diff mbox

[19/21] userfaultfd: remap_pages: UFFDIO_REMAP preparation

Message ID 1425575884-2574-20-git-send-email-aarcange@redhat.com
State New
Headers show

Commit Message

Andrea Arcangeli March 5, 2015, 5:18 p.m. UTC
remap_pages is the lowlevel mm helper needed to implement
UFFDIO_REMAP.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
---
 include/linux/userfaultfd_k.h |  17 ++
 mm/huge_memory.c              | 120 ++++++++++
 mm/userfaultfd.c              | 526 ++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 663 insertions(+)

Comments

Linus Torvalds March 5, 2015, 5:39 p.m. UTC | #1
On Thu, Mar 5, 2015 at 9:18 AM, Andrea Arcangeli <aarcange@redhat.com> wrote:
> remap_pages is the lowlevel mm helper needed to implement
> UFFDIO_REMAP.

This function is nasty nasty nasty.

Is this really worth it? On real loads? That people are expected to use?

Considering how we just got rid of one special magic VM remapping
thing that nobody actually used, I'd really hate to add a new one.

The fact is, almost nobody ever uses anything that isn't standard
POSIX. There are no apps, and even for specialized things like
virtualization hypervisors this kind of thing is often simply not
worth it.

Quite frankly, *if* we ever merge userfaultfd, I would *strongly*
argue for not merging the remap parts. I just don't see the point. It
doesn't seem to add anything that is semantically very important -
it's *potentially* a faster copy, but even that is

  (a) questionable in the first place

and

 (b) unclear why anybody would ever care about performance of
infrastructure that nobody actually uses today, and future use isn't
even clear or shown to be particualrly performance-sensitive.

So basically I'd like to see better documentation, a few real use
cases (and by real I very much do *not* mean "you can use it for
this", but actual patches to actual projects that matter and that are
expected to care and merge them), and a simplified series that doesn't
do the remap thing.

Because *every* time we add a new clever interface, we end up with
approximately zero users and just pain down the line. Examples:
splice, mremap, yadda yadda.

                        Linus
Pavel Emelyanov March 5, 2015, 6:01 p.m. UTC | #2
> +ssize_t remap_pages(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> +		    unsigned long dst_start, unsigned long src_start,
> +		    unsigned long len, __u64 mode)
> +{
> +	struct vm_area_struct *src_vma, *dst_vma;
> +	long err = -EINVAL;
> +	pmd_t *src_pmd, *dst_pmd;
> +	pte_t *src_pte, *dst_pte;
> +	spinlock_t *dst_ptl, *src_ptl;
> +	unsigned long src_addr, dst_addr;
> +	int thp_aligned = -1;
> +	ssize_t moved = 0;
> +
> +	/*
> +	 * Sanitize the command parameters:
> +	 */
> +	BUG_ON(src_start & ~PAGE_MASK);
> +	BUG_ON(dst_start & ~PAGE_MASK);
> +	BUG_ON(len & ~PAGE_MASK);
> +
> +	/* Does the address range wrap, or is the span zero-sized? */
> +	BUG_ON(src_start + len <= src_start);
> +	BUG_ON(dst_start + len <= dst_start);
> +
> +	/*
> +	 * Because these are read sempahores there's no risk of lock
> +	 * inversion.
> +	 */
> +	down_read(&dst_mm->mmap_sem);
> +	if (dst_mm != src_mm)
> +		down_read(&src_mm->mmap_sem);
> +
> +	/*
> +	 * Make sure the vma is not shared, that the src and dst remap
> +	 * ranges are both valid and fully within a single existing
> +	 * vma.
> +	 */
> +	src_vma = find_vma(src_mm, src_start);
> +	if (!src_vma || (src_vma->vm_flags & VM_SHARED))
> +		goto out;
> +	if (src_start < src_vma->vm_start ||
> +	    src_start + len > src_vma->vm_end)
> +		goto out;
> +
> +	dst_vma = find_vma(dst_mm, dst_start);
> +	if (!dst_vma || (dst_vma->vm_flags & VM_SHARED))
> +		goto out;

I again have a concern about the case when one task monitors the VM of the
other one. If the target task (owning the mm) unmaps a VMA then the monitor
task (holding and operating on the ufd) will get plain EINVAL on UFFDIO_REMAP
request. This is not fatal, but still inconvenient as it will be hard to
find out the reason for failure -- dst VMA is removed and the monitor should
just drop the respective pages with data, or some other error has occurred
and some other actions should be taken.

Thanks,
Pavel
Andrea Arcangeli March 5, 2015, 6:51 p.m. UTC | #3
On Thu, Mar 05, 2015 at 09:39:48AM -0800, Linus Torvalds wrote:
> Is this really worth it? On real loads? That people are expected to use?

I fully agree that it's not worth merging upstream UFFDIO_REMAP until
(and if) a real world usage for it will showup. To further clarify:
would this not have been an RFC, the patchset would have stopped at
patch number 15/21 included.

Merging UFFDIO_REMAP with no real life users, would just increase the
attack vector surface of the kernel for no good.

Thanks for your idea that the UFFDIO_COPY is faster, the userland code
we submitted for qemu only uses UFFDIO_COPY|ZEROPAGE, it never uses
UFFDIO_REMAP. I immediately agreed about UFFDIO_COPY being preferable
after you mentioned it during review of the previous RFC.

However this being a RFC with a large audience, and UFFDIO_REMAP
allowing to "remove" memory (think like externalizing memory into to
ceph with deduplication or such), I still added it just in case there
are real world use cases that may justify me keeping it around (even
if I would definitely not have submitted it for merging in the short
term regardless).

In addition of dropping the parts that aren't suitable for merging in
the short term like UFFDIO_REMAP, for any further submits that won't
substantially alter the API like it happened between the v2 to v3
RFCs, I'll also shrink the To/Cc list considerably.

> Considering how we just got rid of one special magic VM remapping
> thing that nobody actually used, I'd really hate to add a new one.

Having to define an API somehow, I tried to think at all possible
future usages and make sure the API would allow for those if needed.

> Quite frankly, *if* we ever merge userfaultfd, I would *strongly*
> argue for not merging the remap parts. I just don't see the point. It
> doesn't seem to add anything that is semantically very important -
> it's *potentially* a faster copy, but even that is
> 
>   (a) questionable in the first place

Yes, we already measured the UFFDIO_COPY is faster than UFFDIO_REMAP,
the userfault latency decreases -20%.

> 
> and
> 
>  (b) unclear why anybody would ever care about performance of
> infrastructure that nobody actually uses today, and future use isn't
> even clear or shown to be particualrly performance-sensitive.

The only potential _theoretical_ case that justify the existence of
UFFDIO_REMAP is about "removing" memory from the address space. To
"add" memory UFFDIO_COPY and UFFDIO_ZEROPAGE are always preferable
like you suggested.

> So basically I'd like to see better documentation, a few real use
> cases (and by real I very much do *not* mean "you can use it for
> this", but actual patches to actual projects that matter and that are
> expected to care and merge them), and a simplified series that doesn't
> do the remap thing.

So far I wrote some doc in 2/21 and in the cover letter, but certainly
more docs are necessary. Trinity is also needed (I got trinity running
on the v2 API but I haven't adapted to the new API yet).

About the real world usages, this is the primary one:

http://lists.gnu.org/archive/html/qemu-devel/2015-02/msg04873.html

And it actually cannot be merged in qemu until userfaultfd is merged
in the kernel. There's simply no safe way to implement postcopy live
migration without something equivalent to the userfaultfd if all Linux
VM features are intended to be retained in the destination node.

> Because *every* time we add a new clever interface, we end up with
> approximately zero users and just pain down the line. Examples:
> splice, mremap, yadda yadda.

Aside from mremap which I think is widely used, I totally agree in
principle.

For now I can quite comfortably guarantee the above real life user for
userfaultfd (qemu), but there are potential 5 of them. And none needs
UFFDIO_REMAP, which is again why I totally agree of not submitting it
for merging and it was intended it only for the initial RFC to share
the idea of "removing" the memory with a larger audience before I
shrink the Cc/To list for further updates.

Thanks,
Andrea
Linus Torvalds March 5, 2015, 7:32 p.m. UTC | #4
On Thu, Mar 5, 2015 at 10:51 AM, Andrea Arcangeli <aarcange@redhat.com> wrote:
>
> Thanks for your idea that the UFFDIO_COPY is faster, the userland code
> we submitted for qemu only uses UFFDIO_COPY|ZEROPAGE, it never uses
> UFFDIO_REMAP.

Ok. So there's no actual expected use of the remap interface. Good.
That makes this series more palatable, since the rest didn't raise my
hackles much.

(But yeah, the documentation patch didn't really explain the uses very
much or at all, so I think something more is needed in that area).

                   Linus
diff mbox

Patch

diff --git a/include/linux/userfaultfd_k.h b/include/linux/userfaultfd_k.h
index 587480a..3c39a4f 100644
--- a/include/linux/userfaultfd_k.h
+++ b/include/linux/userfaultfd_k.h
@@ -36,6 +36,23 @@  extern ssize_t mfill_zeropage(struct mm_struct *dst_mm,
 			      unsigned long dst_start,
 			      unsigned long len);
 
+/* remap_pages */
+extern void double_pt_lock(spinlock_t *ptl1, spinlock_t *ptl2);
+extern void double_pt_unlock(spinlock_t *ptl1, spinlock_t *ptl2);
+extern ssize_t remap_pages(struct mm_struct *dst_mm,
+			   struct mm_struct *src_mm,
+			   unsigned long dst_start,
+			   unsigned long src_start,
+			   unsigned long len, __u64 flags);
+extern int remap_pages_huge_pmd(struct mm_struct *dst_mm,
+				struct mm_struct *src_mm,
+				pmd_t *dst_pmd, pmd_t *src_pmd,
+				pmd_t dst_pmdval,
+				struct vm_area_struct *dst_vma,
+				struct vm_area_struct *src_vma,
+				unsigned long dst_addr,
+				unsigned long src_addr);
+
 /* mm helpers */
 static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma,
 					struct vm_userfaultfd_ctx vm_ctx)
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 1e25cb3..08c8afc 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -1531,6 +1531,124 @@  int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 	return ret;
 }
 
+#ifdef CONFIG_USERFAULTFD
+/*
+ * The PT lock for src_pmd and the mmap_sem for reading are held by
+ * the caller, but it must return after releasing the
+ * page_table_lock. We're guaranteed the src_pmd is a pmd_trans_huge
+ * until the PT lock of the src_pmd is released. Just move the page
+ * from src_pmd to dst_pmd if possible. Return zero if succeeded in
+ * moving the page, -EAGAIN if it needs to be repeated by the caller,
+ * or other errors in case of failure.
+ */
+int remap_pages_huge_pmd(struct mm_struct *dst_mm,
+			 struct mm_struct *src_mm,
+			 pmd_t *dst_pmd, pmd_t *src_pmd,
+			 pmd_t dst_pmdval,
+			 struct vm_area_struct *dst_vma,
+			 struct vm_area_struct *src_vma,
+			 unsigned long dst_addr,
+			 unsigned long src_addr)
+{
+	pmd_t _dst_pmd, src_pmdval;
+	struct page *src_page;
+	struct anon_vma *src_anon_vma, *dst_anon_vma;
+	spinlock_t *src_ptl, *dst_ptl;
+	pgtable_t pgtable;
+
+	src_pmdval = *src_pmd;
+	src_ptl = pmd_lockptr(src_mm, src_pmd);
+
+	BUG_ON(!pmd_trans_huge(src_pmdval));
+	BUG_ON(pmd_trans_splitting(src_pmdval));
+	BUG_ON(!pmd_none(dst_pmdval));
+	BUG_ON(!spin_is_locked(src_ptl));
+	BUG_ON(!rwsem_is_locked(&src_mm->mmap_sem));
+	BUG_ON(!rwsem_is_locked(&dst_mm->mmap_sem));
+
+	src_page = pmd_page(src_pmdval);
+	BUG_ON(!PageHead(src_page));
+	BUG_ON(!PageAnon(src_page));
+	if (unlikely(page_mapcount(src_page) != 1)) {
+		spin_unlock(src_ptl);
+		return -EBUSY;
+	}
+
+	get_page(src_page);
+	spin_unlock(src_ptl);
+
+	mmu_notifier_invalidate_range_start(src_mm, src_addr,
+					    src_addr + HPAGE_PMD_SIZE);
+
+	/* block all concurrent rmap walks */
+	lock_page(src_page);
+
+	/*
+	 * split_huge_page walks the anon_vma chain without the page
+	 * lock. Serialize against it with the anon_vma lock, the page
+	 * lock is not enough.
+	 */
+	src_anon_vma = page_get_anon_vma(src_page);
+	if (!src_anon_vma) {
+		unlock_page(src_page);
+		put_page(src_page);
+		mmu_notifier_invalidate_range_end(src_mm, src_addr,
+						  src_addr + HPAGE_PMD_SIZE);
+		return -EAGAIN;
+	}
+	anon_vma_lock_write(src_anon_vma);
+
+	dst_ptl = pmd_lockptr(dst_mm, dst_pmd);
+	double_pt_lock(src_ptl, dst_ptl);
+	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
+		     !pmd_same(*dst_pmd, dst_pmdval) ||
+		     page_mapcount(src_page) != 1)) {
+		double_pt_unlock(src_ptl, dst_ptl);
+		anon_vma_unlock_write(src_anon_vma);
+		put_anon_vma(src_anon_vma);
+		unlock_page(src_page);
+		put_page(src_page);
+		mmu_notifier_invalidate_range_end(src_mm, src_addr,
+						  src_addr + HPAGE_PMD_SIZE);
+		return -EAGAIN;
+	}
+
+	BUG_ON(!PageHead(src_page));
+	BUG_ON(!PageAnon(src_page));
+	/* the PT lock is enough to keep the page pinned now */
+	put_page(src_page);
+
+	dst_anon_vma = (void *) dst_vma->anon_vma + PAGE_MAPPING_ANON;
+	ACCESS_ONCE(src_page->mapping) = (struct address_space *) dst_anon_vma;
+	ACCESS_ONCE(src_page->index) = linear_page_index(dst_vma, dst_addr);
+
+	if (!pmd_same(pmdp_clear_flush(src_vma, src_addr, src_pmd),
+		      src_pmdval))
+		BUG();
+	_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
+	_dst_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
+	set_pmd_at(dst_mm, dst_addr, dst_pmd, _dst_pmd);
+
+	pgtable = pgtable_trans_huge_withdraw(src_mm, src_pmd);
+	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
+	if (dst_mm != src_mm) {
+		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+		add_mm_counter(src_mm, MM_ANONPAGES, -HPAGE_PMD_NR);
+	}
+	double_pt_unlock(src_ptl, dst_ptl);
+
+	anon_vma_unlock_write(src_anon_vma);
+	put_anon_vma(src_anon_vma);
+
+	/* unblock rmap walks */
+	unlock_page(src_page);
+
+	mmu_notifier_invalidate_range_end(src_mm, src_addr,
+					  src_addr + HPAGE_PMD_SIZE);
+	return 0;
+}
+#endif /* CONFIG_USERFAULTFD */
+
 /*
  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
@@ -2484,6 +2602,8 @@  static void collapse_huge_page(struct mm_struct *mm,
 	 * Prevent all access to pagetables with the exception of
 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
 	 * handled by the anon_vma lock + PG_lock.
+	 *
+	 * remap_pages is prevented to race as well thanks to the mmap_sem.
 	 */
 	down_write(&mm->mmap_sem);
 	if (unlikely(khugepaged_test_exit(mm)))
diff --git a/mm/userfaultfd.c b/mm/userfaultfd.c
index 3f4c0ef..49521af 100644
--- a/mm/userfaultfd.c
+++ b/mm/userfaultfd.c
@@ -265,3 +265,529 @@  ssize_t mfill_zeropage(struct mm_struct *dst_mm, unsigned long start,
 {
 	return __mcopy_atomic(dst_mm, start, 0, len, true);
 }
+
+void double_pt_lock(spinlock_t *ptl1,
+		    spinlock_t *ptl2)
+	__acquires(ptl1)
+	__acquires(ptl2)
+{
+	spinlock_t *ptl_tmp;
+
+	if (ptl1 > ptl2) {
+		/* exchange ptl1 and ptl2 */
+		ptl_tmp = ptl1;
+		ptl1 = ptl2;
+		ptl2 = ptl_tmp;
+	}
+	/* lock in virtual address order to avoid lock inversion */
+	spin_lock(ptl1);
+	if (ptl1 != ptl2)
+		spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
+	else
+		__acquire(ptl2);
+}
+
+void double_pt_unlock(spinlock_t *ptl1,
+		      spinlock_t *ptl2)
+	__releases(ptl1)
+	__releases(ptl2)
+{
+	spin_unlock(ptl1);
+	if (ptl1 != ptl2)
+		spin_unlock(ptl2);
+	else
+		__release(ptl2);
+}
+
+/*
+ * The mmap_sem for reading is held by the caller. Just move the page
+ * from src_pmd to dst_pmd if possible, and return true if succeeded
+ * in moving the page.
+ */
+static int remap_pages_pte(struct mm_struct *dst_mm,
+			   struct mm_struct *src_mm,
+			   pte_t *dst_pte, pte_t *src_pte, pmd_t *src_pmd,
+			   struct vm_area_struct *dst_vma,
+			   struct vm_area_struct *src_vma,
+			   unsigned long dst_addr,
+			   unsigned long src_addr,
+			   spinlock_t *dst_ptl,
+			   spinlock_t *src_ptl,
+			   __u64 mode)
+{
+	struct page *src_page;
+	swp_entry_t entry;
+	pte_t orig_src_pte, orig_dst_pte;
+	struct anon_vma *src_anon_vma, *dst_anon_vma;
+
+	spin_lock(dst_ptl);
+	orig_dst_pte = *dst_pte;
+	spin_unlock(dst_ptl);
+	if (!pte_none(orig_dst_pte))
+		return -EEXIST;
+
+	spin_lock(src_ptl);
+	orig_src_pte = *src_pte;
+	spin_unlock(src_ptl);
+	if (pte_none(orig_src_pte)) {
+		if (!(mode & UFFDIO_REMAP_MODE_ALLOW_SRC_HOLES))
+			return -ENOENT;
+		else
+			/* nothing to do to remap an hole */
+			return 0;
+	}
+
+	if (pte_present(orig_src_pte)) {
+		/*
+		 * Pin the page while holding the lock to be sure the
+		 * page isn't freed under us
+		 */
+		spin_lock(src_ptl);
+		if (!pte_same(orig_src_pte, *src_pte)) {
+			spin_unlock(src_ptl);
+			return -EAGAIN;
+		}
+		src_page = vm_normal_page(src_vma, src_addr, orig_src_pte);
+		if (!src_page || !PageAnon(src_page) ||
+		    page_mapcount(src_page) != 1) {
+			spin_unlock(src_ptl);
+			return -EBUSY;
+		}
+
+		get_page(src_page);
+		spin_unlock(src_ptl);
+
+		/* block all concurrent rmap walks */
+		lock_page(src_page);
+
+		/*
+		 * page_referenced_anon walks the anon_vma chain
+		 * without the page lock. Serialize against it with
+		 * the anon_vma lock, the page lock is not enough.
+		 */
+		src_anon_vma = page_get_anon_vma(src_page);
+		if (!src_anon_vma) {
+			/* page was unmapped from under us */
+			unlock_page(src_page);
+			put_page(src_page);
+			return -EAGAIN;
+		}
+		anon_vma_lock_write(src_anon_vma);
+
+		double_pt_lock(dst_ptl, src_ptl);
+
+		if (!pte_same(*src_pte, orig_src_pte) ||
+		    !pte_same(*dst_pte, orig_dst_pte) ||
+		    page_mapcount(src_page) != 1) {
+			double_pt_unlock(dst_ptl, src_ptl);
+			anon_vma_unlock_write(src_anon_vma);
+			put_anon_vma(src_anon_vma);
+			unlock_page(src_page);
+			put_page(src_page);
+			return -EAGAIN;
+		}
+
+		BUG_ON(!PageAnon(src_page));
+		/* the PT lock is enough to keep the page pinned now */
+		put_page(src_page);
+
+		dst_anon_vma = (void *) dst_vma->anon_vma + PAGE_MAPPING_ANON;
+		ACCESS_ONCE(src_page->mapping) = ((struct address_space *)
+						  dst_anon_vma);
+		ACCESS_ONCE(src_page->index) = linear_page_index(dst_vma,
+								 dst_addr);
+
+		if (!pte_same(ptep_clear_flush(src_vma, src_addr, src_pte),
+			      orig_src_pte))
+			BUG();
+
+		orig_dst_pte = mk_pte(src_page, dst_vma->vm_page_prot);
+		orig_dst_pte = maybe_mkwrite(pte_mkdirty(orig_dst_pte),
+					     dst_vma);
+
+		set_pte_at(dst_mm, dst_addr, dst_pte, orig_dst_pte);
+
+		if (dst_mm != src_mm) {
+			inc_mm_counter(dst_mm, MM_ANONPAGES);
+			dec_mm_counter(src_mm, MM_ANONPAGES);
+		}
+
+		double_pt_unlock(dst_ptl, src_ptl);
+
+		anon_vma_unlock_write(src_anon_vma);
+		put_anon_vma(src_anon_vma);
+
+		/* unblock rmap walks */
+		unlock_page(src_page);
+
+		mmu_notifier_invalidate_page(src_mm, src_addr);
+	} else {
+		entry = pte_to_swp_entry(orig_src_pte);
+		if (non_swap_entry(entry)) {
+			if (is_migration_entry(entry)) {
+				migration_entry_wait(src_mm, src_pmd,
+						     src_addr);
+				return -EAGAIN;
+			}
+			return -EFAULT;
+		}
+
+		if (swp_entry_swapcount(entry) != 1)
+			return -EBUSY;
+
+		double_pt_lock(dst_ptl, src_ptl);
+
+		if (!pte_same(*src_pte, orig_src_pte) ||
+		    !pte_same(*dst_pte, orig_dst_pte) ||
+		    swp_entry_swapcount(entry) != 1) {
+			double_pt_unlock(dst_ptl, src_ptl);
+			return -EAGAIN;
+		}
+
+		if (pte_val(ptep_get_and_clear(src_mm, src_addr, src_pte)) !=
+		    pte_val(orig_src_pte))
+			BUG();
+		set_pte_at(dst_mm, dst_addr, dst_pte, orig_src_pte);
+
+		if (dst_mm != src_mm) {
+			inc_mm_counter(dst_mm, MM_ANONPAGES);
+			dec_mm_counter(src_mm, MM_ANONPAGES);
+		}
+
+		double_pt_unlock(dst_ptl, src_ptl);
+	}
+
+	return 0;
+}
+
+/**
+ * remap_pages - remap arbitrary anonymous pages of an existing vma
+ * @dst_start: start of the destination virtual memory range
+ * @src_start: start of the source virtual memory range
+ * @len: length of the virtual memory range
+ *
+ * remap_pages() remaps arbitrary anonymous pages atomically in zero
+ * copy. It only works on non shared anonymous pages because those can
+ * be relocated without generating non linear anon_vmas in the rmap
+ * code.
+ *
+ * It is the ideal mechanism to handle userspace page faults. Normally
+ * the destination vma will have VM_USERFAULT set with
+ * madvise(MADV_USERFAULT) while the source vma will have VM_DONTCOPY
+ * set with madvise(MADV_DONTFORK).
+ *
+ * The thread receiving the page during the userland page fault
+ * (MADV_USERFAULT) will receive the faulting page in the source vma
+ * through the network, storage or any other I/O device (MADV_DONTFORK
+ * in the source vma avoids remap_pages() to fail with -EBUSY if the
+ * process forks before remap_pages() is called), then it will call
+ * remap_pages() to map the page in the faulting address in the
+ * destination vma.
+ *
+ * This userfaultfd command works purely via pagetables, so it's the
+ * most efficient way to move physical non shared anonymous pages
+ * across different virtual addresses. Unlike mremap()/mmap()/munmap()
+ * it does not create any new vmas. The mapping in the destination
+ * address is atomic.
+ *
+ * It only works if the vma protection bits are identical from the
+ * source and destination vma.
+ *
+ * It can remap non shared anonymous pages within the same vma too.
+ *
+ * If the source virtual memory range has any unmapped holes, or if
+ * the destination virtual memory range is not a whole unmapped hole,
+ * remap_pages() will fail respectively with -ENOENT or -EEXIST. This
+ * provides a very strict behavior to avoid any chance of memory
+ * corruption going unnoticed if there are userland race
+ * conditions. Only one thread should resolve the userland page fault
+ * at any given time for any given faulting address. This means that
+ * if two threads try to both call remap_pages() on the same
+ * destination address at the same time, the second thread will get an
+ * explicit error from this command.
+ *
+ * The command retval will return "len" is succesful. The command
+ * however can be interrupted by fatal signals or errors. If
+ * interrupted it will return the number of bytes successfully
+ * remapped before the interruption if any, or the negative error if
+ * none. It will never return zero. Either it will return an error or
+ * an amount of bytes successfully moved. If the retval reports a
+ * "short" remap, the remap_pages() command should be repeated by
+ * userland with src+retval, dst+reval, len-retval if it wants to know
+ * about the error that interrupted it.
+ *
+ * The UFFDIO_REMAP_MODE_ALLOW_SRC_HOLES flag can be specified to
+ * prevent -ENOENT errors to materialize if there are holes in the
+ * source virtual range that is being remapped. The holes will be
+ * accounted as successfully remapped in the retval of the
+ * command. This is mostly useful to remap hugepage naturally aligned
+ * virtual regions without knowing if there are transparent hugepage
+ * in the regions or not, but preventing the risk of having to split
+ * the hugepmd during the remap.
+ *
+ * If there's any rmap walk that is taking the anon_vma locks without
+ * first obtaining the page lock (for example split_huge_page and
+ * page_referenced_anon), they will have to verify if the
+ * page->mapping has changed after taking the anon_vma lock. If it
+ * changed they should release the lock and retry obtaining a new
+ * anon_vma, because it means the anon_vma was changed by
+ * remap_pages() before the lock could be obtained. This is the only
+ * additional complexity added to the rmap code to provide this
+ * anonymous page remapping functionality.
+ */
+ssize_t remap_pages(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+		    unsigned long dst_start, unsigned long src_start,
+		    unsigned long len, __u64 mode)
+{
+	struct vm_area_struct *src_vma, *dst_vma;
+	long err = -EINVAL;
+	pmd_t *src_pmd, *dst_pmd;
+	pte_t *src_pte, *dst_pte;
+	spinlock_t *dst_ptl, *src_ptl;
+	unsigned long src_addr, dst_addr;
+	int thp_aligned = -1;
+	ssize_t moved = 0;
+
+	/*
+	 * Sanitize the command parameters:
+	 */
+	BUG_ON(src_start & ~PAGE_MASK);
+	BUG_ON(dst_start & ~PAGE_MASK);
+	BUG_ON(len & ~PAGE_MASK);
+
+	/* Does the address range wrap, or is the span zero-sized? */
+	BUG_ON(src_start + len <= src_start);
+	BUG_ON(dst_start + len <= dst_start);
+
+	/*
+	 * Because these are read sempahores there's no risk of lock
+	 * inversion.
+	 */
+	down_read(&dst_mm->mmap_sem);
+	if (dst_mm != src_mm)
+		down_read(&src_mm->mmap_sem);
+
+	/*
+	 * Make sure the vma is not shared, that the src and dst remap
+	 * ranges are both valid and fully within a single existing
+	 * vma.
+	 */
+	src_vma = find_vma(src_mm, src_start);
+	if (!src_vma || (src_vma->vm_flags & VM_SHARED))
+		goto out;
+	if (src_start < src_vma->vm_start ||
+	    src_start + len > src_vma->vm_end)
+		goto out;
+
+	dst_vma = find_vma(dst_mm, dst_start);
+	if (!dst_vma || (dst_vma->vm_flags & VM_SHARED))
+		goto out;
+	if (dst_start < dst_vma->vm_start ||
+	    dst_start + len > dst_vma->vm_end)
+		goto out;
+
+	if (pgprot_val(src_vma->vm_page_prot) !=
+	    pgprot_val(dst_vma->vm_page_prot))
+		goto out;
+
+	/* only allow remapping if both are mlocked or both aren't */
+	if ((src_vma->vm_flags & VM_LOCKED) ^ (dst_vma->vm_flags & VM_LOCKED))
+		goto out;
+
+	/*
+	 * Be strict and only allow remap_pages if either the src or
+	 * dst range is registered in the userfaultfd to prevent
+	 * userland errors going unnoticed. As far as the VM
+	 * consistency is concerned, it would be perfectly safe to
+	 * remove this check, but there's no useful usage for
+	 * remap_pages ouside of userfaultfd registered ranges. This
+	 * is after all why it is an ioctl belonging to the
+	 * userfaultfd and not a syscall.
+	 *
+	 * Allow both vmas to be registered in the userfaultfd, just
+	 * in case somebody finds a way to make such a case useful.
+	 * Normally only one of the two vmas would be registered in
+	 * the userfaultfd.
+	 */
+	if (!dst_vma->vm_userfaultfd_ctx.ctx &&
+	    !src_vma->vm_userfaultfd_ctx.ctx)
+		goto out;
+
+	/*
+	 * FIXME: only allow remapping across anonymous vmas,
+	 * tmpfs should be added.
+	 */
+	if (src_vma->vm_ops || dst_vma->vm_ops)
+		goto out;
+
+	/*
+	 * Ensure the dst_vma has a anon_vma or this page
+	 * would get a NULL anon_vma when moved in the
+	 * dst_vma.
+	 */
+	err = -ENOMEM;
+	if (unlikely(anon_vma_prepare(dst_vma)))
+		goto out;
+
+	for (src_addr = src_start, dst_addr = dst_start;
+	     src_addr < src_start + len; ) {
+		spinlock_t *ptl;
+		pmd_t dst_pmdval;
+		BUG_ON(dst_addr >= dst_start + len);
+		src_pmd = mm_find_pmd(src_mm, src_addr);
+		if (unlikely(!src_pmd)) {
+			if (!(mode & UFFDIO_REMAP_MODE_ALLOW_SRC_HOLES)) {
+				err = -ENOENT;
+				break;
+			} else {
+				src_pmd = mm_alloc_pmd(src_mm, src_addr);
+				if (unlikely(!src_pmd)) {
+					err = -ENOMEM;
+					break;
+				}
+			}
+		}
+		dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
+		if (unlikely(!dst_pmd)) {
+			err = -ENOMEM;
+			break;
+		}
+
+		dst_pmdval = pmd_read_atomic(dst_pmd);
+		/*
+		 * If the dst_pmd is mapped as THP don't
+		 * override it and just be strict.
+		 */
+		if (unlikely(pmd_trans_huge(dst_pmdval))) {
+			err = -EEXIST;
+			break;
+		}
+		if (pmd_trans_huge_lock(src_pmd, src_vma, &ptl) == 1) {
+			/*
+			 * Check if we can move the pmd without
+			 * splitting it. First check the address
+			 * alignment to be the same in src/dst.  These
+			 * checks don't actually need the PT lock but
+			 * it's good to do it here to optimize this
+			 * block away at build time if
+			 * CONFIG_TRANSPARENT_HUGEPAGE is not set.
+			 */
+			if (thp_aligned == -1)
+				thp_aligned = ((src_addr & ~HPAGE_PMD_MASK) ==
+					       (dst_addr & ~HPAGE_PMD_MASK));
+			if (!thp_aligned || (src_addr & ~HPAGE_PMD_MASK) ||
+			    !pmd_none(dst_pmdval) ||
+			    src_start + len - src_addr < HPAGE_PMD_SIZE) {
+				spin_unlock(ptl);
+				/* Fall through */
+				split_huge_page_pmd(src_vma, src_addr,
+						    src_pmd);
+			} else {
+				BUG_ON(dst_addr & ~HPAGE_PMD_MASK);
+				err = remap_pages_huge_pmd(dst_mm,
+							   src_mm,
+							   dst_pmd,
+							   src_pmd,
+							   dst_pmdval,
+							   dst_vma,
+							   src_vma,
+							   dst_addr,
+							   src_addr);
+				cond_resched();
+
+				if (!err) {
+					dst_addr += HPAGE_PMD_SIZE;
+					src_addr += HPAGE_PMD_SIZE;
+					moved += HPAGE_PMD_SIZE;
+				}
+
+				if ((!err || err == -EAGAIN) &&
+				    fatal_signal_pending(current))
+					err = -EINTR;
+
+				if (err && err != -EAGAIN)
+					break;
+
+				continue;
+			}
+		}
+
+		if (pmd_none(*src_pmd)) {
+			if (!(mode & UFFDIO_REMAP_MODE_ALLOW_SRC_HOLES)) {
+				err = -ENOENT;
+				break;
+			} else {
+				if (unlikely(__pte_alloc(src_mm, src_vma,
+							 src_pmd, src_addr))) {
+					err = -ENOMEM;
+					break;
+				}
+			}
+		}
+
+		/*
+		 * We held the mmap_sem for reading so MADV_DONTNEED
+		 * can zap transparent huge pages under us, or the
+		 * transparent huge page fault can establish new
+		 * transparent huge pages under us.
+		 */
+		if (unlikely(pmd_trans_unstable(src_pmd))) {
+			err = -EFAULT;
+			break;
+		}
+
+		if (unlikely(pmd_none(dst_pmdval)) &&
+		    unlikely(__pte_alloc(dst_mm, dst_vma, dst_pmd,
+					 dst_addr))) {
+			err = -ENOMEM;
+			break;
+		}
+		/* If an huge pmd materialized from under us fail */
+		if (unlikely(pmd_trans_huge(*dst_pmd))) {
+			err = -EFAULT;
+			break;
+		}
+
+		BUG_ON(pmd_none(*dst_pmd));
+		BUG_ON(pmd_none(*src_pmd));
+		BUG_ON(pmd_trans_huge(*dst_pmd));
+		BUG_ON(pmd_trans_huge(*src_pmd));
+
+		dst_pte = pte_offset_map(dst_pmd, dst_addr);
+		src_pte = pte_offset_map(src_pmd, src_addr);
+		dst_ptl = pte_lockptr(dst_mm, dst_pmd);
+		src_ptl = pte_lockptr(src_mm, src_pmd);
+
+		err = remap_pages_pte(dst_mm, src_mm,
+				      dst_pte, src_pte, src_pmd,
+				      dst_vma, src_vma,
+				      dst_addr, src_addr,
+				      dst_ptl, src_ptl, mode);
+
+		pte_unmap(dst_pte);
+		pte_unmap(src_pte);
+		cond_resched();
+
+		if (!err) {
+			dst_addr += PAGE_SIZE;
+			src_addr += PAGE_SIZE;
+			moved += PAGE_SIZE;
+		}
+
+		if ((!err || err == -EAGAIN) &&
+		    fatal_signal_pending(current))
+			err = -EINTR;
+
+		if (err && err != -EAGAIN)
+			break;
+	}
+
+out:
+	up_read(&dst_mm->mmap_sem);
+	if (dst_mm != src_mm)
+		up_read(&src_mm->mmap_sem);
+	BUG_ON(moved < 0);
+	BUG_ON(err > 0);
+	BUG_ON(!moved && !err);
+	return moved ? moved : err;
+}