_pow(bch, i*(1 << j)); + + if (sum) { + ak = bch->a_pow_tab[i]; + break; + } + } + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ + remaining = m; + memset(xi, 0, sizeof(xi)); + + for (x = 0; (x <= GF_N(bch)) && remaining; x++) { + y = gf_sqr(bch, x)^x; + for (i = 0; i < 2; i++) { + r = a_log(bch, y); + if (y && (r < m) && !xi[r]) { + bch->xi_tab[r] = x; + xi[r] = 1; + remaining--; + dbg("x%d = %x\n", r, x); + break; + } + y ^= ak; + } + } + /* should not happen but check anyway */ + return remaining ? -1 : 0; +} + +static void *bch_alloc(size_t size, int *err) +{ + void *ptr; + + ptr = malloc(size); + if (ptr == NULL) + *err = 1; + return ptr; +} + +/* + * compute generator polynomial for given (m,t) parameters. + */ +static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{ + const unsigned int m = GF_M(bch); + const unsigned int t = GF_T(bch); + int n, err = 0; + unsigned int i, j, nbits, r, word, *roots; + struct gf_poly *g; + uint32_t *genpoly; + + g = bch_alloc(GF_POLY_SZ(m*t), &err); + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); + + if (err) { + kfree(genpoly); + genpoly = NULL; + goto finish; + } + + /* enumerate all roots of g(X) */ + memset(roots , 0, (bch->n+1)*sizeof(*roots)); + for (i = 0; i < t; i++) { + for (j = 0, r = 2*i+1; j < m; j++) { + roots[r] = 1; + r = mod_s(bch, 2*r); + } + } + /* build generator polynomial g(X) */ + g->deg = 0; + g->c[0] = 1; + for (i = 0; i < GF_N(bch); i++) { + if (roots[i]) { + /* multiply g(X) by (X+root) */ + r = bch->a_pow_tab[i]; + g->c[g->deg+1] = 1; + for (j = g->deg; j > 0; j--) + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; + + g->c[0] = gf_mul(bch, g->c[0], r); + g->deg++; + } + } + /* store left-justified binary representation of g(X) */ + n = g->deg+1; + i = 0; + + while (n > 0) { + nbits = (n > 32) ? 32 : n; + for (j = 0, word = 0; j < nbits; j++) { + if (g->c[n-1-j]) + word |= 1u << (31-j); + } + genpoly[i++] = word; + n -= nbits; + } + bch->ecc_bits = g->deg; + +finish: + kfree(g); + kfree(roots); + + return genpoly; +} + +/** + * free_bch - free the BCH control structure + * @bch: BCH control structure to release + */ +static void free_bch(struct bch_control *bch) +{ + unsigned int i; + + if (bch) { + kfree(bch->a_pow_tab); + kfree(bch->a_log_tab); + kfree(bch->mod8_tab); + kfree(bch->ecc_buf); + kfree(bch->ecc_buf2); + kfree(bch->xi_tab); + kfree(bch->syn); + kfree(bch->cache); + kfree(bch->elp); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + kfree(bch->poly_2t[i]); + + kfree(bch); + } +} + +/** + * init_bch - initialize a BCH encoder/decoder + * @m: Galois field order, should be in the range 5-15 + * @t: maximum error correction capability, in bits + * @prim_poly: user-provided primitive polynomial (or 0 to use default) + * + * Returns: + * a newly allocated BCH control structure if successful, NULL otherwise + * + * This initialization can take some time, as lookup tables are built for fast + * encoding/decoding; make sure not to call this function from a time critical + * path. Usually, init_bch() should be called on module/driver init and + * free_bch() should be called to release memory on exit. + * + * You may provide your own primitive polynomial of degree @m in argument + * @prim_poly, or let init_bch() use its default polynomial. + * + * Once init_bch() has successfully returned a pointer to a newly allocated + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of + * the structure. + */ +static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{ + int err = 0; + unsigned int i, words; + uint32_t *genpoly; + struct bch_control *bch = NULL; + + const int min_m = 5; + const int max_m = 15; + + /* default primitive polynomials */ + static const unsigned int prim_poly_tab[] = { + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, + 0x402b, 0x8003, + }; + +#if defined(CONFIG_BCH_CONST_PARAMS) + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { + printk(KERN_ERR "bch encoder/decoder was configured to support " + "parameters m=%d, t=%d only!\n", + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); + goto fail; + } +#endif + if ((m < min_m) || (m > max_m)) + /* + * values of m greater than 15 are not currently supported; + * supporting m > 15 would require changing table base type + * (uint16_t) and a small patch in matrix transposition + */ + goto fail; + + /* sanity checks */ + if ((t < 1) || (m*t >= ((1 << m)-1))) + /* invalid t value */ + goto fail; + + /* select a primitive polynomial for generating GF(2^m) */ + if (prim_poly == 0) + prim_poly = prim_poly_tab[m-min_m]; + + bch = malloc(sizeof(*bch)); + if (bch == NULL) + goto fail; + + memset(bch, 0, sizeof(*bch)); + + bch->m = m; + bch->t = t; + bch->n = (1 << m)-1; + words = DIV_ROUND_UP(m*t, 32); + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); + + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); + + if (err) + goto fail; + + err = build_gf_tables(bch, prim_poly); + if (err) + goto fail; + + /* use generator polynomial for computing encoding tables */ + genpoly = compute_generator_polynomial(bch); + if (genpoly == NULL) + goto fail; + + build_mod8_tables(bch, genpoly); + kfree(genpoly); + + err = build_deg2_base(bch); + if (err) + goto fail; + + return bch; + +fail: + free_bch(bch); + return NULL; +} + +static void swap_bits(uint8_t *buf, int len) +{ + int i, j; + + for (j = 0; j < len; j++) { + uint8_t byte = buf[j]; + + buf[j] = 0; + for (i = 0; i < 8; i++) { + if (byte & (1 << i)) + buf[j] |= (1 << (7 - i)); + } + } +} + +static uint16_t lfsr_step(uint16_t state, int count) +{ + state &= 0x7fff; + while (count--) + state = ((state >> 1) | + ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static uint16_t default_scrambler_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +static uint16_t brom_scrambler_seeds[] = { 0x4a80 }; + +static void scramble(const struct image_info *info, + int page, uint8_t *data, int datalen) +{ + uint16_t state; + int i; + + /* Boot0 is always scrambled no matter the command line option. */ + if (info->boot0) { + state = brom_scrambler_seeds[0]; + } else { + unsigned seedmod = info->eraseblock_size / info->page_size; + + /* Bail out earlier if the user didn't ask for scrambling. */ + if (!info->scramble) + return; + + if (seedmod > ARRAY_SIZE(default_scrambler_seeds)) + seedmod = ARRAY_SIZE(default_scrambler_seeds); + + state = default_scrambler_seeds[page % seedmod]; + } + + /* Prepare the initial state... */ + state = lfsr_step(state, 15); + + /* and start scrambling data. */ + for (i = 0; i < datalen; i++) { + data[i] ^= state; + state = lfsr_step(state, 8); + } +} + +static int write_page(const struct image_info *info, uint8_t *buffer, + FILE *src, FILE *rnd, FILE *dst, + struct bch_control *bch, int page) +{ + int steps = info->usable_page_size / info->ecc_step_size; + int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); + off_t pos = ftell(dst); + size_t pad, cnt; + int i; + + if (eccbytes % 2) + eccbytes++; + + memset(buffer, 0xff, info->page_size + info->oob_size); + cnt = fread(buffer, 1, info->usable_page_size, src); + if (!cnt) { + if (!feof(src)) { + fprintf(stderr, + "Failed to read data from the source\n"); + return -1; + } else { + return 0; + } + } + + fwrite(buffer, info->page_size + info->oob_size, 1, dst); + + for (i = 0; i < info->usable_page_size; i++) { + if (buffer[i] != 0xff) + break; + } + + /* We leave empty pages at 0xff. */ + if (i == info->usable_page_size) + return 0; + + /* Restore the source pointer to read it again. */ + fseek(src, -cnt, SEEK_CUR); + + /* Randomize unused space if scrambling is required. */ + if (info->scramble) { + int offs; + + if (info->boot0) { + offs = steps * (info->ecc_step_size + eccbytes + 4); + cnt = info->page_size + info->oob_size - offs; + fread(buffer + offs, 1, cnt, rnd); + } else { + offs = info->page_size + (steps * (eccbytes + 4)); + cnt = info->page_size + info->oob_size - offs; + memset(buffer + offs, 0xff, cnt); + scramble(info, page, buffer + offs, cnt); + } + fseek(dst, pos + offs, SEEK_SET); + fwrite(buffer + offs, cnt, 1, dst); + } + + for (i = 0; i < steps; i++) { + int ecc_offs, data_offs; + uint8_t *ecc; + + memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4); + ecc = buffer + info->ecc_step_size + 4; + if (info->boot0) { + data_offs = i * (info->ecc_step_size + eccbytes + 4); + ecc_offs = data_offs + info->ecc_step_size + 4; + } else { + data_offs = i * info->ecc_step_size; + ecc_offs = info->page_size + 4 + (i * (eccbytes + 4)); + } + + cnt = fread(buffer, 1, info->ecc_step_size, src); + if (!cnt && !feof(src)) { + fprintf(stderr, + "Failed to read data from the source\n"); + return -1; + } + + pad = info->ecc_step_size - cnt; + if (pad) { + if (info->scramble && info->boot0) + fread(buffer + cnt, 1, pad, rnd); + else + memset(buffer + cnt, 0xff, pad); + } + + memset(ecc, 0, eccbytes); + swap_bits(buffer, info->ecc_step_size + 4); + encode_bch(bch, buffer, info->ecc_step_size + 4, ecc); + swap_bits(buffer, info->ecc_step_size + 4); + swap_bits(ecc, eccbytes); + scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes); + + fseek(dst, pos + data_offs, SEEK_SET); + fwrite(buffer, info->ecc_step_size, 1, dst); + fseek(dst, pos + ecc_offs - 4, SEEK_SET); + fwrite(ecc - 4, eccbytes + 4, 1, dst); + } + + /* Fix BBM. */ + fseek(dst, pos + info->page_size, SEEK_SET); + memset(buffer, 0xff, 2); + fwrite(buffer, 2, 1, dst); + + /* Make dst pointer point to the next page. */ + fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET); + + return 0; +} + +static int create_image(const struct image_info *info) +{ + off_t page = info->offset / info->page_size; + struct bch_control *bch; + FILE *src, *dst, *rnd; + uint8_t *buffer; + + bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY); + if (!bch) { + fprintf(stderr, "Failed to init the BCH engine\n"); + return -1; + } + + buffer = malloc(info->page_size + info->oob_size); + if (!buffer) { + fprintf(stderr, "Failed to allocate the NAND page buffer\n"); + return -1; + } + + memset(buffer, 0xff, info->page_size + info->oob_size); + + src = fopen(info->source, "r"); + if (!src) { + fprintf(stderr, "Failed to open source file (%s)\n", + info->source); + return -1; + } + + dst = fopen(info->dest, "w"); + if (!dst) { + fprintf(stderr, "Failed to open dest file (%s)\n", info->dest); + return -1; + } + + rnd = fopen("/dev/urandom", "r"); + if (!rnd) { + fprintf(stderr, "Failed to open /dev/urandom\n"); + return -1; + } + + while (!feof(src)) { + int ret; + + ret = write_page(info, buffer, src, rnd, dst, bch, page++); + if (ret) + return ret; + } + + return 0; +} + +static void display_help(int status) +{ + fprintf(status == EXIT_SUCCESS ? stdout : stderr, + "sunxi-nand-image-builder %s\n" + "\n" + "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n" + "\n" + "Creates a raw NAND image that can be read by the sunxi NAND controller.\n" + "\n" + "-h --help Display this help and exit\n" + "-c / --ecc=/ ECC config (strength/step-size)\n" + "-p --page= Page size\n" + "-o --oob= OOB size\n" + "-u --usable= Usable page size\n" + "-e --eraseblock= Erase block size\n" + "-b --boot0 Build a boot0 image.\n" + "-s --scramble Scramble data\n" + "-a --address= Where the image will be programmed.\n" + "\n" + "Notes:\n" + "All the information you need to pass to this tool should be part of\n" + "the NAND datasheet.\n" + "\n" + "The NAND controller only supports the following ECC configs\n" + " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n" + " Valid ECC step size: 512 and 1024\n" + "\n" + "If you are building a boot0 image, you'll have specify extra options.\n" + "These options should be chosen based on the layouts described here:\n" + " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n" + "\n" + " --usable should be assigned the 'Hardware page' value\n" + " --ecc should be assigned the 'ECC capacity'/'ECC page' values\n" + " --usable should be smaller than --page\n" + "\n" + "The --address option is only required for non-boot0 images that are \n" + "meant to be programmed at a non eraseblock aligned offset.\n" + "\n" + "Examples:\n" + " The H27UCG8T2BTR-BC NAND exposes\n" + " * 16k pages\n" + " * 1280 OOB bytes per page\n" + " * 4M eraseblocks\n" + " * requires data scrambling\n" + " * expects a minimum ECC of 40bits/1024bytes\n" + "\n" + " A normal image can be generated with\n" + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n" + " A boot0 image can be generated with\n" + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n", + PLAIN_VERSION); + exit(status); +} + +static int check_image_info(struct image_info *info) +{ + static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + int eccbytes, eccsteps; + unsigned i; + + if (!info->page_size) { + fprintf(stderr, "--page is missing\n"); + return -EINVAL; + } + + if (!info->page_size) { + fprintf(stderr, "--oob is missing\n"); + return -EINVAL; + } + + if (!info->eraseblock_size) { + fprintf(stderr, "--eraseblock is missing\n"); + return -EINVAL; + } + + if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) { + fprintf(stderr, "Invalid ECC step argument: %d\n", + info->ecc_step_size); + return -EINVAL; + } + + for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) { + if (valid_ecc_strengths[i] == info->ecc_strength) + break; + } + + if (i == ARRAY_SIZE(valid_ecc_strengths)) { + fprintf(stderr, "Invalid ECC strength argument: %d\n", + info->ecc_strength); + return -EINVAL; + } + + eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); + if (eccbytes % 2) + eccbytes++; + eccbytes += 4; + + eccsteps = info->usable_page_size / info->ecc_step_size; + + if (info->page_size + info->oob_size < + info->usable_page_size + (eccsteps * eccbytes)) { + fprintf(stderr, + "ECC bytes do not fit in the NAND page, choose a weaker ECC\n"); + return -EINVAL; + } + + return 0; +} + +int main(int argc, char **argv) +{ + struct image_info info; + + memset(&info, 0, sizeof(info)); + /* + * Process user arguments + */ + for (;;) { + int option_index = 0; + char *endptr = NULL; + static const struct option long_options[] = { + {"help", no_argument, 0, 'h'}, + {"ecc", required_argument, 0, 'c'}, + {"page", required_argument, 0, 'p'}, + {"oob", required_argument, 0, 'o'}, + {"usable", required_argument, 0, 'u'}, + {"eraseblock", required_argument, 0, 'e'}, + {"boot0", no_argument, 0, 'b'}, + {"scramble", no_argument, 0, 's'}, + {"address", required_argument, 0, 'a'}, + {0, 0, 0, 0}, + }; + + int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh", + long_options, &option_index); + if (c == EOF) + break; + + switch (c) { + case 'h': + display_help(0); + break; + case 's': + info.scramble = 1; + break; + case 'c': + info.ecc_strength = strtol(optarg, &endptr, 0); + if (endptr || *endptr == '/') + info.ecc_step_size = strtol(endptr + 1, NULL, 0); + break; + case 'p': + info.page_size = strtol(optarg, NULL, 0); + break; + case 'o': + info.oob_size = strtol(optarg, NULL, 0); + break; + case 'u': + info.usable_page_size = strtol(optarg, NULL, 0); + break; + case 'e': + info.eraseblock_size = strtol(optarg, NULL, 0); + break; + case 'b': + info.boot0 = 1; + break; + case 'a': + info.offset = strtoull(optarg, NULL, 0); + break; + case '?': + display_help(-1); + break; + } + } + + if ((argc - optind) != 2) + display_help(-1); + + info.source = argv[optind]; + info.dest = argv[optind + 1]; + + if (!info.boot0) { + info.usable_page_size = info.page_size; + } else if (!info.usable_page_size) { + if (info.page_size > 8192) + info.usable_page_size = 8192; + else if (info.page_size > 4096) + info.usable_page_size = 4096; + else + info.usable_page_size = 1024; + } + + if (check_image_info(&info)) + display_help(-1); + + return create_image(&info); +}