From d9b87bea6af77fbc794e1f21cfecb0468c68cb72 Mon Sep 17 00:00:00 2001
From: Harald Anlauf <anlauf@gmx.de>
Date: Tue, 5 Mar 2024 21:54:26 +0100
Subject: [PATCH] Fortran: error recovery while simplifying expressions
[PR103707,PR106987]
When an exception is encountered during simplification of arithmetic
expressions, the result may depend on whether range-checking is active
(-frange-check) or not. However, the code path in the front-end should
stay the same for "soft" errors for which the exception is triggered by the
check, while "hard" errors should always terminate the simplification, so
that error recovery is independent of the flag. Separation of arithmetic
error codes into "hard" and "soft" errors shall be done consistently via
is_hard_arith_error().
PR fortran/103707
PR fortran/106987
gcc/fortran/ChangeLog:
* arith.cc (is_hard_arith_error): New helper function to determine
whether an arithmetic error is "hard" or not.
(check_result): Use it.
(gfc_arith_divide): Set "Division by zero" only for regular
numerators of real and complex divisions.
(reduce_unary): Use is_hard_arith_error to determine whether a hard
or (recoverable) soft error was encountered. Terminate immediately
on hard error, otherwise remember code of first soft error.
(reduce_binary_ac): Likewise.
(reduce_binary_ca): Likewise.
(reduce_binary_aa): Likewise.
gcc/testsuite/ChangeLog:
* gfortran.dg/pr99350.f90:
* gfortran.dg/arithmetic_overflow_3.f90: New test.
---
gcc/fortran/arith.cc | 134 ++++++++++++------
.../gfortran.dg/arithmetic_overflow_3.f90 | 48 +++++++
gcc/testsuite/gfortran.dg/pr99350.f90 | 2 +-
3 files changed, 143 insertions(+), 41 deletions(-)
create mode 100644 gcc/testsuite/gfortran.dg/arithmetic_overflow_3.f90
@@ -130,6 +130,30 @@ gfc_arith_error (arith code)
}
+/* Check if a certain arithmetic error code is severe enough to prevent
+ further simplification, as opposed to errors thrown by the range check
+ (e.g. overflow) or arithmetic exceptions that are tolerated with
+ -fno-range-check. */
+
+static bool
+is_hard_arith_error (arith code)
+{
+ switch (code)
+ {
+ case ARITH_OK:
+ case ARITH_OVERFLOW:
+ case ARITH_UNDERFLOW:
+ case ARITH_NAN:
+ case ARITH_DIV0:
+ case ARITH_ASYMMETRIC:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+
/* Get things ready to do math. */
void
@@ -579,10 +603,10 @@ check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
val = ARITH_OK;
}
- if (val == ARITH_OK || val == ARITH_OVERFLOW)
- *rp = r;
- else
+ if (is_hard_arith_error (val))
gfc_free_expr (r);
+ else
+ *rp = r;
return val;
}
@@ -792,23 +816,26 @@ gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
break;
case BT_REAL:
- if (mpfr_sgn (op2->value.real) == 0 && flag_range_check == 1)
- {
- rc = ARITH_DIV0;
- break;
- }
+ /* Set "Division by zero" only for regular numerator. */
+ if (flag_range_check == 1
+ && mpfr_zero_p (op2->value.real)
+ && mpfr_regular_p (op1->value.real))
+ rc = ARITH_DIV0;
mpfr_div (result->value.real, op1->value.real, op2->value.real,
GFC_RND_MODE);
break;
case BT_COMPLEX:
- if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
- && flag_range_check == 1)
- {
- rc = ARITH_DIV0;
- break;
- }
+ /* Set "Division by zero" only for regular numerator. */
+ if (flag_range_check == 1
+ && mpfr_zero_p (mpc_realref (op2->value.complex))
+ && mpfr_zero_p (mpc_imagref (op2->value.complex))
+ && ((mpfr_regular_p (mpc_realref (op1->value.complex))
+ && mpfr_number_p (mpc_imagref (op1->value.complex)))
+ || (mpfr_regular_p (mpc_imagref (op1->value.complex))
+ && mpfr_number_p (mpc_realref (op1->value.complex)))))
+ rc = ARITH_DIV0;
gfc_set_model (mpc_realref (op1->value.complex));
if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
@@ -1323,7 +1350,6 @@ reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
gfc_constructor *c;
gfc_expr *r;
arith rc;
- bool ov = false;
if (op->expr_type == EXPR_CONSTANT)
return eval (op, result);
@@ -1335,19 +1361,22 @@ reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
head = gfc_constructor_copy (op->value.constructor);
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
{
- rc = reduce_unary (eval, c->expr, &r);
+ arith rc_tmp = reduce_unary (eval, c->expr, &r);
- /* Remember any overflow encountered during reduction and continue,
- but terminate on serious errors. */
- if (rc == ARITH_OVERFLOW)
- ov = true;
- else if (rc != ARITH_OK)
- break;
+ /* Remember first recoverable ("soft") error encountered during
+ reduction and continue, but terminate on serious errors. */
+ if (is_hard_arith_error (rc_tmp))
+ {
+ rc = rc_tmp;
+ break;
+ }
+ else if (rc_tmp != ARITH_OK && rc == ARITH_OK)
+ rc = rc_tmp;
gfc_replace_expr (c->expr, r);
}
- if (rc != ARITH_OK && rc != ARITH_OVERFLOW)
+ if (is_hard_arith_error (rc))
gfc_constructor_free (head);
else
{
@@ -1368,7 +1397,7 @@ reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
*result = r;
}
- return ov ? ARITH_OVERFLOW : rc;
+ return rc;
}
@@ -1384,22 +1413,31 @@ reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
head = gfc_constructor_copy (op1->value.constructor);
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
{
+ arith rc_tmp;
+
gfc_simplify_expr (c->expr, 0);
if (c->expr->expr_type == EXPR_CONSTANT)
- rc = eval (c->expr, op2, &r);
+ rc_tmp = eval (c->expr, op2, &r);
else if (c->expr->expr_type != EXPR_ARRAY)
- rc = ARITH_NOT_REDUCED;
+ rc_tmp = ARITH_NOT_REDUCED;
else
- rc = reduce_binary_ac (eval, c->expr, op2, &r);
+ rc_tmp = reduce_binary_ac (eval, c->expr, op2, &r);
- if (rc != ARITH_OK)
- break;
+ /* Remember first recoverable ("soft") error encountered during
+ reduction and continue, but terminate on serious errors. */
+ if (is_hard_arith_error (rc_tmp))
+ {
+ rc = rc_tmp;
+ break;
+ }
+ else if (rc_tmp != ARITH_OK && rc == ARITH_OK)
+ rc = rc_tmp;
gfc_replace_expr (c->expr, r);
}
- if (rc != ARITH_OK)
+ if (is_hard_arith_error (rc))
gfc_constructor_free (head);
else
{
@@ -1438,22 +1476,31 @@ reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
head = gfc_constructor_copy (op2->value.constructor);
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
{
+ arith rc_tmp;
+
gfc_simplify_expr (c->expr, 0);
if (c->expr->expr_type == EXPR_CONSTANT)
- rc = eval (op1, c->expr, &r);
+ rc_tmp = eval (op1, c->expr, &r);
else if (c->expr->expr_type != EXPR_ARRAY)
- rc = ARITH_NOT_REDUCED;
+ rc_tmp = ARITH_NOT_REDUCED;
else
- rc = reduce_binary_ca (eval, op1, c->expr, &r);
+ rc_tmp = reduce_binary_ca (eval, op1, c->expr, &r);
- if (rc != ARITH_OK)
- break;
+ /* Remember first recoverable ("soft") error encountered during
+ reduction and continue, but terminate on serious errors. */
+ if (is_hard_arith_error (rc_tmp))
+ {
+ rc = rc_tmp;
+ break;
+ }
+ else if (rc_tmp != ARITH_OK && rc == ARITH_OK)
+ rc = rc_tmp;
gfc_replace_expr (c->expr, r);
}
- if (rc != ARITH_OK)
+ if (is_hard_arith_error (rc))
gfc_constructor_free (head);
else
{
@@ -1503,10 +1550,17 @@ reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
c && d;
c = gfc_constructor_next (c), d = gfc_constructor_next (d))
{
- rc = reduce_binary (eval, c->expr, d->expr, &r);
+ arith rc_tmp = reduce_binary (eval, c->expr, d->expr, &r);
- if (rc != ARITH_OK)
- break;
+ /* Remember first recoverable ("soft") error encountered during
+ reduction and continue, but terminate on serious errors. */
+ if (is_hard_arith_error (rc_tmp))
+ {
+ rc = rc_tmp;
+ break;
+ }
+ else if (rc_tmp != ARITH_OK && rc == ARITH_OK)
+ rc = rc_tmp;
gfc_replace_expr (c->expr, r);
}
@@ -1514,7 +1568,7 @@ reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
if (rc == ARITH_OK && (c || d))
rc = ARITH_INCOMMENSURATE;
- if (rc != ARITH_OK)
+ if (is_hard_arith_error (rc))
gfc_constructor_free (head);
else
{
new file mode 100644
@@ -0,0 +1,48 @@
+! { dg-do compile }
+! { dg-additional-options "-frange-check" }
+!
+! PR fortran/103707
+! PR fortran/106987
+!
+! Check error recovery on arithmetic exceptions
+
+program p
+ implicit none
+ integer, parameter :: a(3) = [30,31,32]
+ integer, parameter :: e(1) = 2
+ print *, 2 ** a ! { dg-error "Arithmetic overflow" }
+ print *, e ** 31 ! { dg-error "Arithmetic overflow" }
+end
+
+! { dg-prune-output "Result of exponentiation" }
+
+subroutine s
+ implicit none
+ real, parameter :: inf = real (z'7F800000')
+ real, parameter :: nan = real (z'7FC00000')
+
+ ! Unary operators
+ print *, -[inf,nan] ! { dg-error "Arithmetic overflow" }
+ print *, -[nan,inf] ! { dg-error "Arithmetic NaN" }
+
+ ! Binary operators
+ print *, [1.]/[0.] ! { dg-error "Division by zero" }
+ print *, [0.]/[0.] ! { dg-error "Arithmetic NaN" }
+ print *, 0. / [(0.,0.)] ! { dg-error "Arithmetic NaN" }
+ print *, [1.,0.]/[0.,0.] ! { dg-error "Division by zero" }
+ print *, [(1.,1.)]/[0.] ! { dg-error "Division by zero" }
+ print *, [(1.,0.)]/[0.] ! { dg-error "Division by zero" }
+ print *, [(0.,0.)]/[0.] ! { dg-error "Arithmetic NaN" }
+ print *, - [1./0.]/[0.] ! { dg-error "Division by zero" }
+ print *, - [ 1/0 ] * 1 ! { dg-error "Division by zero" }
+
+ ! Binary operators, exceptional input
+ print *, 1. / nan ! { dg-error "Arithmetic NaN" }
+ print *, [inf] / inf ! { dg-error "Arithmetic NaN" }
+ print *, inf + [nan] ! { dg-error "Arithmetic NaN" }
+ print *, [(1.,0.)]/[(nan,0.)] ! { dg-error "Arithmetic NaN" }
+ print *, [(1.,0.)]/[(0.,nan)] ! { dg-error "Arithmetic NaN" }
+ print *, [(1.,0.)]/[(inf,0.)] ! OK
+ print *, [nan,inf] / (0.) ! { dg-error "Arithmetic NaN" }
+ print *, [inf,nan] / (0.) ! { dg-error "Arithmetic overflow" }
+end
@@ -7,7 +7,7 @@ program p
character(:), pointer :: a
end type
type(t) :: z
- character((0.)/0), target :: c = 'abc' ! { dg-error "Division by zero" }
+ character((0.)/0), target :: c = 'abc' ! { dg-error "Arithmetic NaN" }
z%a => c
! The associate statement was not needed to trigger the ICE.
associate (y => z%a)
--
2.35.3