@@ -56,6 +56,7 @@ obj-$(CONFIG_$(SPL_)ALTERA_SDRAM) += ddr/altera/
obj-$(CONFIG_ARCH_IMX8M) += ddr/imx/imx8m/
obj-$(CONFIG_IMX8ULP_DRAM) += ddr/imx/imx8ulp/
obj-$(CONFIG_ARCH_IMX9) += ddr/imx/imx9/
+obj-$(CONFIG_DRAM_SUN8I_R528) += ram/
obj-$(CONFIG_SPL_DM_RESET) += reset/
obj-$(CONFIG_SPL_MUSB_NEW) += usb/musb-new/
obj-$(CONFIG_SPL_USB_GADGET) += usb/gadget/
@@ -23,6 +23,9 @@ obj-$(CONFIG_RAM_SIFIVE) += sifive/
ifdef CONFIG_SPL_BUILD
obj-$(CONFIG_SPL_STARFIVE_DDR) += starfive/
endif
+
+obj-$(CONFIG_DRAM_SUN8I_R528) += sunxi/
+
obj-$(CONFIG_ARCH_OCTEON) += octeon/
obj-$(CONFIG_ARCH_RMOBILE) += renesas/
@@ -12,3 +12,62 @@ config DRAM_SUN8I_R528
default y if MACH_SUN8I_R528
help
Select this DRAM controller driver for the R528/T113s SoCs.
+
+if DRAM_SUN20I_D1 || DRAM_SUN8I_R528
+
+config DRAM_SUNXI_ODT_EN
+ hex "DRAM ODT EN parameter"
+ default 0x1
+ help
+ ODT EN value from vendor DRAM settings.
+
+config DRAM_SUNXI_TPR0
+ hex "DRAM TPR0 parameter"
+ default 0x0
+ help
+ TPR0 value from vendor DRAM settings.
+
+config DRAM_SUNXI_TPR11
+ hex "DRAM TPR11 parameter"
+ default 0x0
+ help
+ TPR11 value from vendor DRAM settings.
+
+config DRAM_SUNXI_TPR12
+ hex "DRAM TPR12 parameter"
+ default 0x0
+ help
+ TPR12 value from vendor DRAM settings.
+
+config DRAM_SUNXI_TPR13
+ hex "DRAM TPR13 parameter"
+ default 0x0
+ help
+ TPR13 value from vendor DRAM settings. It tells which features
+ should be configured.
+
+choice
+ prompt "DRAM chip type"
+ default SUNXI_DRAM_TYPE_DDR3 if DRAM_SUN8I_R528 || DRAM_SUN20I_D1
+
+config SUNXI_DRAM_TYPE_DDR2
+ bool "DDR2 chips"
+
+config SUNXI_DRAM_TYPE_DDR3
+ bool "DDR3 chips"
+
+config SUNXI_DRAM_TYPE_LPDDR2
+ bool "LPDDR2 chips"
+
+config SUNXI_DRAM_TYPE_LPDDR3
+ bool "LPDDR3 chips"
+endchoice
+
+config SUNXI_DRAM_TYPE
+ int
+ default 2 if SUNXI_DRAM_TYPE_DDR2
+ default 3 if SUNXI_DRAM_TYPE_DDR3
+ default 6 if SUNXI_DRAM_TYPE_LPDDR2
+ default 7 if SUNXI_DRAM_TYPE_LPDDR3
+
+endif
new file mode 100644
@@ -0,0 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0+
+
+obj-$(CONFIG_DRAM_SUN20I_D1) += dram_sun20i_d1.o
+obj-$(CONFIG_DRAM_SUN8I_R528) += dram_sun20i_d1.o
new file mode 100644
@@ -0,0 +1,1432 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Allwinner D1/D1s/R528/T113-sx DRAM initialisation
+ *
+ * As usual there is no documentation for the memory controller or PHY IP
+ * used here. The baseline of this code was lifted from awboot[1], which
+ * seems to be based on some form of de-compilation of some original Allwinner
+ * code bits (with a GPL2 license tag from the very beginning).
+ * This version here is a reworked version, to match the U-Boot coding style
+ * and style of the other Allwinner DRAM drivers.
+ *
+ * [1] https://github.com/szemzoa/awboot.git
+ */
+
+#include <asm/io.h>
+#include <common.h>
+#ifdef CONFIG_RAM
+ #include <dm.h>
+ #include <ram.h>
+#endif
+#include <linux/delay.h>
+
+#include "dram_sun20i_d1.h"
+
+#ifndef SUNXI_SID_BASE
+#define SUNXI_SID_BASE 0x3006200
+#endif
+
+#ifndef SUNXI_CCM_BASE
+#define SUNXI_CCM_BASE 0x2001000
+#endif
+
+static void sid_read_ldoB_cal(const dram_para_t *para)
+{
+ uint32_t reg;
+
+ reg = (readl(SUNXI_SID_BASE + 0x1c) & 0xff00) >> 8;
+
+ if (reg == 0)
+ return;
+
+ switch (para->dram_type) {
+ case SUNXI_DRAM_TYPE_DDR2:
+ break;
+ case SUNXI_DRAM_TYPE_DDR3:
+ if (reg > 0x20)
+ reg -= 0x16;
+ break;
+ default:
+ reg = 0;
+ break;
+ }
+
+ clrsetbits_le32(0x3000150, 0xff00, reg << 8);
+}
+
+static void dram_voltage_set(const dram_para_t *para)
+{
+ int vol;
+
+ switch (para->dram_type) {
+ case SUNXI_DRAM_TYPE_DDR2:
+ vol = 47;
+ break;
+ case SUNXI_DRAM_TYPE_DDR3:
+ vol = 25;
+ break;
+ default:
+ vol = 0;
+ break;
+ }
+
+ clrsetbits_le32(0x3000150, 0x20ff00, vol << 8);
+
+ udelay(1);
+
+ sid_read_ldoB_cal(para);
+}
+
+static void dram_enable_all_master(void)
+{
+ writel(~0, 0x3102020);
+ writel(0xff, 0x3102024);
+ writel(0xffff, 0x3102028);
+ udelay(10);
+}
+
+static void dram_disable_all_master(void)
+{
+ writel(1, 0x3102020);
+ writel(0, 0x3102024);
+ writel(0, 0x3102028);
+ udelay(10);
+}
+
+static void eye_delay_compensation(const dram_para_t *para)
+{
+ uint32_t delay;
+ unsigned long ptr;
+
+ // DATn0IOCR, n = 0...7
+ delay = (para->dram_tpr11 & 0xf) << 9;
+ delay |= (para->dram_tpr12 & 0xf) << 1;
+ for (ptr = 0x3103310; ptr < 0x3103334; ptr += 4)
+ setbits_le32(ptr, delay);
+
+ // DATn1IOCR, n = 0...7
+ delay = (para->dram_tpr11 & 0xf0) << 5;
+ delay |= (para->dram_tpr12 & 0xf0) >> 3;
+ for (ptr = 0x3103390; ptr != 0x31033b4; ptr += 4)
+ setbits_le32(ptr, delay);
+
+ // PGCR0: assert AC loopback FIFO reset
+ clrbits_le32(0x3103100, 0x04000000);
+
+ // ??
+
+ delay = (para->dram_tpr11 & 0xf0000) >> 7;
+ delay |= (para->dram_tpr12 & 0xf0000) >> 15;
+ setbits_le32(0x3103334, delay);
+ setbits_le32(0x3103338, delay);
+
+ delay = (para->dram_tpr11 & 0xf00000) >> 11;
+ delay |= (para->dram_tpr12 & 0xf00000) >> 19;
+ setbits_le32(0x31033b4, delay);
+ setbits_le32(0x31033b8, delay);
+
+ setbits_le32(0x310333c, (para->dram_tpr11 & 0xf0000) << 9);
+ setbits_le32(0x31033bc, (para->dram_tpr11 & 0xf00000) << 5);
+
+ // PGCR0: release AC loopback FIFO reset
+ setbits_le32(0x3103100, BIT(26));
+
+ udelay(1);
+
+ delay = (para->dram_tpr10 & 0xf0) << 4;
+ for (ptr = 0x3103240; ptr != 0x310327c; ptr += 4)
+ setbits_le32(ptr, delay);
+ for (ptr = 0x3103228; ptr != 0x3103240; ptr += 4)
+ setbits_le32(ptr, delay);
+
+ setbits_le32(0x3103218, (para->dram_tpr10 & 0x0f) << 8);
+ setbits_le32(0x310321c, (para->dram_tpr10 & 0x0f) << 8);
+
+ setbits_le32(0x3103280, (para->dram_tpr10 & 0xf00) >> 4);
+}
+
+/*
+ * Main purpose of the auto_set_timing routine seems to be to calculate all
+ * timing settings for the specific type of sdram used. Read together with
+ * an sdram datasheet for context on the various variables.
+ */
+static void mctl_set_timing_params(const dram_para_t *para,
+ const dram_config_t *config)
+{
+ /* DRAM_TPR0 */
+ u8 tccd = 2;
+ u8 tfaw;
+ u8 trrd;
+ u8 trcd;
+ u8 trc;
+
+ /* DRAM_TPR1 */
+ u8 txp;
+ u8 twtr;
+ u8 trtp = 4;
+ u8 twr;
+ u8 trp;
+ u8 tras;
+
+ /* DRAM_TPR2 */
+ u16 trefi;
+ u16 trfc;
+
+ u8 tcksrx;
+ u8 tckesr;
+ u8 trd2wr;
+ u8 twr2rd;
+ u8 trasmax;
+ u8 twtp;
+ u8 tcke;
+ u8 tmod;
+ u8 tmrd;
+ u8 tmrw;
+
+ u8 tcl;
+ u8 tcwl;
+ u8 t_rdata_en;
+ u8 wr_latency;
+
+ u32 mr0;
+ u32 mr1;
+ u32 mr2;
+ u32 mr3;
+
+ u32 tdinit0;
+ u32 tdinit1;
+ u32 tdinit2;
+ u32 tdinit3;
+
+ switch (para->dram_type) {
+ case SUNXI_DRAM_TYPE_DDR2:
+ /* DRAM_TPR0 */
+ tfaw = ns_to_t(50);
+ trrd = ns_to_t(10);
+ trcd = ns_to_t(20);
+ trc = ns_to_t(65);
+
+ /* DRAM_TPR1 */
+ txp = 2;
+ twtr = ns_to_t(8);
+ twr = ns_to_t(15);
+ trp = ns_to_t(15);
+ tras = ns_to_t(45);
+
+ /* DRAM_TRP2 */
+ trfc = ns_to_t(328);
+ trefi = ns_to_t(7800) / 32;
+
+ trasmax = CONFIG_DRAM_CLK / 30;
+ if (CONFIG_DRAM_CLK < 409) {
+ t_rdata_en = 1;
+ tcl = 3;
+ mr0 = 0x06a3;
+ } else {
+ t_rdata_en = 2;
+ tcl = 4;
+ mr0 = 0x0e73;
+ }
+ tmrd = 2;
+ twtp = twr + 5;
+ tcksrx = 5;
+ tckesr = 4;
+ trd2wr = 4;
+ tcke = 3;
+ tmod = 12;
+ wr_latency = 1;
+ tmrw = 0;
+ twr2rd = twtr + 5;
+ tcwl = 0;
+
+ mr1 = para->dram_mr1;
+ mr2 = 0;
+ mr3 = 0;
+
+ tdinit0 = 200 * CONFIG_DRAM_CLK + 1;
+ tdinit1 = 100 * CONFIG_DRAM_CLK / 1000 + 1;
+ tdinit2 = 200 * CONFIG_DRAM_CLK + 1;
+ tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
+
+ break;
+ case SUNXI_DRAM_TYPE_DDR3:
+ trfc = ns_to_t(350);
+ trefi = ns_to_t(7800) / 32 + 1; // XXX
+
+ twtr = ns_to_t(8) + 2; // + 2 ? XXX
+ /* Only used by trd2wr calculation, which gets discard below */
+// twr = max(ns_to_t(15), 2);
+ trrd = max(ns_to_t(10), 2);
+ txp = max(ns_to_t(10), 2);
+
+ if (CONFIG_DRAM_CLK <= 800) {
+ tfaw = ns_to_t(50);
+ trcd = ns_to_t(15);
+ trp = ns_to_t(15);
+ trc = ns_to_t(53);
+ tras = ns_to_t(38);
+
+ mr0 = 0x1c70;
+ mr2 = 0x18;
+ tcl = 6;
+ wr_latency = 2;
+ tcwl = 4;
+ t_rdata_en = 4;
+ } else {
+ tfaw = ns_to_t(35);
+ trcd = ns_to_t(14);
+ trp = ns_to_t(14);
+ trc = ns_to_t(48);
+ tras = ns_to_t(34);
+
+ mr0 = 0x1e14;
+ mr2 = 0x20;
+ tcl = 7;
+ wr_latency = 3;
+ tcwl = 5;
+ t_rdata_en = 5;
+ }
+
+ trasmax = CONFIG_DRAM_CLK / 30;
+ twtp = tcwl + 2 + twtr; // WL+BL/2+tWTR
+ /* Gets overwritten below */
+// trd2wr = tcwl + 2 + twr; // WL+BL/2+tWR
+ twr2rd = tcwl + twtr; // WL+tWTR
+
+ tdinit0 = 500 * CONFIG_DRAM_CLK + 1; // 500 us
+ tdinit1 = 360 * CONFIG_DRAM_CLK / 1000 + 1; // 360 ns
+ tdinit2 = 200 * CONFIG_DRAM_CLK + 1; // 200 us
+ tdinit3 = 1 * CONFIG_DRAM_CLK + 1; // 1 us
+
+ mr1 = para->dram_mr1;
+ mr3 = 0;
+ tcke = 3;
+ tcksrx = 5;
+ tckesr = 4;
+ if (((config->dram_tpr13 & 0xc) == 0x04) || CONFIG_DRAM_CLK < 912)
+ trd2wr = 5;
+ else
+ trd2wr = 6;
+
+ tmod = 12;
+ tmrd = 4;
+ tmrw = 0;
+
+ break;
+ case SUNXI_DRAM_TYPE_LPDDR2:
+ tfaw = max(ns_to_t(50), 4);
+ trrd = max(ns_to_t(10), 1);
+ trcd = max(ns_to_t(24), 2);
+ trc = ns_to_t(70);
+ txp = ns_to_t(8);
+ if (txp < 2) {
+ txp++;
+ twtr = 2;
+ } else {
+ twtr = txp;
+ }
+ twr = max(ns_to_t(15), 2);
+ trp = ns_to_t(17);
+ tras = ns_to_t(42);
+ trefi = ns_to_t(3900) / 32;
+ trfc = ns_to_t(210);
+
+ trasmax = CONFIG_DRAM_CLK / 60;
+ mr3 = para->dram_mr3;
+ twtp = twr + 5;
+ mr2 = 6;
+ mr1 = 5;
+ tcksrx = 5;
+ tckesr = 5;
+ trd2wr = 10;
+ tcke = 2;
+ tmod = 5;
+ tmrd = 5;
+ tmrw = 3;
+ tcl = 4;
+ wr_latency = 1;
+ t_rdata_en = 1;
+
+ tdinit0 = 200 * CONFIG_DRAM_CLK + 1;
+ tdinit1 = 100 * CONFIG_DRAM_CLK / 1000 + 1;
+ tdinit2 = 11 * CONFIG_DRAM_CLK + 1;
+ tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
+ twr2rd = twtr + 5;
+ tcwl = 2;
+ mr1 = 195;
+ mr0 = 0;
+
+ break;
+ case SUNXI_DRAM_TYPE_LPDDR3:
+ tfaw = max(ns_to_t(50), 4);
+ trrd = max(ns_to_t(10), 1);
+ trcd = max(ns_to_t(24), 2);
+ trc = ns_to_t(70);
+ twtr = max(ns_to_t(8), 2);
+ twr = max(ns_to_t(15), 2);
+ trp = ns_to_t(17);
+ tras = ns_to_t(42);
+ trefi = ns_to_t(3900) / 32;
+ trfc = ns_to_t(210);
+ txp = twtr;
+
+ trasmax = CONFIG_DRAM_CLK / 60;
+ if (CONFIG_DRAM_CLK < 800) {
+ tcwl = 4;
+ wr_latency = 3;
+ t_rdata_en = 6;
+ mr2 = 12;
+ } else {
+ tcwl = 3;
+ tcke = 6;
+ wr_latency = 2;
+ t_rdata_en = 5;
+ mr2 = 10;
+ }
+ twtp = tcwl + 5;
+ tcl = 7;
+ mr3 = para->dram_mr3;
+ tcksrx = 5;
+ tckesr = 5;
+ trd2wr = 13;
+ tcke = 3;
+ tmod = 12;
+ tdinit0 = 400 * CONFIG_DRAM_CLK + 1;
+ tdinit1 = 500 * CONFIG_DRAM_CLK / 1000 + 1;
+ tdinit2 = 11 * CONFIG_DRAM_CLK + 1;
+ tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
+ tmrd = 5;
+ tmrw = 5;
+ twr2rd = tcwl + twtr + 5;
+ mr1 = 195;
+ mr0 = 0;
+
+ break;
+ default:
+ trfc = 128;
+ trp = 6;
+ trefi = 98;
+ txp = 10;
+ twr = 8;
+ twtr = 3;
+ tras = 14;
+ tfaw = 16;
+ trc = 20;
+ trcd = 6;
+ trrd = 3;
+
+ twr2rd = 8;
+ tcksrx = 4;
+ tckesr = 3;
+ trd2wr = 4;
+ trasmax = 27;
+ twtp = 12;
+ tcke = 2;
+ tmod = 6;
+ tmrd = 2;
+ tmrw = 0;
+ tcwl = 3;
+ tcl = 3;
+ wr_latency = 1;
+ t_rdata_en = 1;
+ mr3 = 0;
+ mr2 = 0;
+ mr1 = 0;
+ mr0 = 0;
+ tdinit3 = 0;
+ tdinit2 = 0;
+ tdinit1 = 0;
+ tdinit0 = 0;
+
+ break;
+ }
+
+ /* Set mode registers */
+ writel(mr0, 0x3103030);
+ writel(mr1, 0x3103034);
+ writel(mr2, 0x3103038);
+ writel(mr3, 0x310303c);
+ /* TODO: dram_odt_en is either 0x0 or 0x1, so right shift looks weird */
+ writel((para->dram_odt_en >> 4) & 0x3, 0x310302c);
+
+ /* Set dram timing DRAMTMG0 - DRAMTMG5 */
+ writel((twtp << 24) | (tfaw << 16) | (trasmax << 8) | (tras << 0),
+ 0x3103058);
+ writel((txp << 16) | (trtp << 8) | (trc << 0),
+ 0x310305c);
+ writel((tcwl << 24) | (tcl << 16) | (trd2wr << 8) | (twr2rd << 0),
+ 0x3103060);
+ writel((tmrw << 16) | (tmrd << 12) | (tmod << 0),
+ 0x3103064);
+ writel((trcd << 24) | (tccd << 16) | (trrd << 8) | (trp << 0),
+ 0x3103068);
+ writel((tcksrx << 24) | (tcksrx << 16) | (tckesr << 8) | (tcke << 0),
+ 0x310306c);
+
+ /* Set dual rank timing */
+ clrsetbits_le32(0x3103078, 0xf000ffff,
+ (CONFIG_DRAM_CLK < 800) ? 0xf0006610 : 0xf0007610);
+
+ /* Set phy interface time PITMG0, PTR3, PTR4 */
+ writel((0x2 << 24) | (t_rdata_en << 16) | BIT(8) | (wr_latency << 0),
+ 0x3103080);
+ writel(((tdinit0 << 0) | (tdinit1 << 20)), 0x3103050);
+ writel(((tdinit2 << 0) | (tdinit3 << 20)), 0x3103054);
+
+ /* Set refresh timing and mode */
+ writel((trefi << 16) | (trfc << 0), 0x3103090);
+ writel((trefi << 15) & 0x0fff0000, 0x3103094);
+}
+
+// Purpose of this routine seems to be to initialize the PLL driving
+// the MBUS and sdram.
+//
+static int ccu_set_pll_ddr_clk(int index, const dram_para_t *para,
+ const dram_config_t *config)
+{
+ unsigned int val, clk, n;
+
+ if (config->dram_tpr13 & BIT(6))
+ clk = para->dram_tpr9;
+ else
+ clk = para->dram_clk;
+
+ // set VCO clock divider
+ n = (clk * 2) / 24;
+
+ val = readl(SUNXI_CCM_BASE + 0x10);
+ val &= ~0x0007ff03; // clear dividers
+ val |= (n - 1) << 8; // set PLL division
+ val |= BIT(31) | BIT(30); // enable PLL and LDO
+ writel(val | BIT(29), SUNXI_CCM_BASE + 0x10);
+
+ // wait for PLL to lock
+ while ((readl(SUNXI_CCM_BASE + 0x10) & BIT(28)) == 0)
+ ;
+
+ udelay(20);
+
+ // enable PLL output
+ setbits_le32(SUNXI_CCM_BASE + 0x0, BIT(27));
+
+ // turn clock gate on
+ val = readl(SUNXI_CCM_BASE + 0x800);
+ val &= ~0x03000303; // select DDR clk source, n=1, m=1
+ val |= BIT(31); // turn clock on
+ writel(val, SUNXI_CCM_BASE + 0x800);
+
+ return n * 24;
+}
+
+/* Set up the PLL and clock gates for the DRAM controller and MBUS clocks. */
+static void mctl_sys_init(const dram_para_t *para, const dram_config_t *config)
+{
+ // assert MBUS reset
+ clrbits_le32(SUNXI_CCM_BASE + 0x540, BIT(30));
+
+ // turn off sdram clock gate, assert sdram reset
+ clrbits_le32(SUNXI_CCM_BASE + 0x80c, 0x10001);
+ clrsetbits_le32(SUNXI_CCM_BASE + 0x800, BIT(31) | BIT(30), BIT(27));
+ udelay(10);
+
+ // set ddr pll clock
+ ccu_set_pll_ddr_clk(0, para, config);
+ udelay(100);
+ dram_disable_all_master();
+
+ // release sdram reset
+ setbits_le32(SUNXI_CCM_BASE + 0x80c, BIT(16));
+
+ // release MBUS reset
+ setbits_le32(SUNXI_CCM_BASE + 0x540, BIT(30));
+ setbits_le32(SUNXI_CCM_BASE + 0x800, BIT(30));
+
+ udelay(5);
+
+ // turn on sdram clock gate
+ setbits_le32(SUNXI_CCM_BASE + 0x80c, BIT(0));
+
+ // turn dram clock gate on, trigger sdr clock update
+ setbits_le32(SUNXI_CCM_BASE + 0x800, BIT(31) | BIT(27));
+ udelay(5);
+
+ // mCTL clock enable
+ writel(0x8000, 0x310300c);
+ udelay(10);
+}
+
+// The main purpose of this routine seems to be to copy an address configuration
+// from the dram_para1 and dram_para2 fields to the PHY configuration registers
+// (0x3102000, 0x3102004).
+//
+static void mctl_com_init(const dram_para_t *para, const dram_config_t *config)
+{
+ uint32_t val, width;
+ unsigned long ptr;
+ int i;
+
+ // purpose ??
+ clrsetbits_le32(0x3102008, 0x3f00, 0x2000);
+
+ // set SDRAM type and word width
+ val = readl(0x3102000) & ~0x00fff000;
+ val |= (para->dram_type & 0x7) << 16; // DRAM type
+ val |= (~config->dram_para2 & 0x1) << 12; // DQ width
+ val |= BIT(22); // ??
+ if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR2 ||
+ para->dram_type == SUNXI_DRAM_TYPE_LPDDR3) {
+ val |= BIT(19); // type 6 and 7 must use 1T
+ } else {
+ if (config->dram_tpr13 & BIT(5))
+ val |= BIT(19);
+ }
+ writel(val, 0x3102000);
+
+ // init rank / bank / row for single/dual or two different ranks
+ if ((config->dram_para2 & BIT(8)) &&
+ ((config->dram_para2 & 0xf000) != 0x1000))
+ width = 32;
+ else
+ width = 16;
+
+ ptr = 0x3102000;
+ for (i = 0; i < width; i += 16) {
+ val = readl(ptr) & 0xfffff000;
+
+ val |= (config->dram_para2 >> 12) & 0x3; // rank
+ val |= ((config->dram_para1 >> (i + 12)) << 2) & 0x4; // bank - 2
+ val |= (((config->dram_para1 >> (i + 4)) - 1) << 4) & 0xff; // row - 1
+
+ // convert from page size to column addr width - 3
+ switch ((config->dram_para1 >> i) & 0xf) {
+ case 8: val |= 0xa00; break;
+ case 4: val |= 0x900; break;
+ case 2: val |= 0x800; break;
+ case 1: val |= 0x700; break;
+ default: val |= 0x600; break;
+ }
+ writel(val, ptr);
+ ptr += 4;
+ }
+
+ // set ODTMAP based on number of ranks in use
+ val = (readl(0x3102000) & 0x1) ? 0x303 : 0x201;
+ writel(val, 0x3103120);
+
+ // set mctl reg 3c4 to zero when using half DQ
+ if (config->dram_para2 & BIT(0))
+ writel(0, 0x31033c4);
+
+ // purpose ??
+ if (para->dram_tpr4) {
+ setbits_le32(0x3102000, (para->dram_tpr4 & 0x3) << 25);
+ setbits_le32(0x3102004, (para->dram_tpr4 & 0x7fc) << 10);
+ }
+}
+
+static const uint8_t ac_remapping_tables[][22] = {
+ [0] = { 0 },
+ [1] = { 1, 9, 3, 7, 8, 18, 4, 13, 5, 6, 10,
+ 2, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 },
+ [2] = { 4, 9, 3, 7, 8, 18, 1, 13, 2, 6, 10,
+ 5, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 },
+ [3] = { 1, 7, 8, 12, 10, 18, 4, 13, 5, 6, 3,
+ 2, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 },
+ [4] = { 4, 12, 10, 7, 8, 18, 1, 13, 2, 6, 3,
+ 5, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 },
+ [5] = { 13, 2, 7, 9, 12, 19, 5, 1, 6, 3, 4,
+ 8, 10, 0, 0, 0, 21, 22, 18, 17, 11, 20 },
+ [6] = { 3, 10, 7, 13, 9, 11, 1, 2, 4, 6, 8,
+ 5, 12, 0, 0, 0, 20, 1, 0, 21, 22, 17 },
+ [7] = { 3, 2, 4, 7, 9, 1, 17, 12, 18, 14, 13,
+ 8, 15, 6, 10, 5, 19, 22, 16, 21, 20, 11 },
+};
+
+/*
+ * This routine chooses one of several remapping tables for 22 lines.
+ * It is unclear which lines are being remapped. It seems to pick
+ * table cfg7 for the Nezha board.
+ */
+static void mctl_phy_ac_remapping(const dram_para_t *para,
+ const dram_config_t *config)
+{
+ const uint8_t *cfg;
+ uint32_t fuse, val;
+
+ /*
+ * It is unclear whether the LPDDRx types don't need any remapping,
+ * or whether the original code just didn't provide tables.
+ */
+ if (para->dram_type != SUNXI_DRAM_TYPE_DDR2 &&
+ para->dram_type != SUNXI_DRAM_TYPE_DDR3)
+ return;
+
+ fuse = (readl(SUNXI_SID_BASE + 0x28) & 0xf00) >> 8;
+ debug("DDR efuse: 0x%x\n", fuse);
+
+ if (para->dram_type == SUNXI_DRAM_TYPE_DDR2) {
+ if (fuse == 15)
+ return;
+ cfg = ac_remapping_tables[6];
+ } else {
+ if (config->dram_tpr13 & 0xc0000) {
+ cfg = ac_remapping_tables[7];
+ } else {
+ switch (fuse) {
+ case 8: cfg = ac_remapping_tables[2]; break;
+ case 9: cfg = ac_remapping_tables[3]; break;
+ case 10: cfg = ac_remapping_tables[5]; break;
+ case 11: cfg = ac_remapping_tables[4]; break;
+ default:
+ case 12: cfg = ac_remapping_tables[1]; break;
+ case 13:
+ case 14: cfg = ac_remapping_tables[0]; break;
+ }
+ }
+ }
+
+ val = (cfg[4] << 25) | (cfg[3] << 20) | (cfg[2] << 15) |
+ (cfg[1] << 10) | (cfg[0] << 5);
+ writel(val, 0x3102500);
+
+ val = (cfg[10] << 25) | (cfg[9] << 20) | (cfg[8] << 15) |
+ (cfg[ 7] << 10) | (cfg[6] << 5) | cfg[5];
+ writel(val, 0x3102504);
+
+ val = (cfg[15] << 20) | (cfg[14] << 15) | (cfg[13] << 10) |
+ (cfg[12] << 5) | cfg[11];
+ writel(val, 0x3102508);
+
+ val = (cfg[21] << 25) | (cfg[20] << 20) | (cfg[19] << 15) |
+ (cfg[18] << 10) | (cfg[17] << 5) | cfg[16];
+ writel(val, 0x310250c);
+
+ val = (cfg[4] << 25) | (cfg[3] << 20) | (cfg[2] << 15) |
+ (cfg[1] << 10) | (cfg[0] << 5) | 1;
+ writel(val, 0x3102500);
+}
+
+// Init the controller channel. The key part is placing commands in the main
+// command register (PIR, 0x3103000) and checking command status (PGSR0, 0x3103010).
+//
+static unsigned int mctl_channel_init(unsigned int ch_index,
+ const dram_para_t *para,
+ const dram_config_t *config)
+{
+ unsigned int val, dqs_gating_mode;
+
+ dqs_gating_mode = (config->dram_tpr13 & 0xc) >> 2;
+
+ // set DDR clock to half of CPU clock
+ clrsetbits_le32(0x310200c, 0xfff, (para->dram_clk / 2) - 1);
+
+ // MRCTRL0 nibble 3 undocumented
+ clrsetbits_le32(0x3103108, 0xf00, 0x300);
+
+ if (para->dram_odt_en)
+ val = 0;
+ else
+ val = BIT(5);
+
+ // DX0GCR0
+ if (para->dram_clk > 672)
+ clrsetbits_le32(0x3103344, 0xf63e, val);
+ else
+ clrsetbits_le32(0x3103344, 0xf03e, val);
+
+ // DX1GCR0
+ if (para->dram_clk > 672) {
+ setbits_le32(0x3103344, 0x400);
+ clrsetbits_le32(0x31033c4, 0xf63e, val);
+ } else {
+ clrsetbits_le32(0x31033c4, 0xf03e, val);
+ }
+
+ // 0x3103208 undocumented
+ setbits_le32(0x3103208, BIT(1));
+
+ eye_delay_compensation(para);
+
+ // set PLL SSCG ?
+ val = readl(0x3103108);
+ if (dqs_gating_mode == 1) {
+ clrsetbits_le32(0x3103108, 0xc0, 0);
+ clrbits_le32(0x31030bc, 0x107);
+ } else if (dqs_gating_mode == 2) {
+ clrsetbits_le32(0x3103108, 0xc0, 0x80);
+
+ clrsetbits_le32(0x31030bc, 0x107,
+ (((config->dram_tpr13 >> 16) & 0x1f) - 2) | 0x100);
+ clrsetbits_le32(0x310311c, BIT(31), BIT(27));
+ } else {
+ clrbits_le32(0x3103108, 0x40);
+ udelay(10);
+ setbits_le32(0x3103108, 0xc0);
+ }
+
+ if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR2 ||
+ para->dram_type == SUNXI_DRAM_TYPE_LPDDR3) {
+ if (dqs_gating_mode == 1)
+ clrsetbits_le32(0x310311c, 0x080000c0, 0x80000000);
+ else
+ clrsetbits_le32(0x310311c, 0x77000000, 0x22000000);
+ }
+
+ clrsetbits_le32(0x31030c0, 0x0fffffff,
+ (config->dram_para2 & BIT(12)) ? 0x03000001 : 0x01000007);
+
+ if (readl(0x70005d4) & BIT(16)) {
+ clrbits_le32(0x7010250, 0x2);
+ udelay(10);
+ }
+
+ // Set ZQ config
+ clrsetbits_le32(0x3103140, 0x3ffffff,
+ (para->dram_zq & 0x00ffffff) | BIT(25));
+
+ // Initialise DRAM controller
+ if (dqs_gating_mode == 1) {
+ //writel(0x52, 0x3103000); // prep PHY reset + PLL init + z-cal
+ writel(0x53, 0x3103000); // Go
+
+ while ((readl(0x3103010) & 0x1) == 0) {
+ } // wait for IDONE
+ udelay(10);
+
+ // 0x520 = prep DQS gating + DRAM init + d-cal
+ if (para->dram_type == SUNXI_DRAM_TYPE_DDR3)
+ writel(0x5a0, 0x3103000); // + DRAM reset
+ else
+ writel(0x520, 0x3103000);
+ } else {
+ if ((readl(0x70005d4) & (1 << 16)) == 0) {
+ // prep DRAM init + PHY reset + d-cal + PLL init + z-cal
+ if (para->dram_type == SUNXI_DRAM_TYPE_DDR3)
+ writel(0x1f2, 0x3103000); // + DRAM reset
+ else
+ writel(0x172, 0x3103000);
+ } else {
+ // prep PHY reset + d-cal + z-cal
+ writel(0x62, 0x3103000);
+ }
+ }
+
+ setbits_le32(0x3103000, 0x1); // GO
+
+ udelay(10);
+ while ((readl(0x3103010) & 0x1) == 0) {
+ } // wait for IDONE
+
+ if (readl(0x70005d4) & BIT(16)) {
+ clrsetbits_le32(0x310310c, 0x06000000, 0x04000000);
+ udelay(10);
+
+ setbits_le32(0x3103004, 0x1);
+
+ while ((readl(0x3103018) & 0x7) != 0x3) {
+ }
+
+ clrbits_le32(0x7010250, 0x1);
+ udelay(10);
+
+ clrbits_le32(0x3103004, 0x1);
+
+ while ((readl(0x3103018) & 0x7) != 0x1) {
+ }
+
+ udelay(15);
+
+ if (dqs_gating_mode == 1) {
+ clrbits_le32(0x3103108, 0xc0);
+ clrsetbits_le32(0x310310c, 0x06000000, 0x02000000);
+ udelay(1);
+ writel(0x401, 0x3103000);
+
+ while ((readl(0x3103010) & 0x1) == 0) {
+ }
+ }
+ }
+
+ // Check for training error
+ if (readl(0x3103010) & BIT(20)) {
+ printf("ZQ calibration error, check external 240 ohm resistor\n");
+ return 0;
+ }
+
+ // STATR = Zynq STAT? Wait for status 'normal'?
+ while ((readl(0x3103018) & 0x1) == 0) {
+ }
+
+ setbits_le32(0x310308c, BIT(31));
+ udelay(10);
+ clrbits_le32(0x310308c, BIT(31));
+ udelay(10);
+ setbits_le32(0x3102014, BIT(31));
+ udelay(10);
+
+ clrbits_le32(0x310310c, 0x06000000);
+
+ if (dqs_gating_mode == 1)
+ clrsetbits_le32(0x310311c, 0xc0, 0x40);
+
+ return 1;
+}
+
+static unsigned int calculate_rank_size(uint32_t regval)
+{
+ unsigned int bits;
+
+ bits = (regval >> 8) & 0xf; /* page size - 3 */
+ bits += (regval >> 4) & 0xf; /* row width - 1 */
+ bits += (regval >> 2) & 0x3; /* bank count - 2 */
+ bits -= 14; /* 1MB = 20 bits, minus above 6 = 14 */
+
+ return 1U << bits;
+}
+
+/*
+ * The below routine reads the dram config registers and extracts
+ * the number of address bits in each rank available. It then calculates
+ * total memory size in MB.
+ */
+static unsigned int DRAMC_get_dram_size(void)
+{
+ uint32_t val;
+ unsigned int size;
+
+ val = readl(0x3102000); /* MC_WORK_MODE0 */
+ size = calculate_rank_size(val);
+ if ((val & 0x3) == 0) /* single rank? */
+ return size;
+
+ val = readl(0x3102004); /* MC_WORK_MODE1 */
+ if ((val & 0x3) == 0) /* two identical ranks? */
+ return size * 2;
+
+ /* add sizes of both ranks */
+ return size + calculate_rank_size(val);
+}
+
+/*
+ * The below routine reads the command status register to extract
+ * DQ width and rank count. This follows the DQS training command in
+ * channel_init. If error bit 22 is reset, we have two ranks and full DQ.
+ * If there was an error, figure out whether it was half DQ, single rank,
+ * or both. Set bit 12 and 0 in dram_para2 with the results.
+ */
+static int dqs_gate_detect(dram_config_t *config)
+{
+ uint32_t dx0, dx1;
+
+ if ((readl(0x3103010) & BIT(22)) == 0) {
+ config->dram_para2 = (config->dram_para2 & ~0xf) | BIT(12);
+ debug("dual rank and full DQ\n");
+
+ return 1;
+ }
+
+ dx0 = (readl(0x3103348) & 0x3000000) >> 24;
+ if (dx0 == 0) {
+ config->dram_para2 = (config->dram_para2 & ~0xf) | 0x1001;
+ debug("dual rank and half DQ\n");
+
+ return 1;
+ }
+
+ if (dx0 == 2) {
+ dx1 = (readl(0x31033c8) & 0x3000000) >> 24;
+ if (dx1 == 2) {
+ config->dram_para2 = config->dram_para2 & ~0xf00f;
+ debug("single rank and full DQ\n");
+ } else {
+ config->dram_para2 = (config->dram_para2 & ~0xf00f) | BIT(0);
+ debug("single rank and half DQ\n");
+ }
+
+ return 1;
+ }
+
+ if ((config->dram_tpr13 & BIT(29)) == 0)
+ return 0;
+
+ debug("DX0 state: %d\n", dx0);
+ debug("DX1 state: %d\n", dx1);
+
+ return 0;
+}
+
+static int dramc_simple_wr_test(unsigned int mem_mb, int len)
+{
+ unsigned int offs = (mem_mb / 2) << 18; // half of memory size
+ unsigned int patt1 = 0x01234567;
+ unsigned int patt2 = 0xfedcba98;
+ unsigned int *addr, v1, v2, i;
+
+ addr = (unsigned int *)CFG_SYS_SDRAM_BASE;
+ for (i = 0; i != len; i++, addr++) {
+ writel(patt1 + i, (unsigned long)addr);
+ writel(patt2 + i, (unsigned long)(addr + offs));
+ }
+
+ addr = (unsigned int *)CFG_SYS_SDRAM_BASE;
+ for (i = 0; i != len; i++) {
+ v1 = readl((unsigned long)(addr + i));
+ v2 = patt1 + i;
+ if (v1 != v2) {
+ printf("DRAM: simple test FAIL\n");
+ printf("%x != %x at address %p\n", v1, v2, addr + i);
+ return 1;
+ }
+ v1 = readl((unsigned long)(addr + offs + i));
+ v2 = patt2 + i;
+ if (v1 != v2) {
+ printf("DRAM: simple test FAIL\n");
+ printf("%x != %x at address %p\n", v1, v2, addr + offs + i);
+ return 1;
+ }
+ }
+
+ debug("DRAM: simple test OK\n");
+ return 0;
+}
+
+// Set the Vref mode for the controller
+//
+static void mctl_vrefzq_init(const dram_para_t *para, const dram_config_t *config)
+{
+ if (config->dram_tpr13 & BIT(17))
+ return;
+
+ clrsetbits_le32(0x3103110, 0x7f7f7f7f, para->dram_tpr5);
+
+ // IOCVR1
+ if ((config->dram_tpr13 & BIT(16)) == 0)
+ clrsetbits_le32(0x3103114, 0x7f, para->dram_tpr6 & 0x7f);
+}
+
+// Perform an init of the controller. This is actually done 3 times. The first
+// time to establish the number of ranks and DQ width. The second time to
+// establish the actual ram size. The third time is final one, with the final
+// settings.
+//
+static int mctl_core_init(const dram_para_t *para, const dram_config_t *config)
+{
+ mctl_sys_init(para, config);
+
+ mctl_vrefzq_init(para, config);
+
+ mctl_com_init(para, config);
+
+ mctl_phy_ac_remapping(para, config);
+
+ mctl_set_timing_params(para, config);
+
+ return mctl_channel_init(0, para, config);
+}
+
+/*
+ * This routine sizes a DRAM device by cycling through address lines and
+ * figuring out if they are connected to a real address line, or if the
+ * address is a mirror.
+ * First the column and bank bit allocations are set to low values (2 and 9
+ * address lines). Then a maximum allocation (16 lines) is set for rows and
+ * this is tested.
+ * Next the BA2 line is checked. This seems to be placed above the column,
+ * BA0-1 and row addresses. Finally, the column address is allocated 13 lines
+ * and these are tested. The results are placed in dram_para1 and dram_para2.
+ */
+static int auto_scan_dram_size(const dram_para_t *para, dram_config_t *config)
+{
+ unsigned int rval, i, j, rank, maxrank, offs;
+ unsigned int shft;
+ unsigned long ptr, mc_work_mode, chk;
+
+ if (mctl_core_init(para, config) == 0) {
+ printf("DRAM initialisation error : 0\n");
+ return 0;
+ }
+
+ maxrank = (config->dram_para2 & 0xf000) ? 2 : 1;
+ mc_work_mode = 0x3102000;
+ offs = 0;
+
+ /* write test pattern */
+ for (i = 0, ptr = CFG_SYS_SDRAM_BASE; i < 64; i++, ptr += 4)
+ writel((i & 0x1) ? ptr : ~ptr, ptr);
+
+ for (rank = 0; rank < maxrank;) {
+ /* set row mode */
+ clrsetbits_le32(mc_work_mode, 0xf0c, 0x6f0);
+ udelay(1);
+
+ // Scan per address line, until address wraps (i.e. see shadow)
+ for (i = 11; i < 17; i++) {
+ chk = CFG_SYS_SDRAM_BASE + (1U << (i + 11));
+ ptr = CFG_SYS_SDRAM_BASE;
+ for (j = 0; j < 64; j++) {
+ if (readl(chk) != ((j & 1) ? ptr : ~ptr))
+ break;
+ ptr += 4;
+ chk += 4;
+ }
+ if (j == 64)
+ break;
+ }
+ if (i > 16)
+ i = 16;
+ debug("rank %d row = %d\n", rank, i);
+
+ /* Store rows in para 1 */
+ shft = offs + 4;
+ rval = config->dram_para1;
+ rval &= ~(0xff << shft);
+ rval |= i << shft;
+ config->dram_para1 = rval;
+
+ if (rank == 1) /* Set bank mode for rank0 */
+ clrsetbits_le32(0x3102000, 0xffc, 0x6a4);
+
+ /* Set bank mode for current rank */
+ clrsetbits_le32(mc_work_mode, 0xffc, 0x6a4);
+ udelay(1);
+
+ // Test if bit A23 is BA2 or mirror XXX A22?
+ chk = CFG_SYS_SDRAM_BASE + (1U << 22);
+ ptr = CFG_SYS_SDRAM_BASE;
+ for (i = 0, j = 0; i < 64; i++) {
+ if (readl(chk) != ((i & 1) ? ptr : ~ptr)) {
+ j = 1;
+ break;
+ }
+ ptr += 4;
+ chk += 4;
+ }
+
+ debug("rank %d bank = %d\n", rank, (j + 1) << 2); /* 4 or 8 */
+
+ /* Store banks in para 1 */
+ shft = 12 + offs;
+ rval = config->dram_para1;
+ rval &= ~(0xf << shft);
+ rval |= j << shft;
+ config->dram_para1 = rval;
+
+ if (rank == 1) /* Set page mode for rank0 */
+ clrsetbits_le32(0x3102000, 0xffc, 0xaa0);
+
+ /* Set page mode for current rank */
+ clrsetbits_le32(mc_work_mode, 0xffc, 0xaa0);
+ udelay(1);
+
+ // Scan per address line, until address wraps (i.e. see shadow)
+ for (i = 9; i < 14; i++) {
+ chk = CFG_SYS_SDRAM_BASE + (1U << i);
+ ptr = CFG_SYS_SDRAM_BASE;
+ for (j = 0; j < 64; j++) {
+ if (readl(chk) != ((j & 1) ? ptr : ~ptr))
+ break;
+ ptr += 4;
+ chk += 4;
+ }
+ if (j == 64)
+ break;
+ }
+ if (i > 13)
+ i = 13;
+
+ unsigned int pgsize = (i == 9) ? 0 : (1 << (i - 10));
+ debug("rank %d page size = %d KB\n", rank, pgsize);
+
+ /* Store page size */
+ shft = offs;
+ rval = config->dram_para1;
+ rval &= ~(0xf << shft);
+ rval |= pgsize << shft;
+ config->dram_para1 = rval;
+
+ // Move to next rank
+ rank++;
+ if (rank != maxrank) {
+ if (rank == 1) {
+ /* MC_WORK_MODE */
+ clrsetbits_le32(0x3202000, 0xffc, 0x6f0);
+
+ /* MC_WORK_MODE2 */
+ clrsetbits_le32(0x3202004, 0xffc, 0x6f0);
+ }
+ /* store rank1 config in upper half of para1 */
+ offs += 16;
+ mc_work_mode += 4; /* move to MC_WORK_MODE2 */
+ }
+ }
+ if (maxrank == 2) {
+ config->dram_para2 &= 0xfffff0ff;
+ /* note: rval is equal to para->dram_para1 here */
+ if ((rval & 0xffff) == (rval >> 16)) {
+ debug("rank1 config same as rank0\n");
+ } else {
+ config->dram_para2 |= BIT(8);
+ debug("rank1 config different from rank0\n");
+ }
+ }
+
+ return 1;
+}
+
+/*
+ * This routine sets up parameters with dqs_gating_mode equal to 1 and two
+ * ranks enabled. It then configures the core and tests for 1 or 2 ranks and
+ * full or half DQ width. It then resets the parameters to the original values.
+ * dram_para2 is updated with the rank and width findings.
+ */
+static int auto_scan_dram_rank_width(const dram_para_t *para,
+ dram_config_t *config)
+{
+ unsigned int s1 = config->dram_tpr13;
+ unsigned int s2 = config->dram_para1;
+
+ config->dram_para1 = 0x00b000b0;
+ config->dram_para2 = (config->dram_para2 & ~0xf) | BIT(12);
+
+ /* set DQS probe mode */
+ config->dram_tpr13 = (config->dram_tpr13 & ~0x8) | BIT(2) | BIT(0);
+
+ mctl_core_init(para, config);
+
+ if (readl(0x3103010) & BIT(20))
+ return 0;
+
+ if (dqs_gate_detect(config) == 0)
+ return 0;
+
+ config->dram_tpr13 = s1;
+ config->dram_para1 = s2;
+
+ return 1;
+}
+
+/*
+ * This routine determines the SDRAM topology. It first establishes the number
+ * of ranks and the DQ width. Then it scans the SDRAM address lines to establish
+ * the size of each rank. It then updates dram_tpr13 to reflect that the sizes
+ * are now known: a re-init will not repeat the autoscan.
+ */
+static int auto_scan_dram_config(const dram_para_t *para,
+ dram_config_t *config)
+{
+ if (((config->dram_tpr13 & BIT(14)) == 0) &&
+ (auto_scan_dram_rank_width(para, config) == 0)) {
+ printf("ERROR: auto scan dram rank & width failed\n");
+ return 0;
+ }
+
+ if (((config->dram_tpr13 & BIT(0)) == 0) &&
+ (auto_scan_dram_size(para, config) == 0)) {
+ printf("ERROR: auto scan dram size failed\n");
+ return 0;
+ }
+
+ if ((config->dram_tpr13 & BIT(15)) == 0)
+ config->dram_tpr13 |= BIT(14) | BIT(13) | BIT(1) | BIT(0);
+
+ return 1;
+}
+
+static int init_DRAM(int type, const dram_para_t *para)
+{
+ dram_config_t config = {
+ .dram_para1 = 0x000010d2,
+ .dram_para2 = 0,
+ .dram_tpr13 = CONFIG_DRAM_SUNXI_TPR13,
+ };
+ u32 rc, mem_size_mb;
+
+ debug("DRAM BOOT DRIVE INFO: %s\n", "V0.24");
+ debug("DRAM CLK = %d MHz\n", para->dram_clk);
+ debug("DRAM Type = %d (2:DDR2,3:DDR3)\n", para->dram_type);
+ if ((para->dram_odt_en & 0x1) == 0)
+ debug("DRAMC read ODT off\n");
+ else
+ debug("DRAMC ZQ value: 0x%x\n", para->dram_zq);
+
+ /* Test ZQ status */
+ if (config.dram_tpr13 & BIT(16)) {
+ debug("DRAM only have internal ZQ\n");
+ setbits_le32(0x3000160, BIT(8));
+ writel(0, 0x3000168);
+ udelay(10);
+ } else {
+ clrbits_le32(0x3000160, 0x3);
+ writel(config.dram_tpr13 & BIT(16), 0x7010254);
+ udelay(10);
+ clrsetbits_le32(0x3000160, 0x108, BIT(1));
+ udelay(10);
+ setbits_le32(0x3000160, BIT(0));
+ udelay(20);
+ debug("ZQ value = 0x%x\n", readl(0x300016c));
+ }
+
+ dram_voltage_set(para);
+
+ /* Set SDRAM controller auto config */
+ if ((config.dram_tpr13 & BIT(0)) == 0) {
+ if (auto_scan_dram_config(para, &config) == 0) {
+ printf("auto_scan_dram_config() FAILED\n");
+ return 0;
+ }
+ }
+
+ /* report ODT */
+ rc = para->dram_mr1;
+ if ((rc & 0x44) == 0)
+ debug("DRAM ODT off\n");
+ else
+ debug("DRAM ODT value: 0x%x\n", rc);
+
+ /* Init core, final run */
+ if (mctl_core_init(para, &config) == 0) {
+ printf("DRAM initialisation error: 1\n");
+ return 0;
+ }
+
+ /* Get SDRAM size */
+ /* TODO: who ever puts a negative number in the top half? */
+ rc = config.dram_para2;
+ if (rc & BIT(31)) {
+ rc = (rc >> 16) & ~BIT(15);
+ } else {
+ rc = DRAMC_get_dram_size();
+ debug("DRAM: size = %dMB\n", rc);
+ config.dram_para2 = (config.dram_para2 & 0xffffU) | rc << 16;
+ }
+ mem_size_mb = rc;
+
+ /* Purpose ?? */
+ if (config.dram_tpr13 & BIT(30)) {
+ rc = para->dram_tpr8;
+ if (rc == 0)
+ rc = 0x10000200;
+ writel(rc, 0x31030a0);
+ writel(0x40a, 0x310309c);
+ setbits_le32(0x3103004, BIT(0));
+ debug("Enable Auto SR\n");
+ } else {
+ clrbits_le32(0x31030a0, 0xffff);
+ clrbits_le32(0x3103004, 0x1);
+ }
+
+ /* Purpose ?? */
+ if (config.dram_tpr13 & BIT(9)) {
+ clrsetbits_le32(0x3103100, 0xf000, 0x5000);
+ } else {
+ if (para->dram_type != SUNXI_DRAM_TYPE_LPDDR2)
+ clrbits_le32(0x3103100, 0xf000);
+ }
+
+ setbits_le32(0x3103140, BIT(31));
+
+ /* CHECK: is that really writing to a different register? */
+ if (config.dram_tpr13 & BIT(8))
+ writel(readl(0x3103140) | 0x300, 0x31030b8);
+
+ if (config.dram_tpr13 & BIT(16))
+ clrbits_le32(0x3103108, BIT(13));
+ else
+ setbits_le32(0x3103108, BIT(13));
+
+ /* Purpose ?? */
+ if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR3)
+ clrsetbits_le32(0x310307c, 0xf0000, 0x1000);
+
+ dram_enable_all_master();
+ if (config.dram_tpr13 & BIT(28)) {
+ if ((readl(0x70005d4) & BIT(16)) ||
+ dramc_simple_wr_test(mem_size_mb, 4096))
+ return 0;
+ }
+
+ return mem_size_mb;
+}
+
+ static const dram_para_t para = {
+ .dram_clk = CONFIG_DRAM_CLK,
+ .dram_type = CONFIG_SUNXI_DRAM_TYPE,
+ .dram_zq = CONFIG_DRAM_ZQ,
+ .dram_odt_en = CONFIG_DRAM_SUNXI_ODT_EN,
+ .dram_mr0 = 0x1c70,
+ .dram_mr1 = 0x42,
+ .dram_mr2 = 0x18,
+ .dram_mr3 = 0,
+ .dram_tpr0 = 0x004a2195,
+ .dram_tpr1 = 0x02423190,
+ .dram_tpr2 = 0x0008b061,
+ .dram_tpr3 = 0xb4787896, // unused
+ .dram_tpr4 = 0,
+ .dram_tpr5 = 0x48484848,
+ .dram_tpr6 = 0x00000048,
+ .dram_tpr7 = 0x1620121e, // unused
+ .dram_tpr8 = 0,
+ .dram_tpr9 = 0, // clock?
+ .dram_tpr10 = 0,
+ .dram_tpr11 = CONFIG_DRAM_SUNXI_TPR11,
+ .dram_tpr12 = CONFIG_DRAM_SUNXI_TPR12,
+ };
+
+unsigned long sunxi_dram_init(void)
+{
+ return init_DRAM(0, ¶) * 1024UL * 1024;
+};
+
+#ifdef CONFIG_RAM /* using the driver model */
+struct sunxi_ram_priv {
+ size_t size;
+};
+
+static int sunxi_ram_probe(struct udevice *dev)
+{
+ struct sunxi_ram_priv *priv = dev_get_priv(dev);
+ unsigned long dram_size;
+
+ debug("%s: %s: probing\n", __func__, dev->name);
+
+ dram_size = sunxi_dram_init();
+ if (!dram_size) {
+ printf("DRAM init failed: %d\n", ret);
+ return -ENODEV;
+ }
+
+ priv->size = dram_size;
+
+ return 0;
+}
+
+static int sunxi_ram_get_info(struct udevice *dev, struct ram_info *info)
+{
+ struct sunxi_ram_priv *priv = dev_get_priv(dev);
+
+ debug("%s: %s: getting info\n", __func__, dev->name);
+
+ info->base = CFG_SYS_SDRAM_BASE;
+ info->size = priv->size;
+
+ return 0;
+}
+
+static struct ram_ops sunxi_ram_ops = {
+ .get_info = sunxi_ram_get_info,
+};
+
+static const struct udevice_id sunxi_ram_ids[] = {
+ { .compatible = "allwinner,sun20i-d1-mbus" },
+ { }
+};
+
+U_BOOT_DRIVER(sunxi_ram) = {
+ .name = "sunxi_ram",
+ .id = UCLASS_RAM,
+ .of_match = sunxi_ram_ids,
+ .ops = &sunxi_ram_ops,
+ .probe = sunxi_ram_probe,
+ .priv_auto = sizeof(struct sunxi_ram_priv),
+};
+#endif /* CONFIG_RAM (using driver model) */
new file mode 100644
@@ -0,0 +1,73 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * D1/R528/T113 DRAM controller register and constant defines
+ *
+ * (C) Copyright 2022 Arm Ltd.
+ * Based on H6 and H616 header, which are:
+ * (C) Copyright 2017 Icenowy Zheng <icenowy@aosc.io>
+ * (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net>
+ *
+ */
+
+#ifndef _SUNXI_DRAM_SUN20I_D1_H
+#define _SUNXI_DRAM_SUN20I_D1_H
+
+enum sunxi_dram_type {
+ SUNXI_DRAM_TYPE_DDR2 = 2,
+ SUNXI_DRAM_TYPE_DDR3 = 3,
+ SUNXI_DRAM_TYPE_LPDDR2 = 6,
+ SUNXI_DRAM_TYPE_LPDDR3 = 7,
+};
+
+/*
+ * This structure contains a mixture of fixed configuration settings,
+ * variables that are used at runtime to communicate settings between
+ * different stages and functions, and unused values.
+ * This is copied from Allwinner's boot0 data structure, which can be
+ * found at offset 0x38 in any boot0 binary. To allow matching up some
+ * board specific settings, this struct is kept compatible, even though
+ * we don't need all members in our code.
+ */
+typedef struct dram_para {
+ /* normal configuration */
+ const u32 dram_clk;
+ const u32 dram_type;
+ const u32 dram_zq;
+ const u32 dram_odt_en;
+
+ /* timing configuration */
+ const u32 dram_mr0;
+ const u32 dram_mr1;
+ const u32 dram_mr2;
+ const u32 dram_mr3;
+ const u32 dram_tpr0; //DRAMTMG0
+ const u32 dram_tpr1; //DRAMTMG1
+ const u32 dram_tpr2; //DRAMTMG2
+ const u32 dram_tpr3; //DRAMTMG3
+ const u32 dram_tpr4; //DRAMTMG4
+ const u32 dram_tpr5; //DRAMTMG5
+ const u32 dram_tpr6; //DRAMTMG8
+ const u32 dram_tpr7;
+ const u32 dram_tpr8;
+ const u32 dram_tpr9;
+ const u32 dram_tpr10;
+ const u32 dram_tpr11;
+ const u32 dram_tpr12;
+} dram_para_t;
+
+typedef struct dram_config {
+ /* control configuration */
+ u32 dram_para1;
+ u32 dram_para2;
+ /* contains a bitfield of DRAM setup settings */
+ u32 dram_tpr13;
+} dram_config_t;
+
+static inline int ns_to_t(int nanoseconds)
+{
+ const unsigned int ctrl_freq = CONFIG_DRAM_CLK / 2;
+
+ return DIV_ROUND_UP(ctrl_freq * nanoseconds, 1000);
+}
+
+#endif /* _SUNXI_DRAM_SUN20I_D1_H */