@@ -5748,6 +5748,8 @@ j0 0x1p16382
j0 0x1p16383
# the next value generates larger error bounds on x86_64 (binary32)
j0 0x2.602774p+0 xfail-rounding:ibm128-libgcc
+# the next value exercises the flt-32 code path for x >= 2^127
+j0 0x8.2f4ecp+124
j1 -1.0
j1 0.0
@@ -55,7 +55,22 @@ __ieee754_j0f(float x)
z = -__cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
- }
+ } else {
+ /* We subtract (exactly) a value x0 such that cos(x0)+sin(x0)
+ is very near to 0, and use the identity
+ sin(x-x0) = sin(x)*cos(x0)-cos(x)*sin(x0) to get
+ sin(x) + cos(x) with extra accuracy. */
+ float x0 = 0xe.d4108p+124f;
+ float y = x - x0; /* exact */
+ /* sin(y) = sin(x)*cos(x0)-cos(x)*sin(x0) */
+ z = __sinf (y);
+ float eps = 0x1.5f263ep-24f;
+ /* cos(x0) ~ -sin(x0) + eps */
+ z += eps * __cosf (x);
+ /* now z ~ (sin(x)-cos(x))*cos(x0) */
+ float cosx0 = -0xb.504f3p-4f;
+ cc = z / cosx0;
+ }
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)