diff mbox series

Improves __ieee754_exp() performance by greater than 5x on sparc/x86.

Message ID 1512774211-43942-1-git-send-email-patrick.mcgehearty@oracle.com
State New
Headers show
Series Improves __ieee754_exp() performance by greater than 5x on sparc/x86. | expand

Commit Message

Patrick McGehearty Dec. 8, 2017, 11:03 p.m. UTC
Version 8 of proposed patch.

Renamed ln2_32hi2 and ln2_32lo2 to be ln2_64hi and ln2_64lo.
Revised comments to more accurately describe these constants.
Revised constants t2, t3, t4, t5 to better match values of 1/n factorial.
Change eliminated 1 ulp error in 942 tests out 40 million values tested.

Version 7 of proposed patch.

Fixed formatting issue in sysdeps/ieee754/dbl-64/e_exp.c

Version 6 of proposed patch.

Fixed error in patch revision.
Cleaned up formatting of return () and location of '+' for line breaks.
Fixed comments in eexp.tbl. Adjusted 3 values in eexp.tbl to be correctly
rounded in ulp as computed by quad precision.

Modified e_exp.c and eexp.tbl to use table of 64 intervals instead of
32 intervals for computing exp(x). That change reduced the differences
from the prior ieee754 exp(x) to 16 in 10,000 from 29 in 10,000. Also
reduced the make check differences for exp to 1 from 3. No observed
change in performance for using the larger table on either x86 or Sparc.

Version 5 of proposed patch.

Cleaned up formatting of comments and braces.
Returned to single patch for submission.

Version 4 of proposed patch.

New comments revised to use GNU standard comment formating.
Limited comment added in eexp.tbl for TBL[]. The original src
used for porting to Linux did not have a comment about TBL[].
The new comment is limited to the current worker's level of
understanding.

The (-xx.x > threshold2) case is changed to return force_underflow.
For FE_TONEAREST, tiny*tiny will always be zero but for
FE_UPWARD, it will be the smallest representable value.

That change caused no change in the math test results for Sparc or x86.

Version 3 changes

All hex constants in version 2 replaced with C99 double hex constants,
allowing Big Endian and Little Endian versions to be merged.
Only e_exp.c and eexp.tbl changed from version 2.
Minor changes in performance results due to system noise.
No other changes from version 2.

Version 2 of proposed patch.
Revised copyright notice and formatting issues.
Removed slowexp.c and related references.
Replaced tables of double constants with hex constants, taking special
  attention to correctly handle little endian and big endian versions.
  Using hex initialization also required changing variables to be declared
  as unions.  Tables moved from e_exp.c to sysdeps/ieee754/dbl-64/eexp.tbl.
Replaced __fegetround(), __fesetround() with get_rounding_mode and
  libc_fesetround().
Removed use of "small". "inexact mode" now ignored.
Retested and rebenchmarked on sparc and x86 with the above changes.

These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.

Typical performance gains is typically around 5x when measured on
Sparc s7 for common values between exp(1) and exp(40).

Using the glibc perf tests on sparc,
      sparc (nsec)    x86 (nsec)
      old     new     old     new
max   17629   395    5173     144
min     399    54      15      13
mean   5317   200    1349      23

The extreme max times for the old (ieee754) exp are due to the
multiprecision computation in the old algorithm when the true value is
very near 0.5 ulp away from an value representable in double
precision. The new algorithm does not take special measures for those
cases. The current glibc exp perf tests overrepresent those values.
Informal testing suggests approximately one in 200 cases might
invoke the high cost computation. The performance advantage of the new
algorithm for other values is still large but not as large as indicated
by the chart above.

Glibc correctness tests for exp() and expf() were run. Within the
test suite 3 input values were found to cause 1 bit differences (ulp)
when "FE_TONEAREST" rounding mode is set. No differences in exp() were
seen for the tested values for the other rounding modes.
Typical example:
exp(-0x1.760cd2p+0)  (-1.46113312244415283203125)
 new code:    2.31973271630014299393707e-01   0x1.db14cd799387ap-3
 old code:    2.31973271630014271638132e-01   0x1.db14cd7993879p-3
    exp    =  2.31973271630014285508337 (high precision)
Old delta: off by 0.49 ulp
New delta: off by 0.51 ulp

In addition, because ieee754_exp() is used by other routines, cexp()
showed test results with very small imaginary input values where the
imaginary portion of the result was off by 3 ulp when in upward
rounding mode, but not in the other rounding modes.  For x86, tgamma
showed a few values where the ulp increased to 6 (max ulp for tgamma
is 5). Sparc tgamma did not show these failures.  I presume the tgamma
differences are due to compiler optimization differences within the
gamma function.The gamma function is known to be difficult to compute
accurately.
---
 manual/probes.texi                          |   14 -
 math/Makefile                               |    2 +-
 sysdeps/generic/math_private.h              |    1 -
 sysdeps/ieee754/dbl-64/e_exp.c              |  398 +++++++++++++++------------
 sysdeps/ieee754/dbl-64/e_pow.c              |    2 +-
 sysdeps/ieee754/dbl-64/eexp.tbl             |  255 +++++++++++++++++
 sysdeps/ieee754/dbl-64/slowexp.c            |   86 ------
 sysdeps/powerpc/power4/fpu/Makefile         |    1 -
 sysdeps/x86_64/fpu/multiarch/Makefile       |    9 +-
 sysdeps/x86_64/fpu/multiarch/e_exp-avx.c    |    1 -
 sysdeps/x86_64/fpu/multiarch/e_exp-fma.c    |    1 -
 sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c   |    1 -
 sysdeps/x86_64/fpu/multiarch/slowexp-avx.c  |    9 -
 sysdeps/x86_64/fpu/multiarch/slowexp-fma.c  |    9 -
 sysdeps/x86_64/fpu/multiarch/slowexp-fma4.c |    9 -
 15 files changed, 475 insertions(+), 323 deletions(-)
 create mode 100644 sysdeps/ieee754/dbl-64/eexp.tbl
 delete mode 100644 sysdeps/ieee754/dbl-64/slowexp.c
 delete mode 100644 sysdeps/x86_64/fpu/multiarch/slowexp-avx.c
 delete mode 100644 sysdeps/x86_64/fpu/multiarch/slowexp-fma.c
 delete mode 100644 sysdeps/x86_64/fpu/multiarch/slowexp-fma4.c

Comments

Siddhesh Poyarekar Dec. 11, 2017, 8:14 a.m. UTC | #1
On Saturday 09 December 2017 04:33 AM, Patrick McGehearty wrote:
> +/*  IBM exp(x) replaced by following exp(x) in 2017. IBM exp1(x,xx) remains.  */
> +/* exp(x)
> +   Hybrid algorithm of Peter Tang's Table driven method (for large
> +   arguments) and an accurate table (for small arguments).
> +   Written by K.C. Ng, November 1988.
> +   Revised by Patrick McGehearty, Nov 2017 to use j/64 instead of j/32
> +   Method (large arguments):
> +	1. Argument Reduction: given the input x, find r and integer k
> +	   and j such that
> +	             x = (k+j/64)*(ln2) + r,  |r| <= (1/128)*ln2
> +
> +	2. exp(x) = 2^k * (2^(j/64) + 2^(j/64)*expm1(r))
> +	   a. expm1(r) is approximated by a polynomial:
> +	      expm1(r) ~ r + t1*r^2 + t2*r^3 + ... + t5*r^6
> +	      Here t1 = 1/2 exactly.
> +	   b. 2^(j/64) is represented to twice double precision
> +	      as TBL[2j]+TBL[2j+1].
> +
> +   Note: If divide were fast enough, we could use another approximation
> +	 in 2.a:
> +	      expm1(r) ~ (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
> +	      (for the same t1 and t2 as above)
> +
> +   Special cases:
> +	exp(INF) is INF, exp(NaN) is NaN;
> +	exp(-INF)=  0;
> +	for finite argument, only exp(0)=1 is exact.
> +
> +   Accuracy:
> +	According to an error analysis, the error is always less than
> +	an ulp (unit in the last place).  The largest errors observed
> +	are less than 0.55 ulp for normal results and less than 0.75 ulp
> +	for subnormal results.
> +
> +   Misc. info.
> +	For IEEE double
> +		if x >  7.09782712893383973096e+02 then exp(x) overflow
> +		if x < -7.45133219101941108420e+02 then exp(x) underflow.  */
> +

Are you planning to work on the log implementation as well?

Siddhesh
Patrick McGehearty Dec. 11, 2017, 4:59 p.m. UTC | #2
On 12/11/2017 2:14 AM, Siddhesh Poyarekar wrote:
> On Saturday 09 December 2017 04:33 AM, Patrick McGehearty wrote:
>> +/*  IBM exp(x) replaced by following exp(x) in 2017. IBM exp1(x,xx) remains.  */
>> +/* exp(x)
>> +   Hybrid algorithm of Peter Tang's Table driven method (for large
>> +   arguments) and an accurate table (for small arguments).
>> +   Written by K.C. Ng, November 1988.
>> +   Revised by Patrick McGehearty, Nov 2017 to use j/64 instead of j/32
>> +   Method (large arguments):
>> +	1. Argument Reduction: given the input x, find r and integer k
>> +	   and j such that
>> +	             x = (k+j/64)*(ln2) + r,  |r| <= (1/128)*ln2
>> +
>> +	2. exp(x) = 2^k * (2^(j/64) + 2^(j/64)*expm1(r))
>> +	   a. expm1(r) is approximated by a polynomial:
>> +	      expm1(r) ~ r + t1*r^2 + t2*r^3 + ... + t5*r^6
>> +	      Here t1 = 1/2 exactly.
>> +	   b. 2^(j/64) is represented to twice double precision
>> +	      as TBL[2j]+TBL[2j+1].
>> +
>> +   Note: If divide were fast enough, we could use another approximation
>> +	 in 2.a:
>> +	      expm1(r) ~ (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
>> +	      (for the same t1 and t2 as above)
>> +
>> +   Special cases:
>> +	exp(INF) is INF, exp(NaN) is NaN;
>> +	exp(-INF)=  0;
>> +	for finite argument, only exp(0)=1 is exact.
>> +
>> +   Accuracy:
>> +	According to an error analysis, the error is always less than
>> +	an ulp (unit in the last place).  The largest errors observed
>> +	are less than 0.55 ulp for normal results and less than 0.75 ulp
>> +	for subnormal results.
>> +
>> +   Misc. info.
>> +	For IEEE double
>> +		if x >  7.09782712893383973096e+02 then exp(x) overflow
>> +		if x < -7.45133219101941108420e+02 then exp(x) underflow.  */
>> +
> Are you planning to work on the log implementation as well?
>
> Siddhesh

log, log10, pow, cbrt are on my short list of functions to investigate
as these all show significant performance advantage (1.8x or greater)
using the Solaris Studio libm functions vs the Linux libm functions in
the preliminary testing I did months ago. I intend to take these one
at a time, first with a trial port and extensive accuracy and perf tests.

Assuming the performance advantage applies across multiple platforms
and accuracy does not suffer to an unacceptable degree, I will
propose each in turn for patching. "log" is my next target, likely
with log10 following close behind. I'll also look at the 32 bit functions
to see if they offer similar opportunities, but I haven't written/run those
tests yet. I don't have plans to work on 80 bit or 128 bit (long double)
functions at this time.

As always, the above is not a formal commitment as my management
may redirect efforts to meet other corporate goals.
My background project right now is supporting Vladimir Mezentsev's
work on improving accuracy and range of complex divide.
By range, I mean the range of input values which currently cause
overflow/underflow but don't need to with appropriate scaling.

- patrick
Siddhesh Poyarekar Dec. 11, 2017, 5:53 p.m. UTC | #3
On Monday 11 December 2017 10:29 PM, Patrick McGehearty wrote:
> log, log10, pow, cbrt are on my short list of functions to investigate
> as these all show significant performance advantage (1.8x or greater)
> using the Solaris Studio libm functions vs the Linux libm functions in
> the preliminary testing I did months ago. I intend to take these one
> at a time, first with a trial port and extensive accuracy and perf tests.
> 
> Assuming the performance advantage applies across multiple platforms
> and accuracy does not suffer to an unacceptable degree, I will
> propose each in turn for patching. "log" is my next target, likely
> with log10 following close behind. I'll also look at the 32 bit functions
> to see if they offer similar opportunities, but I haven't written/run those
> tests yet. I don't have plans to work on 80 bit or 128 bit (long double)
> functions at this time.
> 
> As always, the above is not a formal commitment as my management
> may redirect efforts to meet other corporate goals.
> My background project right now is supporting Vladimir Mezentsev's
> work on improving accuracy and range of complex divide.
> By range, I mean the range of input values which currently cause
> overflow/underflow but don't need to with appropriate scaling.

Sure, I won't hold you to it :)

Thanks,
Siddhesh
Joseph Myers Dec. 14, 2017, 1:28 a.m. UTC | #4
On Fri, 8 Dec 2017, Patrick McGehearty wrote:

> Revised constants t2, t3, t4, t5 to better match values of 1/n factorial.

To expand on the logic for such a change:

If the values were previously not 1/n! presumably they were coefficients 
in some form of minimax approximation minimising the maximum error 
(however measured) in the interval used in the original implementation.

The maximum error from just using 1/n! would be at the endpoints of the 
interval (whereas a minimax approximation using an nth degree polynomial 
would have equal maximum errors with alternating signs at n+2 points - 
increasing some errors closer to 0 to decrease those at the endpoints).

You've changed the code to use a narrower interval.  Thus, the original 
minimax approximation is no longer optimal for the new interval, and it's 
quite plausible that the maximum error from using 1/n! is smaller when you 
restrict to the new interval.

This patch version is OK.
Patrick McGehearty Dec. 18, 2017, 8:11 p.m. UTC | #5
On 12/13/2017 7:28 PM, Joseph Myers wrote:
> On Fri, 8 Dec 2017, Patrick McGehearty wrote:
>
>> Revised constants t2, t3, t4, t5 to better match values of 1/n factorial.
> To expand on the logic for such a change:
>
> If the values were previously not 1/n! presumably they were coefficients
> in some form of minimax approximation minimising the maximum error
> (however measured) in the interval used in the original implementation.
>
> The maximum error from just using 1/n! would be at the endpoints of the
> interval (whereas a minimax approximation using an nth degree polynomial
> would have equal maximum errors with alternating signs at n+2 points -
> increasing some errors closer to 0 to decrease those at the endpoints).
>
> You've changed the code to use a narrower interval.  Thus, the original
> minimax approximation is no longer optimal for the new interval, and it's
> quite plausible that the maximum error from using 1/n! is smaller when you
> restrict to the new interval.
>
> This patch version is OK.
>

You are correct that the original values for t2-t5 give better results
for the original 64 table entries.

I investigated your suggestion by comparing the prior values for t2-t5
with the 1/n! values on the prior interval size. My test of 10 million
values in 4 rounding modes showed substantially better results with
the prior values. All estimates of error rates based on 10 million
test values run in with each of the usual 4 rounding modes. Differences in
error rates between rounding modes were less than 1%.

Original Studio values: 29.5 of 10,000 tests off by 1ulp
1/n! for t2-t5        : 39.2 of 10,000 tests off by 1ulp
org studio t2-t5/128 intervals: 16.3 of 10,000 tests off by 1ulp
1/n! for t2-t5, 128 intervals : 16.1 of 10,000 tests off by 1ulp

That suggests we might be able to further reduce the error rate
either by refining the values for t2-t5 or by increasing the
interval table to use 256 values instead of 128.
I don't have any strong basis for making further tradeoffs
of possible small accuracy gains vs perf costs. I suspect
such effort is beyond the current accuracy expectations
for most users of Linux libm, but that issue might be
revisited at some time in the future as part of a total
review of libm accuracy goals.

- patrick
diff mbox series

Patch

diff --git a/manual/probes.texi b/manual/probes.texi
index 8ab6756..f8ae64b 100644
--- a/manual/probes.texi
+++ b/manual/probes.texi
@@ -258,20 +258,6 @@  Unless explicitly mentioned otherwise, a precision of 1 implies 24 bits of
 precision in the mantissa of the multiple precision number.  Hence, a precision
 level of 32 implies 768 bits of precision in the mantissa.
 
-@deftp Probe slowexp_p6 (double @var{$arg1}, double @var{$arg2})
-This probe is triggered when the @code{exp} function is called with an
-input that results in multiple precision computation with precision
-6.  Argument @var{$arg1} is the input value and @var{$arg2} is the
-computed output.
-@end deftp
-
-@deftp Probe slowexp_p32 (double @var{$arg1}, double @var{$arg2})
-This probe is triggered when the @code{exp} function is called with an
-input that results in multiple precision computation with precision
-32.  Argument @var{$arg1} is the input value and @var{$arg2} is the
-computed output.
-@end deftp
-
 @deftp Probe slowpow_p10 (double @var{$arg1}, double @var{$arg2}, double @var{$arg3}, double @var{$arg4})
 This probe is triggered when the @code{pow} function is called with
 inputs that result in multiple precision computation with precision
diff --git a/math/Makefile b/math/Makefile
index ae84abd..24cd0db 100644
--- a/math/Makefile
+++ b/math/Makefile
@@ -114,7 +114,7 @@  type-ldouble-yes := ldouble
 # double support
 type-double-suffix :=
 type-double-routines := branred doasin dosincos halfulp mpa mpatan2	\
-		       mpatan mpexp mplog mpsqrt mptan sincos32 slowexp	\
+		       mpatan mpexp mplog mpsqrt mptan sincos32	\
 		       slowpow sincostab k_rem_pio2
 
 # float support
diff --git a/sysdeps/generic/math_private.h b/sysdeps/generic/math_private.h
index f29898c..689dc54 100644
--- a/sysdeps/generic/math_private.h
+++ b/sysdeps/generic/math_private.h
@@ -262,7 +262,6 @@  extern double __sin32 (double __x, double __res, double __res1);
 extern double __cos32 (double __x, double __res, double __res1);
 extern double __mpsin (double __x, double __dx, bool __range_reduce);
 extern double __mpcos (double __x, double __dx, bool __range_reduce);
-extern double __slowexp (double __x);
 extern double __slowpow (double __x, double __y, double __z);
 extern void __docos (double __x, double __dx, double __v[]);
 
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
index 6757a14..d273213 100644
--- a/sysdeps/ieee754/dbl-64/e_exp.c
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -1,3 +1,4 @@ 
+/* EXP function - Compute double precision exponential */
 /*
  * IBM Accurate Mathematical Library
  * written by International Business Machines Corp.
@@ -23,7 +24,7 @@ 
 /*           exp1                                                          */
 /*                                                                         */
 /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h                       */
-/*              mpa.c mpexp.x slowexp.c                                    */
+/*              mpa.c mpexp.x                                              */
 /*                                                                         */
 /* An ultimate exp routine. Given an IEEE double machine number x          */
 /* it computes the correctly rounded (to nearest) value of e^x             */
@@ -32,207 +33,238 @@ 
 /*                                                                         */
 /***************************************************************************/
 
+/*  IBM exp(x) replaced by following exp(x) in 2017. IBM exp1(x,xx) remains.  */
+/* exp(x)
+   Hybrid algorithm of Peter Tang's Table driven method (for large
+   arguments) and an accurate table (for small arguments).
+   Written by K.C. Ng, November 1988.
+   Revised by Patrick McGehearty, Nov 2017 to use j/64 instead of j/32
+   Method (large arguments):
+	1. Argument Reduction: given the input x, find r and integer k
+	   and j such that
+	             x = (k+j/64)*(ln2) + r,  |r| <= (1/128)*ln2
+
+	2. exp(x) = 2^k * (2^(j/64) + 2^(j/64)*expm1(r))
+	   a. expm1(r) is approximated by a polynomial:
+	      expm1(r) ~ r + t1*r^2 + t2*r^3 + ... + t5*r^6
+	      Here t1 = 1/2 exactly.
+	   b. 2^(j/64) is represented to twice double precision
+	      as TBL[2j]+TBL[2j+1].
+
+   Note: If divide were fast enough, we could use another approximation
+	 in 2.a:
+	      expm1(r) ~ (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
+	      (for the same t1 and t2 as above)
+
+   Special cases:
+	exp(INF) is INF, exp(NaN) is NaN;
+	exp(-INF)=  0;
+	for finite argument, only exp(0)=1 is exact.
+
+   Accuracy:
+	According to an error analysis, the error is always less than
+	an ulp (unit in the last place).  The largest errors observed
+	are less than 0.55 ulp for normal results and less than 0.75 ulp
+	for subnormal results.
+
+   Misc. info.
+	For IEEE double
+		if x >  7.09782712893383973096e+02 then exp(x) overflow
+		if x < -7.45133219101941108420e+02 then exp(x) underflow.  */
+
 #include <math.h>
+#include <math-svid-compat.h>
+#include <math_private.h>
+#include <errno.h>
 #include "endian.h"
 #include "uexp.h"
+#include "uexp.tbl"
 #include "mydefs.h"
 #include "MathLib.h"
-#include "uexp.tbl"
-#include <math_private.h>
 #include <fenv.h>
 #include <float.h>
 
-#ifndef SECTION
-# define SECTION
-#endif
+extern double __ieee754_exp (double);
+
+#include "eexp.tbl"
+
+static const double
+  half = 0.5,
+  one = 1.0;
 
-double __slowexp (double);
 
-/* An ultimate exp routine. Given an IEEE double machine number x it computes
-   the correctly rounded (to nearest) value of e^x.  */
 double
-SECTION
-__ieee754_exp (double x)
+__ieee754_exp (double x_arg)
 {
-  double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
-  mynumber junk1, junk2, binexp = {{0, 0}};
-  int4 i, j, m, n, ex;
+  double z, t;
   double retval;
-
+  int hx, ix, k, j, m;
+  int fe_val;
+  union
   {
-    SET_RESTORE_ROUND (FE_TONEAREST);
-
-    junk1.x = x;
-    m = junk1.i[HIGH_HALF];
-    n = m & hugeint;
-
-    if (n > smallint && n < bigint)
-      {
-	y = x * log2e.x + three51.x;
-	bexp = y - three51.x;	/*  multiply the result by 2**bexp        */
-
-	junk1.x = y;
-
-	eps = bexp * ln_two2.x;	/* x = bexp*ln(2) + t - eps               */
-	t = x - bexp * ln_two1.x;
-
-	y = t + three33.x;
-	base = y - three33.x;	/* t rounded to a multiple of 2**-18      */
-	junk2.x = y;
-	del = (t - base) - eps;	/*  x = bexp*ln(2) + base + del           */
-	eps = del + del * del * (p3.x * del + p2.x);
-
-	binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
-
-	i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
-	j = (junk2.i[LOW_HALF] & 511) << 1;
-
-	al = coar.x[i] * fine.x[j];
-	bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
-	       + coar.x[i + 1] * fine.x[j + 1]);
-
-	rem = (bet + bet * eps) + al * eps;
-	res = al + rem;
-	cor = (al - res) + rem;
-	if (res == (res + cor * err_0))
-	  {
-	    retval = res * binexp.x;
-	    goto ret;
-	  }
-	else
-	  {
-	    retval = __slowexp (x);
-	    goto ret;
-	  }			/*if error is over bound */
-      }
-
-    if (n <= smallint)
-      {
-	retval = 1.0;
-	goto ret;
-      }
-
-    if (n >= badint)
-      {
-	if (n > infint)
-	  {
-	    retval = x + x;
-	    goto ret;
-	  }			/* x is NaN */
-	if (n < infint)
-	  {
-	    if (x > 0)
-	      goto ret_huge;
-	    else
-	      goto ret_tiny;
-	  }
-	/* x is finite,  cause either overflow or underflow  */
-	if (junk1.i[LOW_HALF] != 0)
-	  {
-	    retval = x + x;
-	    goto ret;
-	  }			/*  x is NaN  */
-	retval = (x > 0) ? inf.x : zero;	/* |x| = inf;  return either inf or 0 */
-	goto ret;
-      }
-
-    y = x * log2e.x + three51.x;
-    bexp = y - three51.x;
-    junk1.x = y;
-    eps = bexp * ln_two2.x;
-    t = x - bexp * ln_two1.x;
-    y = t + three33.x;
-    base = y - three33.x;
-    junk2.x = y;
-    del = (t - base) - eps;
-    eps = del + del * del * (p3.x * del + p2.x);
-    i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
-    j = (junk2.i[LOW_HALF] & 511) << 1;
-    al = coar.x[i] * fine.x[j];
-    bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
-	   + coar.x[i + 1] * fine.x[j + 1]);
-    rem = (bet + bet * eps) + al * eps;
-    res = al + rem;
-    cor = (al - res) + rem;
-    if (m >> 31)
-      {
-	ex = junk1.i[LOW_HALF];
-	if (res < 1.0)
-	  {
-	    res += res;
-	    cor += cor;
-	    ex -= 1;
-	  }
-	if (ex >= -1022)
-	  {
-	    binexp.i[HIGH_HALF] = (1023 + ex) << 20;
-	    if (res == (res + cor * err_0))
-	      {
-		retval = res * binexp.x;
-		goto ret;
-	      }
-	    else
-	      {
-		retval = __slowexp (x);
-		goto check_uflow_ret;
-	      }			/*if error is over bound */
-	  }
-	ex = -(1022 + ex);
-	binexp.i[HIGH_HALF] = (1023 - ex) << 20;
-	res *= binexp.x;
-	cor *= binexp.x;
-	eps = 1.0000000001 + err_0 * binexp.x;
-	t = 1.0 + res;
-	y = ((1.0 - t) + res) + cor;
-	res = t + y;
-	cor = (t - res) + y;
-	if (res == (res + eps * cor))
-	  {
-	    binexp.i[HIGH_HALF] = 0x00100000;
-	    retval = (res - 1.0) * binexp.x;
-	    goto check_uflow_ret;
-	  }
-	else
-	  {
-	    retval = __slowexp (x);
-	    goto check_uflow_ret;
-	  }			/*   if error is over bound    */
-      check_uflow_ret:
-	if (retval < DBL_MIN)
-	  {
-	    double force_underflow = tiny * tiny;
-	    math_force_eval (force_underflow);
-	  }
-	if (retval == 0)
-	  goto ret_tiny;
-	goto ret;
-      }
-    else
-      {
-	binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
-	if (res == (res + cor * err_0))
-	  retval = res * binexp.x * t256.x;
-	else
-	  retval = __slowexp (x);
-	if (isinf (retval))
-	  goto ret_huge;
-	else
-	  goto ret;
-      }
-  }
-ret:
-  return retval;
-
- ret_huge:
-  return hhuge * hhuge;
-
- ret_tiny:
-  return tiny * tiny;
+    int i_part[2];
+    double x;
+  } xx;
+  union
+  {
+    int y_part[2];
+    double y;
+  } yy;
+  xx.x = x_arg;
+
+  ix = xx.i_part[HIGH_HALF];
+  hx = ix & ~0x80000000;
+
+  if (hx < 0x3ff0a2b2)
+    {				/* |x| < 3/2 ln 2 */
+      if (hx < 0x3f862e42)
+	{			/* |x| < 1/64 ln 2 */
+	  if (hx < 0x3ed00000)
+	    {			/* |x| < 2^-18 */
+	      if (hx < 0x3e300000)
+		{
+		  retval = one + xx.x;
+		  return retval;
+		}
+	      retval = one + xx.x * (one + half * xx.x);
+	      return retval;
+	    }
+	  /* Use FE_TONEAREST rounding mode for computing yy.y.
+	     Avoid set/reset of rounding mode if in FE_TONEAREST mode.  */
+	  fe_val = get_rounding_mode ();
+	  if (fe_val == FE_TONEAREST)
+	    {
+	      t = xx.x * xx.x;
+	      yy.y = xx.x + (t * (half + xx.x * t2)
+			     + (t * t) * (t3 + xx.x * t4 + t * t5));
+	      retval = one + yy.y;
+	    } 
+	  else
+	    {
+	      libc_fesetround (FE_TONEAREST);
+	      t = xx.x * xx.x;
+	      yy.y = xx.x + (t * (half + xx.x * t2)
+			     + (t * t) * (t3 + xx.x * t4 + t * t5));
+	      retval = one + yy.y;
+	      libc_fesetround (fe_val);
+	    }
+	  return retval;
+	}
+
+      /* Find the multiple of 2^-6 nearest x.  */
+      k = hx >> 20;
+      j = (0x00100000 | (hx & 0x000fffff)) >> (0x40c - k);
+      j = (j - 1) & ~1;
+      if (ix < 0)
+	j += 134;
+      /* Use FE_TONEAREST rounding mode for computing yy.y.
+	 Avoid set/reset of rounding mode if in FE_TONEAREST mode.  */
+      fe_val = get_rounding_mode ();
+      if (fe_val == FE_TONEAREST)
+	{
+	  z = xx.x - TBL2[j];
+	  t = z * z;
+	  yy.y = z + (t * (half + (z * t2))
+		      + (t * t) * (t3 + z * t4 + t * t5));
+	  retval = TBL2[j + 1] + TBL2[j + 1] * yy.y;
+	}
+      else
+	{
+	  libc_fesetround (FE_TONEAREST);
+	  z = xx.x - TBL2[j];
+	  t = z * z;
+	  yy.y = z + (t * (half + (z * t2))
+		      + (t * t) * (t3 + z * t4 + t * t5));
+	  retval = TBL2[j + 1] + TBL2[j + 1] * yy.y;
+	  libc_fesetround (fe_val);
+	}
+      return retval;
+    }
+
+  if (hx >= 0x40862e42)
+    {				/* x is large, infinite, or nan.  */
+      if (hx >= 0x7ff00000)
+	{
+	  if (ix == 0xfff00000 && xx.i_part[LOW_HALF] == 0)
+	    return zero;	/* exp(-inf) = 0.  */
+	  return (xx.x * xx.x);	/* exp(nan/inf) is nan or inf.  */
+	}
+      if (xx.x > threshold1)
+	{			/* Set overflow error condition.  */
+	  retval = hhuge * hhuge;
+	  return retval;
+	} 
+      if (-xx.x > threshold2)
+	{			/* Set underflow error condition.  */
+	  double force_underflow = tiny * tiny;
+	  math_force_eval (force_underflow);
+	  retval = force_underflow;
+	  return retval;
+	}
+    }
+
+  /* Use FE_TONEAREST rounding mode for computing yy.y.
+     Avoid set/reset of rounding mode if already in FE_TONEAREST mode.  */
+  fe_val = get_rounding_mode ();
+  if (fe_val == FE_TONEAREST)
+    {
+      t = invln2_64 * xx.x;
+      if (ix < 0)
+	t -= half;
+      else
+	t += half;
+      k = (int) t;
+      j = (k & 0x3f) << 1;
+      m = k >> 6;
+      z = (xx.x - k * ln2_64hi) - k * ln2_64lo;
+
+      /* z is now in primary range.  */
+      t = z * z;
+      yy.y = z + (t * (half + z * t2) + (t * t) * (t3 + z * t4 + t * t5));
+      yy.y = TBL[j] + (TBL[j + 1] + TBL[j] * yy.y);
+    }
+  else
+    {
+      libc_fesetround (FE_TONEAREST);
+      t = invln2_64 * xx.x;
+      if (ix < 0)
+	t -= half;
+      else
+	t += half;
+      k = (int) t;
+      j = (k & 0x3f) << 1;
+      m = k >> 6;
+      z = (xx.x - k * ln2_64hi) - k * ln2_64lo;
+
+      /* z is now in primary range.  */
+      t = z * z;
+      yy.y = z + (t * (half + z * t2) + (t * t) * (t3 + z * t4 + t * t5));
+      yy.y = TBL[j] + (TBL[j + 1] + TBL[j] * yy.y);
+      libc_fesetround (fe_val);
+    }
+
+  if (m < -1021)
+    {
+      yy.y_part[HIGH_HALF] += (m + 54) << 20;
+      retval = twom54 * yy.y;
+      if (retval < DBL_MIN)
+	{
+	  double force_underflow = tiny * tiny;
+	  math_force_eval (force_underflow);
+	}
+      return retval;
+    }
+  yy.y_part[HIGH_HALF] += m << 20;
+  return yy.y;
 }
 #ifndef __ieee754_exp
 strong_alias (__ieee754_exp, __exp_finite)
 #endif
 
+#ifndef SECTION
+# define SECTION
+#endif
+
 /* Compute e^(x+xx).  The routine also receives bound of error of previous
    calculation.  If after computing exp the error exceeds the allowed bounds,
    the routine returns a non-positive number.  Otherwise it returns the
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
index 9f6439e..2eb8dbf 100644
--- a/sysdeps/ieee754/dbl-64/e_pow.c
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -25,7 +25,7 @@ 
 /*             log1                                                        */
 /*             checkint                                                    */
 /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h                             */
-/*               halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c       */
+/*               halfulp.c mpexp.c mplog.c slowpow.c mpa.c                 */
 /*                          uexp.c  upow.c				   */
 /*               root.tbl uexp.tbl upow.tbl                                */
 /* An ultimate power routine. Given two IEEE double machine numbers y,x    */
diff --git a/sysdeps/ieee754/dbl-64/eexp.tbl b/sysdeps/ieee754/dbl-64/eexp.tbl
new file mode 100644
index 0000000..41efdc2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/eexp.tbl
@@ -0,0 +1,255 @@ 
+/* EXP function tables - for use in computing double precision exponential
+   Copyright (C) 2017 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+
+/*
+   TBL[2*j] is 2**(j/64), rounded to nearest.
+   TBL[2*j+1] is 2**(j/64) - TBL[2*j], rounded to nearest.
+   These values are used to approximate exp(x) using the formula
+   given in the comments for e_exp.c.  */
+
+static const double TBL[128] = {
+    0x1.0000000000000p+0,  0x0.0000000000000p+0,
+    0x1.02c9a3e778061p+0, -0x1.19083535b085dp-56,
+    0x1.059b0d3158574p+0,  0x1.d73e2a475b465p-55,
+    0x1.0874518759bc8p+0,  0x1.186be4bb284ffp-57,
+    0x1.0b5586cf9890fp+0,  0x1.8a62e4adc610bp-54,
+    0x1.0e3ec32d3d1a2p+0,  0x1.03a1727c57b52p-59,
+    0x1.11301d0125b51p+0, -0x1.6c51039449b3ap-54,
+    0x1.1429aaea92de0p+0, -0x1.32fbf9af1369ep-54,
+    0x1.172b83c7d517bp+0, -0x1.19041b9d78a76p-55,
+    0x1.1a35beb6fcb75p+0,  0x1.e5b4c7b4968e4p-55,
+    0x1.1d4873168b9aap+0,  0x1.e016e00a2643cp-54,
+    0x1.2063b88628cd6p+0,  0x1.dc775814a8495p-55,
+    0x1.2387a6e756238p+0,  0x1.9b07eb6c70573p-54,
+    0x1.26b4565e27cddp+0,  0x1.2bd339940e9d9p-55,
+    0x1.29e9df51fdee1p+0,  0x1.612e8afad1255p-55,
+    0x1.2d285a6e4030bp+0,  0x1.0024754db41d5p-54,
+    0x1.306fe0a31b715p+0,  0x1.6f46ad23182e4p-55,
+    0x1.33c08b26416ffp+0,  0x1.32721843659a6p-54,
+    0x1.371a7373aa9cbp+0, -0x1.63aeabf42eae2p-54,
+    0x1.3a7db34e59ff7p+0, -0x1.5e436d661f5e3p-56,
+    0x1.3dea64c123422p+0,  0x1.ada0911f09ebcp-55,
+    0x1.4160a21f72e2ap+0, -0x1.ef3691c309278p-58,
+    0x1.44e086061892dp+0,  0x1.89b7a04ef80d0p-59,
+    0x1.486a2b5c13cd0p+0,  0x1.3c1a3b69062f0p-56,
+    0x1.4bfdad5362a27p+0,  0x1.d4397afec42e2p-56,
+    0x1.4f9b2769d2ca7p+0, -0x1.4b309d25957e3p-54,
+    0x1.5342b569d4f82p+0, -0x1.07abe1db13cadp-55,
+    0x1.56f4736b527dap+0,  0x1.9bb2c011d93adp-54,
+    0x1.5ab07dd485429p+0,  0x1.6324c054647adp-54,
+    0x1.5e76f15ad2148p+0,  0x1.ba6f93080e65ep-54,
+    0x1.6247eb03a5585p+0, -0x1.383c17e40b497p-54,
+    0x1.6623882552225p+0, -0x1.bb60987591c34p-54,
+    0x1.6a09e667f3bcdp+0, -0x1.bdd3413b26456p-54,
+    0x1.6dfb23c651a2fp+0, -0x1.bbe3a683c88abp-57,
+    0x1.71f75e8ec5f74p+0, -0x1.16e4786887a99p-55,
+    0x1.75feb564267c9p+0, -0x1.0245957316dd3p-54,
+    0x1.7a11473eb0187p+0, -0x1.41577ee04992fp-55,
+    0x1.7e2f336cf4e62p+0,  0x1.05d02ba15797ep-56,
+    0x1.82589994cce13p+0, -0x1.d4c1dd41532d8p-54,
+    0x1.868d99b4492edp+0, -0x1.fc6f89bd4f6bap-54,
+    0x1.8ace5422aa0dbp+0,  0x1.6e9f156864b27p-54,
+    0x1.8f1ae99157736p+0,  0x1.5cc13a2e3976cp-55,
+    0x1.93737b0cdc5e5p+0, -0x1.75fc781b57ebcp-57,
+    0x1.97d829fde4e50p+0, -0x1.d185b7c1b85d1p-54,
+    0x1.9c49182a3f090p+0,  0x1.c7c46b071f2bep-56,
+    0x1.a0c667b5de565p+0, -0x1.359495d1cd533p-54,
+    0x1.a5503b23e255dp+0, -0x1.d2f6edb8d41e1p-54,
+    0x1.a9e6b5579fdbfp+0,  0x1.0fac90ef7fd31p-54,
+    0x1.ae89f995ad3adp+0,  0x1.7a1cd345dcc81p-54,
+    0x1.b33a2b84f15fbp+0, -0x1.2805e3084d708p-57,
+    0x1.b7f76f2fb5e47p+0, -0x1.5584f7e54ac3bp-56,
+    0x1.bcc1e904bc1d2p+0,  0x1.23dd07a2d9e84p-55,
+    0x1.c199bdd85529cp+0,  0x1.11065895048ddp-55,
+    0x1.c67f12e57d14bp+0,  0x1.2884dff483cadp-54,
+    0x1.cb720dcef9069p+0,  0x1.503cbd1e949dbp-56,
+    0x1.d072d4a07897cp+0, -0x1.cbc3743797a9cp-54,
+    0x1.d5818dcfba487p+0,  0x1.2ed02d75b3707p-55,
+    0x1.da9e603db3285p+0,  0x1.c2300696db532p-54,
+    0x1.dfc97337b9b5fp+0, -0x1.1a5cd4f184b5cp-54,
+    0x1.e502ee78b3ff6p+0,  0x1.39e8980a9cc8fp-55,
+    0x1.ea4afa2a490dap+0, -0x1.e9c23179c2893p-54,
+    0x1.efa1bee615a27p+0,  0x1.dc7f486a4b6b0p-54,
+    0x1.f50765b6e4540p+0,  0x1.9d3e12dd8a18bp-54,
+    0x1.fa7c1819e90d8p+0,  0x1.74853f3a5931ep-55};
+
+/* For i = 0, ..., 66,
+     TBL2[2*i] is a double precision number near (i+1)*2^-6, and
+     TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less
+     than 2^-60.
+
+   For i = 67, ..., 133,
+     TBL2[2*i] is a double precision number near -(i+1)*2^-6, and
+     TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less
+     than 2^-60.  */
+
+static const double TBL2[268] = {
+    0x1.ffffffffffc82p-7,   0x1.04080ab55de32p+0,
+    0x1.fffffffffffdbp-6,   0x1.08205601127ecp+0,
+    0x1.80000000000a0p-5,   0x1.0c49236829e91p+0,
+    0x1.fffffffffff79p-5,   0x1.1082b577d34e9p+0,
+    0x1.3fffffffffffcp-4,   0x1.14cd4fc989cd6p+0,
+    0x1.8000000000060p-4,   0x1.192937074e0d4p+0,
+    0x1.c000000000061p-4,   0x1.1d96b0eff0e80p+0,
+    0x1.fffffffffffd6p-4,   0x1.2216045b6f5cap+0,
+    0x1.1ffffffffff58p-3,   0x1.26a7793f6014cp+0,
+    0x1.3ffffffffff75p-3,   0x1.2b4b58b372c65p+0,
+    0x1.5ffffffffff00p-3,   0x1.3001ecf601ad1p+0,
+    0x1.8000000000020p-3,   0x1.34cb8170b583ap+0,
+    0x1.9ffffffffa629p-3,   0x1.39a862bd3b344p+0,
+    0x1.c00000000000fp-3,   0x1.3e98deaa11dcep+0,
+    0x1.e00000000007fp-3,   0x1.439d443f5f16dp+0,
+    0x1.0000000000072p-2,   0x1.48b5e3c3e81abp+0,
+    0x1.0fffffffffecap-2,   0x1.4de30ec211dfbp+0,
+    0x1.1ffffffffff8fp-2,   0x1.5325180cfacd2p+0,
+    0x1.300000000003bp-2,   0x1.587c53c5a7b04p+0,
+    0x1.4000000000034p-2,   0x1.5de9176046007p+0,
+    0x1.4ffffffffff89p-2,   0x1.636bb9a98322fp+0,
+    0x1.5ffffffffffe7p-2,   0x1.690492cbf942ap+0,
+    0x1.6ffffffffff78p-2,   0x1.6eb3fc55b1e45p+0,
+    0x1.7ffffffffff65p-2,   0x1.747a513dbef32p+0,
+    0x1.8ffffffffffd5p-2,   0x1.7a57ede9ea22ep+0,
+    0x1.9ffffffffff6ep-2,   0x1.804d30347b50fp+0,
+    0x1.affffffffffc3p-2,   0x1.865a7772164aep+0,
+    0x1.c000000000053p-2,   0x1.8c802477b0030p+0,
+    0x1.d00000000004dp-2,   0x1.92be99a09bf1ep+0,
+    0x1.e000000000096p-2,   0x1.99163ad4b1e08p+0,
+    0x1.efffffffffefap-2,   0x1.9f876d8e8c4fcp+0,
+    0x1.fffffffffffd0p-2,   0x1.a61298e1e0688p+0,
+    0x1.0800000000002p-1,   0x1.acb82581eee56p+0,
+    0x1.100000000001fp-1,   0x1.b3787dc80f979p+0,
+    0x1.17ffffffffff8p-1,   0x1.ba540dba56e4fp+0,
+    0x1.1fffffffffffap-1,   0x1.c14b431256441p+0,
+    0x1.27fffffffffc4p-1,   0x1.c85e8d43f7c9bp+0,
+    0x1.2fffffffffffdp-1,   0x1.cf8e5d84758a6p+0,
+    0x1.380000000001fp-1,   0x1.d6db26d16cd84p+0,
+    0x1.3ffffffffffd8p-1,   0x1.de455df80e39bp+0,
+    0x1.4800000000052p-1,   0x1.e5cd799c6a59cp+0,
+    0x1.4ffffffffffc8p-1,   0x1.ed73f240dc10cp+0,
+    0x1.5800000000013p-1,   0x1.f539424d90f71p+0,
+    0x1.5ffffffffffbcp-1,   0x1.fd1de6182f885p+0,
+    0x1.680000000002dp-1,   0x1.02912df5ce741p+1,
+    0x1.7000000000040p-1,   0x1.06a39207f0a2ap+1,
+    0x1.780000000004fp-1,   0x1.0ac660691652ap+1,
+    0x1.7ffffffffff6fp-1,   0x1.0ef9db467dcabp+1,
+    0x1.87fffffffffe5p-1,   0x1.133e45d82e943p+1,
+    0x1.9000000000035p-1,   0x1.1793e4652cc6dp+1,
+    0x1.97fffffffffb3p-1,   0x1.1bfafc47bda48p+1,
+    0x1.a000000000000p-1,   0x1.2073d3f1bd518p+1,
+    0x1.a80000000004ap-1,   0x1.24feb2f105ce2p+1,
+    0x1.affffffffffedp-1,   0x1.299be1f3e7f11p+1,
+    0x1.b7ffffffffffbp-1,   0x1.2e4baacdb6611p+1,
+    0x1.c00000000001dp-1,   0x1.330e587b62b39p+1,
+    0x1.c800000000079p-1,   0x1.37e437282d538p+1,
+    0x1.cffffffffff51p-1,   0x1.3ccd943268248p+1,
+    0x1.d7fffffffff74p-1,   0x1.41cabe304cadcp+1,
+    0x1.e000000000011p-1,   0x1.46dc04f4e5343p+1,
+    0x1.e80000000001ep-1,   0x1.4c01b9950a124p+1,
+    0x1.effffffffff9ep-1,   0x1.513c2e6c73196p+1,
+    0x1.f7fffffffffedp-1,   0x1.568bb722dd586p+1,
+    0x1.0000000000034p+0,   0x1.5bf0a8b1457b0p+1,
+    0x1.03fffffffffe2p+0,   0x1.616b5967376dfp+1,
+    0x1.07fffffffff4bp+0,   0x1.66fc20f0337a9p+1,
+    0x1.0bffffffffffdp+0,   0x1.6ca35859290f5p+1,
+   -0x1.fffffffffffe4p-7,   0x1.f80feabfeefa5p-1,
+   -0x1.ffffffffffb0bp-6,   0x1.f03f56a88b5fep-1,
+   -0x1.7ffffffffffa7p-5,   0x1.e88dc6afecfc5p-1,
+   -0x1.ffffffffffea8p-5,   0x1.e0fabfbc702b8p-1,
+   -0x1.3ffffffffffb3p-4,   0x1.d985c89d041acp-1,
+   -0x1.7ffffffffffe3p-4,   0x1.d22e6a0197c06p-1,
+   -0x1.bffffffffff9ap-4,   0x1.caf42e73a4c89p-1,
+   -0x1.fffffffffff98p-4,   0x1.c3d6a24ed822dp-1,
+   -0x1.1ffffffffffe9p-3,   0x1.bcd553b9d7b67p-1,
+   -0x1.3ffffffffffe0p-3,   0x1.b5efd29f24c2dp-1,
+   -0x1.5fffffffff553p-3,   0x1.af25b0a61a9f4p-1,
+   -0x1.7ffffffffff8bp-3,   0x1.a876812c08794p-1,
+   -0x1.9fffffffffe51p-3,   0x1.a1e1d93d68828p-1,
+   -0x1.bffffffffff6ep-3,   0x1.9b674f8f2f3f5p-1,
+   -0x1.dffffffffff7fp-3,   0x1.95067c7837a0cp-1,
+   -0x1.fffffffffff7ap-3,   0x1.8ebef9eac8225p-1,
+   -0x1.0fffffffffffep-2,   0x1.8890636e31f55p-1,
+   -0x1.1ffffffffff41p-2,   0x1.827a56188975ep-1,
+   -0x1.2ffffffffffbap-2,   0x1.7c7c708877656p-1,
+   -0x1.3fffffffffff8p-2,   0x1.769652df22f81p-1,
+   -0x1.4ffffffffff90p-2,   0x1.70c79eba33c2fp-1,
+   -0x1.5ffffffffffdbp-2,   0x1.6b0ff72deb8aap-1,
+   -0x1.6ffffffffff9ap-2,   0x1.656f00bf5798ep-1,
+   -0x1.7ffffffffff9fp-2,   0x1.5fe4615e98eb0p-1,
+   -0x1.8ffffffffffeep-2,   0x1.5a6fc061433cep-1,
+   -0x1.9fffffffffc4ap-2,   0x1.5510c67cd26cdp-1,
+   -0x1.affffffffff30p-2,   0x1.4fc71dc13566bp-1,
+   -0x1.bfffffffffff0p-2,   0x1.4a9271936fd0ep-1,
+   -0x1.cfffffffffff3p-2,   0x1.45726ea84fb8cp-1,
+   -0x1.dfffffffffff3p-2,   0x1.4066c2ff3912bp-1,
+   -0x1.effffffffff80p-2,   0x1.3b6f1ddd05ab9p-1,
+   -0x1.fffffffffffdfp-2,   0x1.368b2fc6f9614p-1,
+   -0x1.0800000000000p-1,   0x1.31baaa7dca843p-1,
+   -0x1.0ffffffffffa4p-1,   0x1.2cfd40f8bdce4p-1,
+   -0x1.17fffffffff0ap-1,   0x1.2852a760d5ce7p-1,
+   -0x1.2000000000000p-1,   0x1.23ba930c1568bp-1,
+   -0x1.27fffffffffbbp-1,   0x1.1f34ba78d568dp-1,
+   -0x1.2fffffffffe32p-1,   0x1.1ac0d5492c1dbp-1,
+   -0x1.37ffffffff042p-1,   0x1.165e9c3e67ef2p-1,
+   -0x1.3ffffffffff77p-1,   0x1.120dc93499431p-1,
+   -0x1.47fffffffff6bp-1,   0x1.0dce171e34ecep-1,
+   -0x1.4fffffffffff1p-1,   0x1.099f41ffbe588p-1,
+   -0x1.57ffffffffe02p-1,   0x1.058106eb8a7aep-1,
+   -0x1.5ffffffffffe5p-1,   0x1.017323fd9002ep-1,
+   -0x1.67fffffffffb0p-1,   0x1.faeab0ae9386cp-2,
+   -0x1.6ffffffffffb2p-1,   0x1.f30ec837503d7p-2,
+   -0x1.77fffffffff7fp-1,   0x1.eb5210d627133p-2,
+   -0x1.7ffffffffffe8p-1,   0x1.e3b40ebefcd95p-2,
+   -0x1.87fffffffffc8p-1,   0x1.dc3448110dae2p-2,
+   -0x1.8fffffffffb30p-1,   0x1.d4d244cf4ef06p-2,
+   -0x1.97fffffffffefp-1,   0x1.cd8d8ed8ee395p-2,
+   -0x1.9ffffffffffa7p-1,   0x1.c665b1e1f1e5cp-2,
+   -0x1.a7fffffffffdcp-1,   0x1.bf5a3b6bf18d6p-2,
+   -0x1.affffffffff95p-1,   0x1.b86ababeef93bp-2,
+   -0x1.b7fffffffffcbp-1,   0x1.b196c0e24d256p-2,
+   -0x1.bffffffffff32p-1,   0x1.aadde095dadf7p-2,
+   -0x1.c7fffffffff6ap-1,   0x1.a43fae4b047c9p-2,
+   -0x1.cffffffffffb6p-1,   0x1.9dbbc01e182a4p-2,
+   -0x1.d7fffffffffcap-1,   0x1.9751adcfa81ecp-2,
+   -0x1.dffffffffffcdp-1,   0x1.910110be0699ep-2,
+   -0x1.e7ffffffffffbp-1,   0x1.8ac983dedbc69p-2,
+   -0x1.effffffffff88p-1,   0x1.84aaa3b8d51a9p-2,
+   -0x1.f7fffffffffbbp-1,   0x1.7ea40e5d6d92ep-2,
+   -0x1.fffffffffffdbp-1,   0x1.78b56362cef53p-2,
+   -0x1.03fffffffff00p+0,   0x1.72de43ddcb1f2p-2,
+   -0x1.07ffffffffe6fp+0,   0x1.6d1e525bed085p-2,
+   -0x1.0bfffffffffd6p+0,   0x1.677532dda1c57p-2};
+
+static const double
+/* invln2_64 = 64/ln2 - used to scale x to primary range. */
+  invln2_64 = 0x1.71547652b82fep+6,
+/* ln2_64hi = high 32 bits of log(2.)/64. */
+  ln2_64hi = 0x1.62e42fee00000p-7, 
+/* ln2_64lo = remainder bits for log(2.)/64 - ln2_64hi. */
+  ln2_64lo = 0x1.a39ef35793c76p-39,
+/* t2-t5 terms used for polynomial computation.  */
+  t2 = 0x1.5555555555555p-3, /* 1.6666666666666665741e-1 */
+  t3 = 0x1.5555555555555p-5, /* 4.1666666666666664354e-2 */
+  t4 = 0x1.1111111111111p-7, /* 8.3333333333333332177e-3 */
+  t5 = 0x1.6c16c16c16c17p-10, /* 1.3888888888888719040e-3 */
+/* Maximum value for x to not overflow.  */
+  threshold1 = 0x1.62e42fefa39efp+9, /* 7.09782712893383973096e+02 */
+/* Maximum value for -x to not underflow to zero in FE_TONEAREST mode.  */
+  threshold2 = 0x1.74910d52d3051p+9, /* 7.45133219101941108420e+02 */
+/* Scaling factor used when result near zero.  */
+  twom54 = 0x1.0000000000000p-54; /* 5.55111512312578270212e-17 */
diff --git a/sysdeps/ieee754/dbl-64/slowexp.c b/sysdeps/ieee754/dbl-64/slowexp.c
deleted file mode 100644
index e8fa2e2..0000000
--- a/sysdeps/ieee754/dbl-64/slowexp.c
+++ /dev/null
@@ -1,86 +0,0 @@ 
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/**************************************************************************/
-/*  MODULE_NAME:slowexp.c                                                 */
-/*                                                                        */
-/*  FUNCTION:slowexp                                                      */
-/*                                                                        */
-/*  FILES NEEDED:mpa.h                                                    */
-/*               mpa.c mpexp.c                                            */
-/*                                                                        */
-/*Converting from double precision to Multi-precision and calculating     */
-/* e^x                                                                    */
-/**************************************************************************/
-#include <math_private.h>
-
-#include <stap-probe.h>
-
-#ifndef USE_LONG_DOUBLE_FOR_MP
-# include "mpa.h"
-void __mpexp (mp_no *x, mp_no *y, int p);
-#endif
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-/*Converting from double precision to Multi-precision and calculating  e^x */
-double
-SECTION
-__slowexp (double x)
-{
-#ifndef USE_LONG_DOUBLE_FOR_MP
-  double w, z, res, eps = 3.0e-26;
-  int p;
-  mp_no mpx, mpy, mpz, mpw, mpeps, mpcor;
-
-  /* Use the multiple precision __MPEXP function to compute the exponential
-     First at 144 bits and if it is not accurate enough, at 768 bits.  */
-  p = 6;
-  __dbl_mp (x, &mpx, p);
-  __mpexp (&mpx, &mpy, p);
-  __dbl_mp (eps, &mpeps, p);
-  __mul (&mpeps, &mpy, &mpcor, p);
-  __add (&mpy, &mpcor, &mpw, p);
-  __sub (&mpy, &mpcor, &mpz, p);
-  __mp_dbl (&mpw, &w, p);
-  __mp_dbl (&mpz, &z, p);
-  if (w == z)
-    {
-      /* Track how often we get to the slow exp code plus
-	 its input/output values.  */
-      LIBC_PROBE (slowexp_p6, 2, &x, &w);
-      return w;
-    }
-  else
-    {
-      p = 32;
-      __dbl_mp (x, &mpx, p);
-      __mpexp (&mpx, &mpy, p);
-      __mp_dbl (&mpy, &res, p);
-
-      /* Track how often we get to the uber-slow exp code plus
-	 its input/output values.  */
-      LIBC_PROBE (slowexp_p32, 2, &x, &res);
-      return res;
-    }
-#else
-  return (double) __ieee754_expl((long double)x);
-#endif
-}
diff --git a/sysdeps/powerpc/power4/fpu/Makefile b/sysdeps/powerpc/power4/fpu/Makefile
index e17d32f..ded9976 100644
--- a/sysdeps/powerpc/power4/fpu/Makefile
+++ b/sysdeps/powerpc/power4/fpu/Makefile
@@ -3,5 +3,4 @@ 
 ifeq ($(subdir),math)
 CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
 CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1
-CPPFLAGS-slowexp.c += -DUSE_LONG_DOUBLE_FOR_MP=1
 endif
diff --git a/sysdeps/x86_64/fpu/multiarch/Makefile b/sysdeps/x86_64/fpu/multiarch/Makefile
index cab84bf..9d8fa1a 100644
--- a/sysdeps/x86_64/fpu/multiarch/Makefile
+++ b/sysdeps/x86_64/fpu/multiarch/Makefile
@@ -10,7 +10,7 @@  libm-sysdep_routines += s_ceil-sse4_1 s_ceilf-sse4_1 s_floor-sse4_1 \
 
 libm-sysdep_routines += e_exp-fma e_log-fma e_pow-fma s_atan-fma \
 			e_asin-fma e_atan2-fma s_sin-fma s_tan-fma \
-			mplog-fma mpa-fma slowexp-fma slowpow-fma \
+			mplog-fma mpa-fma slowpow-fma \
 			sincos32-fma doasin-fma dosincos-fma \
 			halfulp-fma mpexp-fma \
 			mpatan2-fma mpatan-fma mpsqrt-fma mptan-fma
@@ -32,7 +32,6 @@  CFLAGS-mpsqrt-fma.c = -mfma -mavx2
 CFLAGS-mptan-fma.c = -mfma -mavx2
 CFLAGS-s_atan-fma.c = -mfma -mavx2
 CFLAGS-sincos32-fma.c = -mfma -mavx2
-CFLAGS-slowexp-fma.c = -mfma -mavx2
 CFLAGS-slowpow-fma.c = -mfma -mavx2
 CFLAGS-s_sin-fma.c = -mfma -mavx2
 CFLAGS-s_tan-fma.c = -mfma -mavx2
@@ -51,7 +50,7 @@  CFLAGS-s_sinf-fma.c = -mfma -mavx2
 
 libm-sysdep_routines += e_exp-fma4 e_log-fma4 e_pow-fma4 s_atan-fma4 \
 			e_asin-fma4 e_atan2-fma4 s_sin-fma4 s_tan-fma4 \
-			mplog-fma4 mpa-fma4 slowexp-fma4 slowpow-fma4 \
+			mplog-fma4 mpa-fma4 slowpow-fma4 \
 			sincos32-fma4 doasin-fma4 dosincos-fma4 \
 			halfulp-fma4 mpexp-fma4 \
 			mpatan2-fma4 mpatan-fma4 mpsqrt-fma4 mptan-fma4
@@ -73,14 +72,13 @@  CFLAGS-mpsqrt-fma4.c = -mfma4
 CFLAGS-mptan-fma4.c = -mfma4
 CFLAGS-s_atan-fma4.c = -mfma4
 CFLAGS-sincos32-fma4.c = -mfma4
-CFLAGS-slowexp-fma4.c = -mfma4
 CFLAGS-slowpow-fma4.c = -mfma4
 CFLAGS-s_sin-fma4.c = -mfma4
 CFLAGS-s_tan-fma4.c = -mfma4
 
 libm-sysdep_routines += e_exp-avx e_log-avx s_atan-avx \
 			e_atan2-avx s_sin-avx s_tan-avx \
-			mplog-avx mpa-avx slowexp-avx \
+			mplog-avx mpa-avx \
 			mpexp-avx
 
 CFLAGS-e_atan2-avx.c = -msse2avx -DSSE2AVX
@@ -91,7 +89,6 @@  CFLAGS-mpexp-avx.c = -msse2avx -DSSE2AVX
 CFLAGS-mplog-avx.c = -msse2avx -DSSE2AVX
 CFLAGS-s_atan-avx.c = -msse2avx -DSSE2AVX
 CFLAGS-s_sin-avx.c = -msse2avx -DSSE2AVX
-CFLAGS-slowexp-avx.c = -msse2avx -DSSE2AVX
 CFLAGS-s_tan-avx.c = -msse2avx -DSSE2AVX
 endif
 
diff --git a/sysdeps/x86_64/fpu/multiarch/e_exp-avx.c b/sysdeps/x86_64/fpu/multiarch/e_exp-avx.c
index ee5dd6d..afd9174 100644
--- a/sysdeps/x86_64/fpu/multiarch/e_exp-avx.c
+++ b/sysdeps/x86_64/fpu/multiarch/e_exp-avx.c
@@ -1,6 +1,5 @@ 
 #define __ieee754_exp __ieee754_exp_avx
 #define __exp1 __exp1_avx
-#define __slowexp __slowexp_avx
 #define SECTION __attribute__ ((section (".text.avx")))
 
 #include <sysdeps/ieee754/dbl-64/e_exp.c>
diff --git a/sysdeps/x86_64/fpu/multiarch/e_exp-fma.c b/sysdeps/x86_64/fpu/multiarch/e_exp-fma.c
index 6e0fdb7..765b1b9 100644
--- a/sysdeps/x86_64/fpu/multiarch/e_exp-fma.c
+++ b/sysdeps/x86_64/fpu/multiarch/e_exp-fma.c
@@ -1,6 +1,5 @@ 
 #define __ieee754_exp __ieee754_exp_fma
 #define __exp1 __exp1_fma
-#define __slowexp __slowexp_fma
 #define SECTION __attribute__ ((section (".text.fma")))
 
 #include <sysdeps/ieee754/dbl-64/e_exp.c>
diff --git a/sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c b/sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c
index ae6eb67..9ac7aca 100644
--- a/sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c
+++ b/sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c
@@ -1,6 +1,5 @@ 
 #define __ieee754_exp __ieee754_exp_fma4
 #define __exp1 __exp1_fma4
-#define __slowexp __slowexp_fma4
 #define SECTION __attribute__ ((section (".text.fma4")))
 
 #include <sysdeps/ieee754/dbl-64/e_exp.c>
diff --git a/sysdeps/x86_64/fpu/multiarch/slowexp-avx.c b/sysdeps/x86_64/fpu/multiarch/slowexp-avx.c
deleted file mode 100644
index d01c6d7..0000000
--- a/sysdeps/x86_64/fpu/multiarch/slowexp-avx.c
+++ /dev/null
@@ -1,9 +0,0 @@ 
-#define __slowexp __slowexp_avx
-#define __add __add_avx
-#define __dbl_mp __dbl_mp_avx
-#define __mpexp __mpexp_avx
-#define __mul __mul_avx
-#define __sub __sub_avx
-#define SECTION __attribute__ ((section (".text.avx")))
-
-#include <sysdeps/ieee754/dbl-64/slowexp.c>
diff --git a/sysdeps/x86_64/fpu/multiarch/slowexp-fma.c b/sysdeps/x86_64/fpu/multiarch/slowexp-fma.c
deleted file mode 100644
index 6fffca1..0000000
--- a/sysdeps/x86_64/fpu/multiarch/slowexp-fma.c
+++ /dev/null
@@ -1,9 +0,0 @@ 
-#define __slowexp __slowexp_fma
-#define __add __add_fma
-#define __dbl_mp __dbl_mp_fma
-#define __mpexp __mpexp_fma
-#define __mul __mul_fma
-#define __sub __sub_fma
-#define SECTION __attribute__ ((section (".text.fma")))
-
-#include <sysdeps/ieee754/dbl-64/slowexp.c>
diff --git a/sysdeps/x86_64/fpu/multiarch/slowexp-fma4.c b/sysdeps/x86_64/fpu/multiarch/slowexp-fma4.c
deleted file mode 100644
index 3bcde84..0000000
--- a/sysdeps/x86_64/fpu/multiarch/slowexp-fma4.c
+++ /dev/null
@@ -1,9 +0,0 @@ 
-#define __slowexp __slowexp_fma4
-#define __add __add_fma4
-#define __dbl_mp __dbl_mp_fma4
-#define __mpexp __mpexp_fma4
-#define __mul __mul_fma4
-#define __sub __sub_fma4
-#define SECTION __attribute__ ((section (".text.fma4")))
-
-#include <sysdeps/ieee754/dbl-64/slowexp.c>