diff mbox series

[pushed,v2] aarch64: Add an early RA for strided registers

Message ID mptlea5x05m.fsf@arm.com
State New
Headers show
Series [pushed,v2] aarch64: Add an early RA for strided registers | expand

Commit Message

Richard Sandiford Dec. 7, 2023, 7:50 p.m. UTC
Updates in v2:
- Respond to Kyrill's review:
  - Add a comment above the stride_type attribute.
  - Document the default -mearly-ra setting.
  - Fix REG_EQUIV handling and so avoid the need for the previous IRA change.
- Now that Lehua's patches have been postponed to GCC 15, Kyrill, Tamar
  and I agreed that it would be worth enabling this by default for all
  functions, rather than just those that need the strided registers.
  We can revisit that for GCC 15 if necessary (or earlier if problems
  are found).
- Add tests for PRs that are fixed by doing that.
- Add a simple regrename-like post-pass over the allocation to use
  spare FPRs.  This gives more scheduling freedom and encourages the
  formation of LDPs and STPs.
- Tweak and fix various comments.

Pushed to trunk after retesting on aarch64-linux-gnu.

---

This pass adds a simple register allocator for FP & SIMD registers.
Its main purpose is to make use of SME2's strided LD1, ST1 and LUTI2/4
instructions, which require a very specific grouping structure,
and so would be difficult to exploit with general allocation.

The allocator is very simple.  It gives up on anything that would
require spilling, or that it might not handle well for other reasons.

The allocator needs to track liveness at the level of individual FPRs.
Doing that fixes a lot of the PRs relating to redundant moves caused by
structure loads and stores.  That particular problem is going to be
fixed more generally for GCC 15 by Lehua's RA patches.

However, the early-RA pass runs before scheduling, so it has a chance
to bag a spill-free allocation of vector code before the scheduler moves
things around.  It could therefore still be useful for non-SME code
(e.g. for hand-scheduled ACLE code) even after Lehua's patches are in.

The pass is controlled by a tristate switch:

- -mearly-ra=all: run on all functions
- -mearly-ra=strided: run on functions that have access to strided registers
- -mearly-ra=none: don't run on any function

The patch makes -mearly-ra=all the default at -O2 and above for now.
We can revisit this for GCC 15 once Lehua's patches are in;
-mearly-ra=strided might then be more appropriate.

As said previously, the pass is very naive.  There's much more that we
could do, such as handling invariants better.  The main focus is on not
committing to a bad allocation, rather than on handling as much as
possible.

gcc/
	PR rtl-optimization/106694
	PR rtl-optimization/109078
	PR rtl-optimization/109391
	* config.gcc: Add aarch64-early-ra.o for AArch64 targets.
	* config/aarch64/t-aarch64 (aarch64-early-ra.o): New rule.
	* config/aarch64/aarch64-opts.h (aarch64_early_ra_scope): New enum.
	* config/aarch64/aarch64.opt (mearly_ra): New option.
	* doc/invoke.texi: Document it.
	* common/config/aarch64/aarch64-common.cc
	(aarch_option_optimization_table): Use -mearly-ra=strided by
	default for -O2 and above.
	* config/aarch64/aarch64-passes.def (pass_aarch64_early_ra): New pass.
	* config/aarch64/aarch64-protos.h (aarch64_strided_registers_p)
	(make_pass_aarch64_early_ra): Declare.
	* config/aarch64/aarch64-sme.md (@aarch64_sme_lut<LUTI_BITS><mode>):
	Add a stride_type attribute.
	(@aarch64_sme_lut<LUTI_BITS><mode>_strided2): New pattern.
	(@aarch64_sme_lut<LUTI_BITS><mode>_strided4): Likewise.
	* config/aarch64/aarch64-sve-builtins-base.cc (svld1_impl::expand)
	(svldnt1_impl::expand, svst1_impl::expand, svstn1_impl::expand): Handle
	new way of defining multi-register loads and stores.
	* config/aarch64/aarch64-sve.md (@aarch64_ld1<SVE_FULLx24:mode>)
	(@aarch64_ldnt1<SVE_FULLx24:mode>, @aarch64_st1<SVE_FULLx24:mode>)
	(@aarch64_stnt1<SVE_FULLx24:mode>): Delete.
	* config/aarch64/aarch64-sve2.md (@aarch64_<LD1_COUNT:optab><mode>)
	(@aarch64_<LD1_COUNT:optab><mode>_strided2): New patterns.
	(@aarch64_<LD1_COUNT:optab><mode>_strided4): Likewise.
	(@aarch64_<ST1_COUNT:optab><mode>): Likewise.
	(@aarch64_<ST1_COUNT:optab><mode>_strided2): Likewise.
	(@aarch64_<ST1_COUNT:optab><mode>_strided4): Likewise.
	* config/aarch64/aarch64.cc (aarch64_strided_registers_p): New
	function.
	* config/aarch64/aarch64.md (UNSPEC_LD1_SVE_COUNT): Delete.
	(UNSPEC_ST1_SVE_COUNT, UNSPEC_LDNT1_SVE_COUNT): Likewise.
	(UNSPEC_STNT1_SVE_COUNT): Likewise.
	(stride_type): New attribute.
	* config/aarch64/constraints.md (Uwd, Uwt): New constraints.
	* config/aarch64/iterators.md (UNSPEC_LD1_COUNT, UNSPEC_LDNT1_COUNT)
	(UNSPEC_ST1_COUNT, UNSPEC_STNT1_COUNT): New unspecs.
	(optab): Handle them.
	(LD1_COUNT, ST1_COUNT): New iterators.
	* config/aarch64/aarch64-early-ra.cc: New file.

gcc/testsuite/
	PR rtl-optimization/106694
	PR rtl-optimization/109078
	PR rtl-optimization/109391
	* gcc.target/aarch64/ldp_stp_16.c (cons4_4_float): Tighten expected
	output test.
	* gcc.target/aarch64/sve/shift_1.c: Allow reversed shifts for .s
	as well as .d.
	* gcc.target/aarch64/sme/strided_1.c: New test.
	* gcc.target/aarch64/pr109078.c: Likewise.
	* gcc.target/aarch64/pr109391.c: Likewise.
	* gcc.target/aarch64/sve/pr106694.c: Likewise.
---
 gcc/common/config/aarch64/aarch64-common.cc   |    1 +
 gcc/config.gcc                                |    2 +-
 gcc/config/aarch64/aarch64-early-ra.cc        | 3423 +++++++++++++++++
 gcc/config/aarch64/aarch64-opts.h             |   11 +
 gcc/config/aarch64/aarch64-passes.def         |    1 +
 gcc/config/aarch64/aarch64-protos.h           |    2 +
 gcc/config/aarch64/aarch64-sme.md             |   70 +
 .../aarch64/aarch64-sve-builtins-base.cc      |   14 +-
 gcc/config/aarch64/aarch64-sve.md             |   44 -
 gcc/config/aarch64/aarch64-sve2.md            |  144 +-
 gcc/config/aarch64/aarch64.cc                 |   13 +
 gcc/config/aarch64/aarch64.md                 |   24 +-
 gcc/config/aarch64/aarch64.opt                |   18 +
 gcc/config/aarch64/constraints.md             |    8 +
 gcc/config/aarch64/iterators.md               |   12 +
 gcc/config/aarch64/t-aarch64                  |    6 +
 gcc/doc/invoke.texi                           |   15 +
 gcc/testsuite/gcc.target/aarch64/ldp_stp_16.c |    5 +-
 gcc/testsuite/gcc.target/aarch64/pr109078.c   |   59 +
 gcc/testsuite/gcc.target/aarch64/pr109391.c   |   14 +
 .../gcc.target/aarch64/sme/strided_1.c        |  253 ++
 .../gcc.target/aarch64/sve/pr106694.c         |   28 +
 .../gcc.target/aarch64/sve/shift_1.c          |    6 +-
 23 files changed, 4113 insertions(+), 60 deletions(-)
 create mode 100644 gcc/config/aarch64/aarch64-early-ra.cc
 create mode 100644 gcc/testsuite/gcc.target/aarch64/pr109078.c
 create mode 100644 gcc/testsuite/gcc.target/aarch64/pr109391.c
 create mode 100644 gcc/testsuite/gcc.target/aarch64/sme/strided_1.c
 create mode 100644 gcc/testsuite/gcc.target/aarch64/sve/pr106694.c
diff mbox series

Patch

diff --git a/gcc/common/config/aarch64/aarch64-common.cc b/gcc/common/config/aarch64/aarch64-common.cc
index 20bc4e1291b..8fb901029ec 100644
--- a/gcc/common/config/aarch64/aarch64-common.cc
+++ b/gcc/common/config/aarch64/aarch64-common.cc
@@ -55,6 +55,7 @@  static const struct default_options aarch_option_optimization_table[] =
     { OPT_LEVELS_1_PLUS, OPT_fsched_pressure, NULL, 1 },
     /* Enable redundant extension instructions removal at -O2 and higher.  */
     { OPT_LEVELS_2_PLUS, OPT_free, NULL, 1 },
+    { OPT_LEVELS_2_PLUS, OPT_mearly_ra_, NULL, AARCH64_EARLY_RA_ALL },
 #if (TARGET_DEFAULT_ASYNC_UNWIND_TABLES == 1)
     { OPT_LEVELS_ALL, OPT_fasynchronous_unwind_tables, NULL, 1 },
     { OPT_LEVELS_ALL, OPT_funwind_tables, NULL, 1},
diff --git a/gcc/config.gcc b/gcc/config.gcc
index 6450448f2f0..4884aca4dd8 100644
--- a/gcc/config.gcc
+++ b/gcc/config.gcc
@@ -349,7 +349,7 @@  aarch64*-*-*)
 	c_target_objs="aarch64-c.o"
 	cxx_target_objs="aarch64-c.o"
 	d_target_objs="aarch64-d.o"
-	extra_objs="aarch64-builtins.o aarch-common.o aarch64-sve-builtins.o aarch64-sve-builtins-shapes.o aarch64-sve-builtins-base.o aarch64-sve-builtins-sve2.o aarch64-sve-builtins-sme.o cortex-a57-fma-steering.o aarch64-speculation.o falkor-tag-collision-avoidance.o aarch-bti-insert.o aarch64-cc-fusion.o"
+	extra_objs="aarch64-builtins.o aarch-common.o aarch64-sve-builtins.o aarch64-sve-builtins-shapes.o aarch64-sve-builtins-base.o aarch64-sve-builtins-sve2.o aarch64-sve-builtins-sme.o cortex-a57-fma-steering.o aarch64-speculation.o falkor-tag-collision-avoidance.o aarch-bti-insert.o aarch64-cc-fusion.o aarch64-early-ra.o"
 	target_gtfiles="\$(srcdir)/config/aarch64/aarch64-builtins.cc \$(srcdir)/config/aarch64/aarch64-sve-builtins.h \$(srcdir)/config/aarch64/aarch64-sve-builtins.cc"
 	target_has_targetm_common=yes
 	;;
diff --git a/gcc/config/aarch64/aarch64-early-ra.cc b/gcc/config/aarch64/aarch64-early-ra.cc
new file mode 100644
index 00000000000..c065416c5b9
--- /dev/null
+++ b/gcc/config/aarch64/aarch64-early-ra.cc
@@ -0,0 +1,3423 @@ 
+// Early register allocation pass.
+// Copyright (C) 2023 Free Software Foundation, Inc.
+//
+// This file is part of GCC.
+//
+// GCC is free software; you can redistribute it and/or modify it under
+// the terms of the GNU General Public License as published by the Free
+// Software Foundation; either version 3, or (at your option) any later
+// version.
+//
+// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or
+// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with GCC; see the file COPYING3.  If not see
+// <http://www.gnu.org/licenses/>.
+
+// This pass implements a simple form of early register allocation.
+// It is restricted to FP/SIMD registers, and it only allocates
+// a region of FP/SIMD usage if it can do so without any spilling.
+// It punts on anything too complicated, leaving it to the real
+// register allocator.
+//
+// There are two main purposes:
+//
+// (1) The pass runs before scheduling.  It therefore has a chance to
+//     bag a spill-free allocation, if there is one, before scheduling
+//     moves things around.
+//
+// (2) The pass can make use of strided register operations, such as the
+//     strided forms of LD1 and ST1 in SME2.
+//
+// The allocator works at the level of individual FPRs, rather than whole
+// pseudo registers.  It is mostly intended to help optimize ACLE code.
+//
+// The pass is very simplistic.  There are many things that could be improved.
+#define IN_TARGET_CODE 1
+
+#define INCLUDE_ALGORITHM
+#define INCLUDE_FUNCTIONAL
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "df.h"
+#include "rtl-ssa.h"
+#include "tree-pass.h"
+#include "target.h"
+#include "expr.h"
+#include "cfgrtl.h"
+#include "print-rtl.h"
+#include "insn-attr.h"
+#include "insn-opinit.h"
+#include "reload.h"
+
+template<typename T>
+class simple_iterator : public wrapper_iterator<T>
+{
+public:
+  using wrapper_iterator<T>::wrapper_iterator;
+
+  simple_iterator &operator-- () { --this->m_contents; return *this; }
+  simple_iterator operator-- (int) { return this->m_contents--; }
+  simple_iterator &operator++ () { ++this->m_contents; return *this; }
+  simple_iterator operator++ (int) { return this->m_contents++; }
+};
+
+using namespace rtl_ssa;
+
+namespace {
+const pass_data pass_data_early_ra =
+{
+  RTL_PASS, // type
+  "early_ra", // name
+  OPTGROUP_NONE, // optinfo_flags
+  TV_NONE, // tv_id
+  0, // properties_required
+  0, // properties_provided
+  0, // properties_destroyed
+  0, // todo_flags_start
+  TODO_df_finish, // todo_flags_finish
+};
+
+using allocno_iterator = simple_iterator<unsigned int>;
+
+// Class that represents one run of the pass.
+class early_ra
+{
+public:
+  early_ra (function *fn);
+  ~early_ra ();
+  void execute ();
+
+private:
+  static_assert (MAX_RECOG_OPERANDS <= 32, "Operand mask is 32 bits");
+  using operand_mask = uint32_t;
+
+  // Points in the function are represented using "program points".
+  // The program points are allocated in reverse order, with smaller
+  // numbers indicating later points.  These special values indicate
+  // the start and end of a region.
+  static constexpr unsigned int START_OF_REGION = ~0U;
+  static constexpr unsigned int END_OF_REGION = 0U;
+
+  // An invalid allocno index, used to represent no allocno.
+  static constexpr unsigned int INVALID_ALLOCNO = ~0U;
+
+  // Enumerates the single FPR sizes that matter for register allocation.
+  // Anything smaller than 64 bits is treated as FPR_D.
+  enum fpr_size_info
+  {
+    FPR_D,
+    FPR_Q,
+    FPR_Z
+  };
+
+  // A live range for an FPR, containing program points [START_POINT,
+  // END_POINT].  If ALLOCNO is not INVALID_ALLOCNO, the FPR is known
+  // to be equal to ALLOCNO for the duration of the live range.
+  struct fpr_range_info
+  {
+    unsigned int start_point;
+    unsigned int end_point;
+    unsigned int allocno;
+  };
+
+  // Flags used in pseudo_reg_info.
+  //
+  // Whether the pseudo register occurs in one instruction alternative that
+  // matches (respectively) V0-V7, V0-V15, V0-V31 or a non-FP register.
+  static constexpr unsigned int ALLOWS_FPR8 = 1U << 0;
+  static constexpr unsigned int ALLOWS_FPR16 = 1U << 1;
+  static constexpr unsigned int ALLOWS_FPR32 = 1U << 2;
+  static constexpr unsigned int ALLOWS_NONFPR = 1U << 3;
+  //
+  // Likewise whether the register occurs in an instruction that requires
+  // the associated register type.
+  static constexpr unsigned int NEEDS_FPR8 = 1U << 4;
+  static constexpr unsigned int NEEDS_FPR16 = 1U << 5;
+  static constexpr unsigned int NEEDS_FPR32 = 1U << 6;
+  static constexpr unsigned int NEEDS_NONFPR = 1U << 7;
+  //
+  // Whether the pseudo register is copied to or from a hard FP register.
+  static constexpr unsigned int HAS_FPR_COPY = 1U << 8;
+  //
+  // Whether the pseudo register is copied to or from a hard non-FP register.
+  static constexpr unsigned int HAS_NONFPR_COPY = 1U << 9;
+  //
+  // Whether the pseudo register is used as a multi-register vector operand
+  // to an instruction that supports strided accesses, and whether it is used
+  // as a multi-register vector operand in some other non-move instruction.
+  static constexpr unsigned int HAS_FLEXIBLE_STRIDE = 1U << 10;
+  static constexpr unsigned int HAS_FIXED_STRIDE = 1U << 11;
+
+  // Flags that should be propagated across moves between pseudo registers.
+  static constexpr unsigned int PSEUDO_COPY_FLAGS = ~(HAS_FLEXIBLE_STRIDE
+						      | HAS_FIXED_STRIDE);
+
+  // Information about a copy between two registers.
+  struct reg_copy_info
+  {
+    // The two registers, in order.
+    unsigned int regnos[2];
+
+    // Index I gives the index of the next reg_copy_info involving REGNOS[I],
+    // or 0 if none.
+    unsigned int next_copies[2];
+  };
+
+  // Information about a pseudo register.
+  struct pseudo_reg_info
+  {
+    // Flags describing how the register is used, defined above.
+    unsigned int flags : 16;
+
+    // The mode of the pseudo register, cached for convenience.
+    machine_mode mode : 16;
+
+    // The index of the first copy, or 0 if none.
+    unsigned int first_copy;
+  };
+
+  // Information about a group of allocnos that have a fixed offset
+  // relative to each other.  The allocnos in each group must be allocated
+  // together.
+  //
+  // Allocnos that can share the same hard register are eventually
+  // chained together.  These chains represent edges on a graph of
+  // allocnos, such that two allocnos joined by an edge use the same FPR.
+  // These chains are formed between individual allocnos rather than
+  // whole groups, although the system is required to be self-consistent.
+  // Each clique in the graph has at least one "full-width" allocno group
+  // that has one allocno for every FPR that needs to be allocated to
+  // the clique.
+  //
+  // One group of allocnos is chosen as the "color representative" of
+  // each clique in the graph.  This group will be a full-width group.
+  struct allocno_info;
+  struct allocno_group_info
+  {
+    array_slice<unsigned int> chain_heads ();
+    array_slice<allocno_info> allocnos ();
+    allocno_group_info *color_rep ();
+    allocno_info *allocno (unsigned int);
+
+    // The color representative of the containing clique.
+    allocno_group_info *m_color_rep;
+
+    // The pseudo register associated with this allocno, or INVALID_REGNUM
+    // if none.
+    unsigned int regno;
+
+    // The offset of the first allocno (and thus this group) from the start
+    // of color_rep.
+    unsigned int color_rep_offset : 8;
+
+    // The number of allocnos in the group, and thus the number of FPRs
+    // that need to be allocated.
+    unsigned int size : 8;
+
+    // The gap between FPRs in the group.  This is normally 1, but can be
+    // higher if we've decided to use strided multi-register accesses.
+    unsigned int stride : 4;
+
+    // Used temporarily while deciding which allocnos should have non-unit
+    // strides; see find_strided_accesses for details.
+    int consecutive_pref : 4;
+    int strided_polarity : 2;
+
+    // The largest size of FPR needed by references to the allocno group.
+    fpr_size_info fpr_size : 2;
+
+    // True if all non-move accesses can be converted to strided form.
+    unsigned int has_flexible_stride : 1;
+
+    // True if we've assigned a color index to this group.
+    unsigned int has_color : 1;
+
+    // The mask of FPRs that would make valid choices for the first allocno,
+    // taking the requirements of all the allocnos in the group into account.
+    unsigned int fpr_candidates;
+
+    // The index of the color that has been assigned to the containing clique.
+    unsigned int color;
+  };
+
+  // Represents a single FPR-sized quantity that needs to be allocated.
+  // Each allocno is identified by index (for compactness).
+  //
+  // Quantities that span multiple FPRs are assigned groups of consecutive
+  // allocnos.  Quantities that occupy a single FPR are assigned their own
+  // group.
+  struct allocno_info
+  {
+    allocno_group_info *group ();
+
+    // The allocno's unique identifier.
+    unsigned int id;
+
+    // The offset of this allocno into the containing group.
+    unsigned int offset : 8;
+
+    // The number of allocnos in the containing group.
+    unsigned int group_size : 8;
+
+    // If the allocno has an affinity with at least one hard register
+    // (so that choosing that hard register would avoid a copy), this is
+    // the number of one such hard register, otherwise it is
+    // FIRST_PSEUDO_REGISTER.
+    unsigned int hard_regno : 8;
+
+    // Set to 1 if the allocno has a single definition or 2 if it has more.
+    unsigned int num_defs : 2;
+
+    // True if, at START_POINT, another allocno is copied to this one.
+    // See callers of record_copy for what counts as a copy.
+    unsigned int is_copy_dest : 1;
+
+    // True if, at START_POINT, another allocno is copied to this one,
+    // and if the allocnos at both ends of the copy chain have an affinity
+    // with the same hard register.
+    unsigned int is_strong_copy_dest : 1;
+
+    // True if, at END_POINT, this allocno is copied to another one,
+    // and both allocnos have an affinity with the same hard register.
+    unsigned int is_strong_copy_src : 1;
+
+    // True if the allocno is subject to an earlyclobber at END_POINT,
+    // so that it cannot be tied to the destination of the instruction.
+    unsigned int is_earlyclobbered : 1;
+
+    // The inclusive range of program points spanned by the allocno.
+    // START_POINT >= END_POINT.
+    unsigned int start_point;
+    unsigned int end_point;
+
+    // If, at END_POINT, this allocno is copied to another allocno, this
+    // is the index of that allocno, otherwise it is INVALID_ALLOCNO.
+    // See callers of record_copy for what counts as a copy.
+    unsigned int copy_dest;
+
+    // If this field is not INVALID_ALLOCNO, this allocno is known to be
+    // equivalent to EQUIV_ALLOCNO for the whole of this allocno's lifetime.
+    unsigned int equiv_allocno;
+
+    // The next chained allocno in program order (i.e. at lower program
+    // points), or INVALID_ALLOCNO if none.
+    unsigned int chain_next;
+
+    // The previous chained allocno in program order (i.e. at higher
+    // program points), or INVALID_ALLOCNO if none.
+    unsigned int chain_prev;
+  };
+
+  // Information about a full allocno group or a subgroup of it.
+  // The subgroup can be empty to indicate "none".
+  struct allocno_subgroup
+  {
+    array_slice<allocno_info> allocnos ();
+    allocno_info *allocno (unsigned int);
+
+    // True if a subgroup is present.
+    operator bool () const { return count; }
+
+    // The containing group.
+    allocno_group_info *group;
+
+    // The offset of the subgroup from the start of GROUP.
+    unsigned int start;
+
+    // The number of allocnos in the subgroup.
+    unsigned int count;
+  };
+
+  // Represents information about a copy between an allocno and an FPR.
+  // This establishes an affinity between the allocno and the FPR.
+  struct allocno_copy_info
+  {
+    // The allocno involved in the copy.
+    unsigned int allocno;
+
+    // The FPR involved in the copy, relative to V0_REGNUM.
+    unsigned int fpr : 16;
+
+    // A measure of how strong the affinity between the allocno and FPR is.
+    unsigned int weight : 16;
+  };
+
+  // Information about a possible allocno chain.
+  struct chain_candidate_info
+  {
+    // The candidate target allocno.
+    allocno_info *allocno;
+
+    // A rating of the candidate (higher is better).
+    int score;
+  };
+
+  // Information about an allocno color.
+  struct color_info
+  {
+    // The color's unique identifier.
+    int id;
+
+    // The allocated hard register, when known.
+    unsigned int hard_regno;
+
+    // The clique's representative group.
+    allocno_group_info *group;
+
+    // Weights in favor of choosing each FPR as the first register for GROUP.
+    int8_t fpr_preferences[32];
+  };
+
+  template<typename T, typename... Ts>
+  T *region_allocate (Ts...);
+
+  allocno_info *chain_prev (allocno_info *);
+  allocno_info *chain_next (allocno_info *);
+
+  void dump_pseudo_regs ();
+  void dump_fpr_ranges ();
+  void dump_copies ();
+  void dump_allocnos ();
+  void dump_colors ();
+
+  iterator_range<allocno_iterator> get_group_allocnos (unsigned int);
+
+  void preprocess_move (rtx, rtx);
+  void process_pseudo_reg_constraints (rtx_insn *);
+  void preprocess_insns ();
+
+  int fpr_preference (unsigned int);
+  void propagate_pseudo_reg_info ();
+
+  void choose_fpr_pseudos ();
+
+  void start_new_region ();
+
+  allocno_group_info *create_allocno_group (unsigned int, unsigned int);
+  allocno_subgroup get_allocno_subgroup (rtx);
+  void record_fpr_use (unsigned int);
+  void record_fpr_def (unsigned int);
+  void record_allocno_use (allocno_info *);
+  void record_allocno_def (allocno_info *);
+  void record_copy (rtx, rtx, bool = false);
+  void record_constraints (rtx_insn *);
+  void record_artificial_refs (unsigned int);
+  void record_insn_refs (rtx_insn *);
+
+  bool consider_strong_copy_src_chain (allocno_info *);
+  int strided_polarity_pref (allocno_info *, allocno_info *);
+  void find_strided_accesses ();
+
+  template<unsigned int allocno_info::*field>
+  static int cmp_increasing (const void *, const void *);
+  bool is_chain_candidate (allocno_info *, allocno_info *);
+  int rate_chain (allocno_info *, allocno_info *);
+  static int cmp_chain_candidates (const void *, const void *);
+  void chain_allocnos (unsigned int &, unsigned int &);
+  void set_single_color_rep (allocno_info *, allocno_group_info *,
+			     unsigned int);
+  void set_color_rep (allocno_group_info *, allocno_group_info *,
+		      unsigned int);
+  bool try_to_chain_allocnos (allocno_info *, allocno_info *);
+  void create_color (allocno_group_info *);
+  void form_chains ();
+
+  bool fpr_conflicts_with_allocno_p (unsigned int, allocno_info *);
+  bool call_in_range_p (unsigned int, unsigned int, unsigned int);
+  unsigned int partial_fpr_clobbers (unsigned int, fpr_size_info);
+
+  void process_copies ();
+
+  static int cmp_decreasing_size (const void *, const void *);
+  void allocate_colors ();
+  allocno_info *find_independent_subchain (allocno_info *);
+  color_info *find_oldest_color (unsigned int, unsigned int);
+  void broaden_colors ();
+  void finalize_allocation ();
+
+  bool replace_regs (df_ref);
+  int try_enforce_constraints (rtx_insn *, vec<std::pair<int, int>> &);
+  void enforce_constraints (rtx_insn *);
+  bool maybe_convert_to_strided_access (rtx_insn *);
+  void apply_allocation ();
+
+  void process_region ();
+  bool is_dead_insn (rtx_insn *);
+  void process_block (basic_block, bool);
+  void process_blocks ();
+
+  // ----------------------------------------------------------------------
+
+  // The function we're operating on.
+  function *m_fn;
+
+  // Information about each pseudo register, indexed by REGNO.
+  auto_vec<pseudo_reg_info> m_pseudo_regs;
+
+  // All recorded register copies.
+  auto_vec<reg_copy_info> m_pseudo_reg_copies;
+
+  // The set of pseudos that we've decided to allocate an FPR to.
+  auto_bitmap m_fpr_pseudos;
+
+  // ----------------------------------------------------------------------
+
+  // An obstack for allocating information that is referenced by the member
+  // variables below.
+  obstack m_region_obstack;
+  void *m_region_alloc_start;
+
+  // ----------------------------------------------------------------------
+
+  // The basic block that we're currently processing.
+  basic_block m_current_bb;
+
+  // The program point that we're currently processing (described above).
+  unsigned int m_current_point;
+
+  // The set of allocnos that are currently live.
+  auto_bitmap m_live_allocnos;
+
+  // The set of FPRs that are currently live.
+  unsigned int m_live_fprs;
+
+  // ----------------------------------------------------------------------
+
+  // A mask of the FPRs that have already been allocated.
+  unsigned int m_allocated_fprs;
+
+  // A mask of the FPRs that must be at least partially preserved by the
+  // current function.
+  unsigned int m_call_preserved_fprs;
+
+  // True if we haven't yet failed to allocate the current region.
+  bool m_allocation_successful;
+
+  // A map from pseudo registers to the first allocno in their associated
+  // allocno groups.
+  hash_map<int_hash<unsigned int, INVALID_REGNUM>,
+	   allocno_group_info *> m_regno_to_group;
+
+  // All recorded copies between allocnos and FPRs.
+  auto_vec<allocno_copy_info> m_allocno_copies;
+
+  // All allocnos, by index.
+  auto_vec<allocno_info *> m_allocnos;
+
+  // All allocnos, by increasing START_POINT.
+  auto_vec<allocno_info *> m_sorted_allocnos;
+
+  // All colors, by index.
+  auto_vec<color_info *> m_colors;
+
+  // The instruction ranges that make up the current region,
+  // as half-open ranges [LAST, FIRST).
+  auto_vec<std::pair<rtx_insn *, rtx_insn *>> m_insn_ranges;
+
+  // The live ranges of each FPR, in order of increasing program point.
+  auto_vec<fpr_range_info> m_fpr_ranges[32];
+
+  // For each function call id, a list of program points at which a call
+  // to such a function is made.  Each list is in order of increasing
+  // program point.
+  auto_vec<unsigned int> m_call_points[NUM_ABI_IDS];
+
+  // A list of instructions that can be removed if allocation succeeds.
+  auto_vec<rtx_insn *> m_dead_insns;
+};
+
+// True if PAT is something that would typically be treated as a move.
+static inline bool
+is_move_set (rtx pat)
+{
+  if (GET_CODE (pat) != SET)
+    return false;
+
+  rtx dest = SET_DEST (pat);
+  if (SUBREG_P (dest))
+    dest = SUBREG_REG (dest);
+  if (!OBJECT_P (dest))
+    return false;
+
+  rtx src = SET_SRC (pat);
+  if (SUBREG_P (src))
+    src = SUBREG_REG (src);
+  if (!OBJECT_P (src) && !CONSTANT_P (src))
+    return false;
+
+  return true;
+}
+
+// Return true if operand OP is likely to match OP_ALT after register
+// allocation.
+static bool
+likely_operand_match_p (const operand_alternative &op_alt, rtx op)
+{
+  // Empty constraints match everything.
+  const char *constraint = op_alt.constraint;
+  if (constraint[0] == 0 || constraint[0] == ',')
+    return true;
+
+  for (;;)
+    {
+      char c = *constraint;
+      int len = CONSTRAINT_LEN (c, constraint);
+      if (c == 0 || c == ',')
+	break;
+
+      if (c == 'X')
+	return true;
+
+      auto cn = lookup_constraint (constraint);
+      if (REG_P (op) || SUBREG_P (op))
+	{
+	  if (insn_extra_register_constraint (cn))
+	    return true;
+	}
+      else if (MEM_P (op))
+	{
+	  if (insn_extra_memory_constraint (cn))
+	    return true;
+	}
+      else
+	{
+	  if (!insn_extra_memory_constraint (cn)
+	      && constraint_satisfied_p (op, cn))
+	    return true;
+	}
+
+      constraint += len;
+    }
+
+  if (op_alt.matches >= 0)
+    {
+      rtx other = recog_data.operand[op_alt.matches];
+      if ((REG_P (other) || SUBREG_P (other))
+	  && (REG_P (op) || SUBREG_P (op)))
+	return true;
+    }
+  return false;
+}
+
+// Return true if the operands of the current instruction are likely to
+// match OP_ALT.
+static bool
+likely_alternative_match_p (const operand_alternative *op_alt)
+{
+  for (int i = 0; i < recog_data.n_operands; ++i)
+    if (!likely_operand_match_p (op_alt[i], recog_data.operand[i]))
+      return false;
+  return true;
+}
+
+// Return the sum of how disparaged OP_ALT is.
+static int
+count_rejects (const operand_alternative *op_alt)
+{
+  int reject = 0;
+  for (int opno = 0; opno < recog_data.n_operands; ++opno)
+    reject += op_alt[opno].reject;
+  return reject;
+}
+
+// Allocate a T from the region obstack.
+template<typename T, typename... Ts>
+inline T *
+early_ra::region_allocate (Ts... args)
+{
+  static_assert (std::is_trivially_destructible<T>::value,
+		 "destructor won't be called");
+  void *addr = obstack_alloc (&m_region_obstack, sizeof (T));
+  return new (addr) T (std::forward<Ts> (args)...);
+}
+
+early_ra::early_ra (function *fn) : m_fn (fn), m_live_fprs (0)
+{
+  gcc_obstack_init (&m_region_obstack);
+  m_region_alloc_start = obstack_alloc (&m_region_obstack, 0);
+  bitmap_tree_view (m_live_allocnos);
+}
+
+early_ra::~early_ra ()
+{
+  obstack_free (&m_region_obstack, nullptr);
+}
+
+// Return an array that, for each allocno A in the group, contains the index
+// of the allocno at the head of A's chain (that is, the one with the highest
+// START_POINT).  The index is INVALID_ALLOCNO if the chain is empty.
+inline array_slice<unsigned int>
+early_ra::allocno_group_info::chain_heads ()
+{
+  auto *start = reinterpret_cast<unsigned int *> (this + 1);
+  return { start, size };
+}
+
+// Return the array of allocnos in the group.
+inline array_slice<early_ra::allocno_info>
+early_ra::allocno_group_info::allocnos ()
+{
+  gcc_checking_assert (regno != INVALID_REGNUM);
+  auto *chain_end = reinterpret_cast<unsigned int *> (this + 1) + size;
+  auto *allocno_start = reinterpret_cast<allocno_info *> (chain_end);
+  return { allocno_start, size };
+}
+
+// Return the group's color representative.
+inline early_ra::allocno_group_info *
+early_ra::allocno_group_info::color_rep ()
+{
+  gcc_checking_assert (m_color_rep->m_color_rep == m_color_rep);
+  return m_color_rep;
+}
+
+// Return the group that contains the allocno.
+inline early_ra::allocno_group_info *
+early_ra::allocno_info::group ()
+{
+  auto *chain_end = reinterpret_cast<unsigned int *> (this - offset);
+  return reinterpret_cast<allocno_group_info *> (chain_end - group_size) - 1;
+}
+
+// Return the allocnos in the subgroup.
+inline array_slice<early_ra::allocno_info>
+early_ra::allocno_subgroup::allocnos ()
+{
+  if (!count)
+    return {};
+  return { &group->allocnos ()[start], count };
+}
+
+// Return allocno I in the subgroup, with 0 being the first.
+inline early_ra::allocno_info *
+early_ra::allocno_subgroup::allocno (unsigned int i)
+{
+  return &group->allocnos ()[start + i];
+}
+
+// Return the previous (earlier) allocno in ALLOCNO's chain, or null if none.
+inline early_ra::allocno_info *
+early_ra::chain_prev (allocno_info *allocno)
+{
+  if (allocno->chain_prev != INVALID_ALLOCNO)
+    return m_allocnos[allocno->chain_prev];
+  return nullptr;
+}
+
+// Return the next (later) allocno in ALLOCNO's chain, or null if none.
+inline early_ra::allocno_info *
+early_ra::chain_next (allocno_info *allocno)
+{
+  if (allocno->chain_next != INVALID_ALLOCNO)
+    return m_allocnos[allocno->chain_next];
+  return nullptr;
+}
+
+// Dump the information in m_pseudo_regs.
+void
+early_ra::dump_pseudo_regs ()
+{
+  fprintf (dump_file, "\nPseudos:\n");
+  fprintf (dump_file, "  %6s %6s %6s %6s %6s %6s %8s %s\n",
+	   "Id", "FPR8", "FPR16", "FPR32", "NONFPR", "Stride",
+	   "FPRness", "Copies");
+  pseudo_reg_info unused_reg = {};
+  for (unsigned int regno = FIRST_PSEUDO_REGISTER;
+       regno < m_pseudo_regs.length (); ++regno)
+    {
+      const auto &reg = m_pseudo_regs[regno];
+      if (memcmp (&reg, &unused_reg, sizeof (reg)) == 0)
+	continue;
+
+      fprintf (dump_file, "  %6d %6s %6s %6s %6s %6s %8d", regno,
+	       reg.flags & NEEDS_FPR8 ? "Req"
+	       : reg.flags & ALLOWS_FPR8 ? "OK" : "-",
+	       reg.flags & NEEDS_FPR16 ? "Req"
+	       : reg.flags & ALLOWS_FPR16 ? "OK" : "-",
+	       reg.flags & NEEDS_FPR32 ? "Req"
+	       : reg.flags & ALLOWS_FPR32 ? "OK" : "-",
+	       reg.flags & NEEDS_NONFPR ? "Req"
+	       : reg.flags & ALLOWS_NONFPR ? "OK" : "-",
+	       ~reg.flags & HAS_FLEXIBLE_STRIDE ? "-"
+	       : reg.flags & HAS_FIXED_STRIDE ? "Some" : "All",
+	       fpr_preference (regno));
+      if (reg.flags & HAS_FPR_COPY)
+	fprintf (dump_file, " FPR");
+      if (reg.flags & HAS_NONFPR_COPY)
+	fprintf (dump_file, " Non-FPR");
+      unsigned int copyi = reg.first_copy;
+      while (copyi)
+	{
+	  const auto &copy = m_pseudo_reg_copies[copyi];
+	  if (copy.regnos[0] == regno)
+	    {
+	      fprintf (dump_file, " r%d", copy.regnos[1]);
+	      copyi = copy.next_copies[0];
+	    }
+	  else
+	    {
+	      fprintf (dump_file, " r%d", copy.regnos[0]);
+	      copyi = copy.next_copies[1];
+	    }
+	}
+      fprintf (dump_file, "\n");
+    }
+}
+
+// Dump the information in m_fpr_ranges.
+void
+early_ra::dump_fpr_ranges ()
+{
+  fprintf (dump_file, "\nFPR live ranges:\n");
+  for (unsigned int fpr = 0; fpr < 32; ++fpr)
+    {
+      auto &intervals = m_fpr_ranges[fpr];
+      if (intervals.is_empty ())
+	continue;
+
+      fprintf (dump_file, "  %2d", fpr);
+      for (unsigned int i = 0; i < intervals.length (); ++i)
+	{
+	  auto &interval = intervals[i];
+	  if (i && (i % 4) == 0)
+	    fprintf (dump_file, "\n    ");
+	  fprintf (dump_file, " [ %6d %6d ]", interval.start_point,
+		   interval.end_point);
+	}
+      fprintf (dump_file, "\n");
+    }
+}
+
+// Dump the information in m_allocno_copies.
+void
+early_ra::dump_copies ()
+{
+  fprintf (dump_file, "\nCopies:\n");
+  fprintf (dump_file, "  %8s %3s %6s\n",
+	   "Allocno", "FPR", "Weight");
+  for (const auto &copy : m_allocno_copies)
+    fprintf (dump_file, "  %8d %3d %6d\n", copy.allocno,
+	     copy.fpr, copy.weight);
+}
+
+// Dump the information in m_allocnos.
+void
+early_ra::dump_allocnos ()
+{
+  char buffer[sizeof ("r[:]") + 3 * 3 * sizeof (int) + 1];
+  fprintf (dump_file, "\nAllocno groups:\n");
+  fprintf (dump_file,
+	   "  %12s %12s %4s %6s %8s %s\n",
+	   "Ids", "Regno", "Size", "Stride", "Cands", "Heads");
+  for (unsigned int ai = 0; ai < m_allocnos.length (); ++ai)
+    {
+      auto *allocno = m_allocnos[ai];
+      if (allocno->offset != 0)
+	continue;
+      auto *group = allocno->group ();
+      snprintf (buffer, sizeof (buffer), "[%d:%d]", allocno->id,
+		allocno->id + group->size - 1);
+      fprintf (dump_file, "  %12s", buffer);
+      snprintf (buffer, sizeof (buffer), "r%d[0:%d]", group->regno,
+		group->size - 1);
+      fprintf (dump_file, " %12s %4s %6d %08x", buffer,
+	       group->fpr_size == FPR_D ? "D"
+	       : group->fpr_size == FPR_Q ? "Q" : "Z",
+	       group->stride,
+	       group->fpr_candidates);
+      for (auto head : group->chain_heads ())
+	if (head == INVALID_ALLOCNO)
+	  fprintf (dump_file, " -");
+	else
+	  fprintf (dump_file, " %d", head);
+      fprintf (dump_file, "\n");
+    }
+
+  fprintf (dump_file, "\nAllocno chains:\n");
+  fprintf (dump_file, "      %5s %12s %12s %5s %5s %5s %5s\n",
+	   "Id", "Regno", "Range ", "Src", "Dest", "Equiv", "FPR");
+  for (unsigned int ai = 0; ai < m_allocnos.length (); ++ai)
+    {
+      auto *allocno = m_allocnos[ai];
+      if (allocno->chain_prev != INVALID_ALLOCNO)
+	continue;
+      const char *prefix = "=>";
+      for (;;)
+	{
+	  auto *group = allocno->group ();
+	  fprintf (dump_file, "  %2s", prefix);
+	  fprintf (dump_file, "  %5d", allocno->id);
+	  snprintf (buffer, sizeof (buffer), "r%d[%d]", group->regno,
+		    allocno->offset);
+	  fprintf (dump_file, " %12s", buffer);
+	  snprintf (buffer, sizeof (buffer), "[%d,%d]",
+		    allocno->start_point, allocno->end_point);
+	  fprintf (dump_file, " %11s%s %5s", buffer,
+		   allocno->is_earlyclobbered ? "*" : " ",
+		   allocno->is_strong_copy_dest ? "Strong"
+		   : allocno->is_copy_dest ? "Yes" : "-");
+	  if (allocno->copy_dest == INVALID_ALLOCNO)
+	    fprintf (dump_file, " %5s", "-");
+	  else
+	    fprintf (dump_file, " %5d", allocno->copy_dest);
+	  if (allocno->equiv_allocno != INVALID_ALLOCNO)
+	    fprintf (dump_file, " %5d", allocno->equiv_allocno);
+	  else
+	    fprintf (dump_file, " %5s", "-");
+	  if (allocno->hard_regno == FIRST_PSEUDO_REGISTER)
+	    fprintf (dump_file, " %5s", "-");
+	  else
+	    fprintf (dump_file, " %5s", reg_names[allocno->hard_regno]);
+	  fprintf (dump_file, "\n");
+	  if (allocno->chain_next == INVALID_ALLOCNO)
+	    break;
+	  allocno = m_allocnos[allocno->chain_next];
+	  prefix = "";
+	}
+    }
+}
+
+// Dump the information in m_colors.
+void
+early_ra::dump_colors ()
+{
+  fprintf (dump_file, "\nColors:\n");
+  for (unsigned int i = 0; i < m_colors.length (); ++i)
+    {
+      auto *color = m_colors[i];
+      if (!color->group)
+	continue;
+
+      fprintf (dump_file, "  color %d:\n", i);
+      fprintf (dump_file, "    chains:\n");
+      auto heads = color->group->chain_heads ();
+      for (unsigned int i = 0; i < color->group->size; ++i)
+	{
+	  fprintf (dump_file, "      %2d:", i);
+	  auto ai = heads[i];
+	  while (ai != INVALID_ALLOCNO)
+	    {
+	      auto *allocno = m_allocnos[ai];
+	      fprintf (dump_file, " r%d[%d]", allocno->group ()->regno,
+		       allocno->offset);
+	      ai = allocno->chain_next;
+	    }
+	  fprintf (dump_file, "\n");
+	}
+      fprintf (dump_file, "    FPR candidates:");
+      for (unsigned int fpr = 0; fpr < 32; ++fpr)
+	fprintf (dump_file, "%s%c", fpr % 8 ? "" : " ",
+		 color->group->fpr_candidates & (1U << fpr) ? 'Y' : '-');
+      fprintf (dump_file, "\n");
+      fprintf (dump_file, "    FPR preferences:");
+      for (unsigned int fpr = 0; fpr < 32; ++fpr)
+	if (color->fpr_preferences[fpr])
+	  fprintf (dump_file, " %d(%d)", fpr, color->fpr_preferences[fpr]);
+      fprintf (dump_file, "\n");
+    }
+}
+
+// Record any necessary information about a move from SRC to DEST.
+void
+early_ra::preprocess_move (rtx dest, rtx src)
+{
+  if (SUBREG_P (dest))
+    dest = SUBREG_REG (dest);
+  if (!REG_P (dest))
+    return;
+
+  if (SUBREG_P (src))
+    src = SUBREG_REG (src);
+  if (!REG_P (src))
+    return;
+
+  // Sort the registers by increasing REGNO.
+  rtx regs[] = { dest, src };
+  if (REGNO (dest) > REGNO (src))
+    std::swap (regs[0], regs[1]);
+  unsigned int regno0 = REGNO (regs[0]);
+  unsigned int regno1 = REGNO (regs[1]);
+
+  // Ignore moves between hard registers.
+  if (HARD_REGISTER_NUM_P (regno1))
+    return;
+
+  // For moves between hard registers and pseudos, just record the type
+  // of hard register involved.
+  auto &reg1 = m_pseudo_regs[regno1];
+  reg1.mode = GET_MODE (regs[1]);
+  if (HARD_REGISTER_NUM_P (regno0))
+    {
+      reg1.flags |= (FP_REGNUM_P (regno0) ? HAS_FPR_COPY : HAS_NONFPR_COPY);
+      return;
+    }
+
+  // Record a move between two pseudo registers.
+  auto &reg0 = m_pseudo_regs[regno0];
+  reg0.mode = GET_MODE (regs[0]);
+
+  reg_copy_info copy;
+  copy.regnos[0] = regno0;
+  copy.regnos[1] = regno1;
+  copy.next_copies[0] = reg0.first_copy;
+  copy.next_copies[1] = reg1.first_copy;
+
+  reg0.first_copy = reg1.first_copy = m_pseudo_reg_copies.length ();
+  m_pseudo_reg_copies.safe_push (copy);
+}
+
+// Return true if INSN has a multi-vector operand and if that operand
+// could be converted to strided form.
+static bool
+is_stride_candidate (rtx_insn *insn)
+{
+  if (recog_memoized (insn) < 0)
+    return false;
+
+  auto stride_type = get_attr_stride_type (insn);
+  return (stride_type == STRIDE_TYPE_LUTI_CONSECUTIVE
+	  || stride_type == STRIDE_TYPE_LD1_CONSECUTIVE
+	  || stride_type == STRIDE_TYPE_ST1_CONSECUTIVE);
+}
+
+// Go through the constraints of INSN, which has already been extracted,
+// and record any relevant information about pseudo registers.
+void
+early_ra::process_pseudo_reg_constraints (rtx_insn *insn)
+{
+  extract_insn (insn);
+  preprocess_constraints (insn);
+
+  // Flags that describe any multi-register vector operands.
+  unsigned int insn_flags = (is_stride_candidate (insn)
+			     ? HAS_FLEXIBLE_STRIDE
+			     : HAS_FIXED_STRIDE);
+
+  auto alts = get_preferred_alternatives (insn);
+
+  int operand_matches[MAX_RECOG_OPERANDS];
+  unsigned int operand_flags[MAX_RECOG_OPERANDS];
+  for (int i = 0; i < recog_data.n_operands; ++i)
+    {
+      operand_matches[i] = -1;
+      operand_flags[i] = 0;
+    }
+
+  // Extract information from the constraints, considering all plausible
+  // alternatives.
+  for (int altno = 0; altno < recog_data.n_alternatives; ++altno)
+    {
+      if (!(alts & ALTERNATIVE_BIT (altno)))
+	continue;
+
+      auto *op_alt = &recog_op_alt[altno * recog_data.n_operands];
+      if (!likely_alternative_match_p (op_alt))
+	continue;
+
+      // Use SRC_OPNO's constraints to derive information about DEST_OPNO.
+      auto record_operand = [&](int src_opno, int dest_opno)
+	{
+	  int matches = op_alt[src_opno].matches;
+	  if (matches >= 0)
+	    operand_matches[dest_opno] = matches;
+
+	  auto cl = alternative_class (op_alt, src_opno);
+	  if (cl != NO_REGS)
+	    {
+	      if (reg_class_subset_p (cl, FP_REGS))
+		operand_flags[dest_opno] |= ALLOWS_FPR32;
+	      if (reg_class_subset_p (cl, FP_LO_REGS))
+		operand_flags[dest_opno] |= ALLOWS_FPR16;
+	      if (reg_class_subset_p (cl, FP_LO8_REGS))
+		operand_flags[dest_opno] |= ALLOWS_FPR8;
+	      if (!reg_classes_intersect_p (cl, FP_REGS))
+		operand_flags[dest_opno] |= ALLOWS_NONFPR;
+	    }
+	};
+
+      for (int i = 0; i < recog_data.n_operands; ++i)
+	{
+	  record_operand (i, i);
+	  if (recog_data.constraints[i][0] == '%')
+	    {
+	      record_operand (i, i + 1);
+	      record_operand (i + 1, i);
+	    }
+	}
+    }
+
+  // Process the information we collected above.
+  for (int i = 0; i < recog_data.n_operands; ++i)
+    {
+      rtx op = recog_data.operand[i];
+      machine_mode orig_mode = GET_MODE (op);
+      if (SUBREG_P (op))
+	op = SUBREG_REG (op);
+
+      // Record the accumulated information in m_pseudo_regs.
+      if (REG_P (op) && !HARD_REGISTER_P (op))
+	{
+	  // The flags so far just describe what at least one alternative
+	  // would accept.  Calculate the associated NEEDS_* information.
+	  auto flags = operand_flags[i];
+	  if (!(flags & ALLOWS_FPR32) && (flags & ALLOWS_NONFPR))
+	    flags |= NEEDS_NONFPR;
+	  else if ((flags & ALLOWS_FPR32) && !(flags & ALLOWS_NONFPR))
+	    {
+	      if (flags & ALLOWS_FPR8)
+		flags |= NEEDS_FPR8;
+	      if (flags & ALLOWS_FPR16)
+		flags |= NEEDS_FPR16;
+	      flags |= NEEDS_FPR32;
+	    }
+
+	  // Look for multi-register vector operands.
+	  if (VECTOR_MODE_P (orig_mode)
+	      && targetm.hard_regno_mode_ok (V0_REGNUM, orig_mode)
+	      && hard_regno_nregs (V0_REGNUM, orig_mode) > 1)
+	    flags |= insn_flags;
+
+	  m_pseudo_regs[REGNO (op)].flags |= flags;
+	  m_pseudo_regs[REGNO (op)].mode = GET_MODE (op);
+	}
+
+      // Treat matching constraints as equivalent to moves.
+      if (operand_matches[i] >= 0)
+	preprocess_move (recog_data.operand[operand_matches[i]], op);
+    }
+}
+
+// Make one pass through the instructions, collecting information that
+// will be needed later.
+void
+early_ra::preprocess_insns ()
+{
+  m_pseudo_regs.safe_grow_cleared (max_reg_num ());
+  m_pseudo_reg_copies.safe_push (reg_copy_info ());
+  for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
+    {
+      if (!NONDEBUG_INSN_P (insn))
+	continue;
+
+      if (GET_CODE (PATTERN (insn)) == USE
+	  || GET_CODE (PATTERN (insn)) == CLOBBER)
+	continue;
+
+      rtx set = single_set (insn);
+      if (set && is_move_set (set))
+	preprocess_move (SET_DEST (set), SET_SRC (set));
+      else
+	process_pseudo_reg_constraints (insn);
+    }
+}
+
+// Return a signed integer that says (roughly) how strong an affinity
+// pseudo register REGNO has with FPRs.  A positive value indicates
+// that we should try to allocate an FPR, a negative value indicates
+// that we shouldn't, and 0 indicates neutrality.
+int
+early_ra::fpr_preference (unsigned int regno)
+{
+  auto mode = m_pseudo_regs[regno].mode;
+  auto flags = m_pseudo_regs[regno].flags;
+  if (mode == VOIDmode || !targetm.hard_regno_mode_ok (V0_REGNUM, mode))
+    return -3;
+  else if (flags & HAS_FLEXIBLE_STRIDE)
+    return 3;
+  else if (flags & NEEDS_FPR32)
+    return 2;
+  else if (!(flags & ALLOWS_FPR32))
+    return -2;
+  else if ((flags & HAS_FPR_COPY) && !(flags & HAS_NONFPR_COPY))
+    return 1;
+  else if ((flags & HAS_NONFPR_COPY) && !(flags & HAS_FPR_COPY))
+    return -1;
+  else
+    return 0;
+}
+
+// Propagate information about pseudo-registers along copy edges,
+// while doing so doesn't create conflicting FPR preferences.
+void
+early_ra::propagate_pseudo_reg_info ()
+{
+  struct stack_entry { unsigned int regno, copyi; };
+
+  auto_vec<stack_entry, 32> stack;
+  for (unsigned int i = FIRST_PSEUDO_REGISTER;
+       i < m_pseudo_regs.length (); ++i)
+    {
+      auto start = m_pseudo_regs[i].first_copy;
+      if (!start)
+	continue;
+
+      stack.quick_push ({ i, start });
+      while (!stack.is_empty ())
+	{
+	  auto entry = stack.pop ();
+	  auto &copy = m_pseudo_reg_copies[entry.copyi];
+	  auto src_regno = entry.regno;
+	  auto dest_regno = (src_regno == copy.regnos[1]
+			     ? copy.regnos[0]
+			     : copy.regnos[1]);
+	  auto next_copyi = (src_regno == copy.regnos[1]
+			     ? copy.next_copies[1]
+			     : copy.next_copies[0]);
+	  if (next_copyi)
+	    stack.safe_push ({ src_regno, next_copyi });
+
+	  auto &src_reg = m_pseudo_regs[src_regno];
+	  auto &dest_reg = m_pseudo_regs[dest_regno];
+
+	  if (src_reg.flags & ~dest_reg.flags & PSEUDO_COPY_FLAGS)
+	    {
+	      auto src_preference = fpr_preference (src_regno);
+	      auto dest_preference = fpr_preference (dest_regno);
+	      if ((src_preference >= 0 && dest_preference >= 0)
+		  || (src_preference <= 0 && dest_preference <= 0))
+		{
+		  dest_reg.flags |= (src_reg.flags & PSEUDO_COPY_FLAGS);
+		  stack.safe_push ({ dest_regno, dest_reg.first_copy });
+		}
+	    }
+	}
+    }
+}
+
+// Decide which pseudos should be allocated an FPR, setting m_fpr_pseudos
+// accordingly.
+void
+early_ra::choose_fpr_pseudos ()
+{
+  for (unsigned int i = FIRST_PSEUDO_REGISTER;
+       i < m_pseudo_regs.length (); ++i)
+    if (fpr_preference (i) > 0)
+      bitmap_set_bit (m_fpr_pseudos, i);
+}
+
+// Clear out information about the previous CFG region (if any)
+// and set up the data for a new region.
+void
+early_ra::start_new_region ()
+{
+  obstack_free (&m_region_obstack, m_region_alloc_start);
+  m_regno_to_group.empty ();
+  m_allocno_copies.truncate (0);
+  m_allocnos.truncate (0);
+  m_sorted_allocnos.truncate (0);
+  m_colors.truncate (0);
+  m_insn_ranges.truncate (0);
+  for (auto &fpr_ranges : m_fpr_ranges)
+    fpr_ranges.truncate (0);
+  for (auto &call_points : m_call_points)
+    call_points.truncate (0);
+  gcc_assert (bitmap_empty_p (m_live_allocnos) && m_live_fprs == 0);
+  m_dead_insns.truncate (0);
+  m_allocated_fprs = 0;
+  m_call_preserved_fprs = 0;
+  m_allocation_successful = true;
+}
+
+// Create and return an allocno group of size SIZE for register REGNO.
+// REGNO can be INVALID_REGNUM if the group just exists to allow
+// other groups to be chained together, and does not have any new
+// allocnos of its own.
+early_ra::allocno_group_info *
+early_ra::create_allocno_group (unsigned int regno, unsigned int size)
+{
+  static_assert (alignof (unsigned int) == alignof (allocno_info),
+		 "allocno_info alignment");
+  unsigned int num_allocnos = (regno != INVALID_REGNUM ? size : 0);
+
+  // Allocate an allocno_group_info, followed by an array of chain heads,
+  // followed by the allocnos themselves.
+  size_t alloc_size = (sizeof (allocno_group_info)
+		       + size * sizeof (unsigned int)
+		       + num_allocnos * sizeof (allocno_info));
+  void *data = obstack_alloc (&m_region_obstack, alloc_size);
+
+  // Initialize the group.
+  auto *group = reinterpret_cast<allocno_group_info *> (data);
+  memset (group, 0, sizeof (*group));
+  group->m_color_rep = group;
+  group->regno = regno;
+  group->size = size;
+  group->stride = 1;
+  group->fpr_size = FPR_D;
+  group->fpr_candidates = ~0U;
+
+  // Initialize the chain heads.
+  auto heads = group->chain_heads ();
+  for (unsigned int i = 0; i < heads.size (); ++i)
+    heads[i] = (i < num_allocnos ? m_allocnos.length () + i : INVALID_ALLOCNO);
+
+  // Initialize the allocnos.
+  if (num_allocnos > 0)
+    {
+      auto allocnos = group->allocnos ();
+      memset (allocnos.begin (), 0, num_allocnos * sizeof (allocno_info));
+      for (unsigned int i = 0; i < num_allocnos; ++i)
+	{
+	  auto *allocno = &allocnos[i];
+	  allocno->id = m_allocnos.length ();
+	  allocno->offset = i;
+	  allocno->group_size = size;
+	  allocno->hard_regno = FIRST_PSEUDO_REGISTER;
+	  allocno->start_point = END_OF_REGION;
+	  allocno->end_point = START_OF_REGION;
+	  allocno->copy_dest = INVALID_ALLOCNO;
+	  allocno->equiv_allocno = INVALID_ALLOCNO;
+	  allocno->chain_next = INVALID_ALLOCNO;
+	  allocno->chain_prev = INVALID_ALLOCNO;
+	  m_allocnos.safe_push (allocno);
+	}
+    }
+  return group;
+}
+
+// If REG refers to a pseudo register that might be allocated to FPRs,
+// return the associated range of allocnos, creating new ones if necessary.
+// Return an empty range otherwise.
+early_ra::allocno_subgroup
+early_ra::get_allocno_subgroup (rtx reg)
+{
+  if (GET_CODE (reg) == SUBREG)
+    {
+      allocno_subgroup inner = get_allocno_subgroup (SUBREG_REG (reg));
+      if (!inner)
+	return {};
+
+      if (!targetm.modes_tieable_p (GET_MODE (SUBREG_REG (reg)),
+				    GET_MODE (reg)))
+	{
+	  m_allocation_successful = false;
+	  return {};
+	}
+
+      subreg_info info;
+      subreg_get_info (V0_REGNUM, GET_MODE (SUBREG_REG (reg)),
+		       SUBREG_BYTE (reg), GET_MODE (reg), &info);
+      if (!info.representable_p)
+	{
+	  m_allocation_successful = false;
+	  return {};
+	}
+
+      inner.start += info.offset;
+      inner.count = info.nregs;
+      return inner;
+    }
+
+  if (!REG_P (reg) || HARD_REGISTER_P (reg))
+    return {};
+
+  unsigned int regno = REGNO (reg);
+  if (fpr_preference (regno) <= 0)
+    return {};
+
+  unsigned int count = hard_regno_nregs (V0_REGNUM, GET_MODE (reg));
+  bool existed;
+  auto &entry = m_regno_to_group.get_or_insert (regno, &existed);
+  if (!existed)
+    {
+      auto *group = create_allocno_group (regno, count);
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	{
+	  auto allocnos = group->allocnos ();
+	  fprintf (dump_file, "Creating allocnos [%d:%d] for r%d\n",
+		   allocnos.front ().id, allocnos.back ().id, regno);
+	}
+
+      auto reg_bits = GET_MODE_BITSIZE (GET_MODE (reg));
+      auto fpr_bits = exact_div (reg_bits, count);
+      auto flags = m_pseudo_regs[regno].flags;
+
+      // Punt for now if there is a choice to be made between using an
+      // FPR and a non-FPR.
+      if ((flags & NEEDS_NONFPR)
+	  || ((flags & ALLOWS_NONFPR)
+	      && !FLOAT_MODE_P (GET_MODE (reg))
+	      && !VECTOR_MODE_P (GET_MODE (reg))))
+	m_allocation_successful = false;
+
+      if (flags & ALLOWS_FPR8)
+	group->fpr_candidates &= 0xff;
+      else if (flags & ALLOWS_FPR16)
+	group->fpr_candidates &= 0xffff;
+      group->fpr_candidates &= ~0U >> (count - 1);
+
+      group->has_flexible_stride = ((flags & HAS_FLEXIBLE_STRIDE) != 0
+				    && (flags & HAS_FIXED_STRIDE) == 0);
+
+      group->fpr_size = (maybe_gt (fpr_bits, 128) ? FPR_Z
+			 : maybe_gt (fpr_bits, 64) ? FPR_Q : FPR_D);
+
+      entry = group;
+    }
+  return { entry, 0, count };
+}
+
+// Record a use of FPR REGNO at the current program point, as part of
+// a backwards walk over a block.
+void
+early_ra::record_fpr_use (unsigned int regno)
+{
+  gcc_assert (IN_RANGE (regno, V0_REGNUM, V31_REGNUM));
+  unsigned int offset = regno - V0_REGNUM;
+  if (!(m_live_fprs & (1U << offset)))
+    {
+      m_fpr_ranges[offset].safe_push ({ START_OF_REGION, m_current_point,
+					INVALID_ALLOCNO });
+      m_live_fprs |= 1U << offset;
+    }
+}
+
+// Record a definition of FPR REGNO at the current program point, as part of
+// a backwards walk over a block.
+void
+early_ra::record_fpr_def (unsigned int regno)
+{
+  gcc_assert (IN_RANGE (regno, V0_REGNUM, V31_REGNUM));
+  unsigned int offset = regno - V0_REGNUM;
+
+  // The definition completes the current live range.  If the result
+  // of the definition is used, the live range extends to the last use.
+  // Otherwise the live range is just a momentary blip at the current point.
+  auto &ranges = m_fpr_ranges[offset];
+  if (m_live_fprs & (1U << offset))
+    {
+      ranges.last ().start_point = m_current_point;
+      m_live_fprs &= ~(1U << offset);
+    }
+  else
+    ranges.safe_push ({ m_current_point, m_current_point, INVALID_ALLOCNO });
+}
+
+// Record a use of allocno ALLOCNO at the current program point, as part
+// of a backwards walk over a block.
+void
+early_ra::record_allocno_use (allocno_info *allocno)
+{
+  bitmap_set_bit (m_live_allocnos, allocno->id);
+  if (allocno->end_point > m_current_point)
+    allocno->end_point = m_current_point;
+  allocno->start_point = m_current_point;
+  allocno->is_copy_dest = false;
+  allocno->is_strong_copy_dest = false;
+}
+
+// Record a definition of the allocno with index AI at the current program
+// point, as part of a backwards walk over a block.  The allocno is known
+// to be live.
+void
+early_ra::record_allocno_def (allocno_info *allocno)
+{
+  allocno->start_point = m_current_point;
+  allocno->num_defs = MIN (allocno->num_defs + 1, 2);
+  gcc_checking_assert (!allocno->is_copy_dest
+		       && !allocno->is_strong_copy_dest);
+  if (!bitmap_clear_bit (m_live_allocnos, allocno->id))
+    gcc_unreachable ();
+}
+
+// Record any relevant allocno-related information for an actual or imagined
+// copy from SRC to DEST.  FROM_MOVE_P is true if the copy was an explicit
+// move instruction, false if it represents one way of satisfying the previous
+// instruction's constraints.
+void
+early_ra::record_copy (rtx dest, rtx src, bool from_move_p)
+{
+  auto dest_range = get_allocno_subgroup (dest);
+  auto src_range = get_allocno_subgroup (src);
+  if (from_move_p
+      && dest_range
+      && REG_P (src)
+      && FP_REGNUM_P (REGNO (src)))
+    {
+      // A copy from an FPR to an allocno group.
+      unsigned int fpr = REGNO (src) - V0_REGNUM;
+      m_allocno_copies.safe_push ({ dest_range.allocno (0)->id, fpr,
+				    dest_range.count });
+
+      // If the allocno at the other end of the chain of copies from DEST
+      // has a copy to the same FPR, record that all intervening copy chains
+      // could become "strong" ones.  This indicates that picking the FPR
+      // avoids a copy at both ends.
+      unsigned int hard_regno = REGNO (src);
+      for (auto &dest_allocno : dest_range.allocnos ())
+	if (dest_allocno.hard_regno == hard_regno++)
+	  dest_allocno.is_strong_copy_src = true;
+    }
+  else if (from_move_p
+	   && src_range
+	   && REG_P (dest)
+	   && FP_REGNUM_P (REGNO (dest)))
+    {
+      // A copy from an allocno group to an FPR.
+      unsigned int fpr = REGNO (dest) - V0_REGNUM;
+      m_allocno_copies.safe_push ({ src_range.allocno (0)->id, fpr,
+				    src_range.count });
+      for (auto &src_allocno : src_range.allocnos ())
+	{
+	  // If the copy comes from a move, see whether the destination
+	  // FPR is known to be equal to the source allocno for the FPR's
+	  // last live range.
+	  if (from_move_p && src_allocno.num_defs == 0)
+	    {
+	      auto &last_range = m_fpr_ranges[fpr].last ();
+	      if (last_range.end_point >= src_allocno.end_point)
+		last_range.allocno = src_allocno.id;
+	    }
+	  src_allocno.hard_regno = V0_REGNUM + fpr;
+	  fpr += 1;
+	}
+    }
+  else if (src_range && dest_range)
+    {
+      // A copy between two allocno groups.  We can only have a mismatched
+      // number of FPRs for imaginary, non-move copies.  In that case
+      // the matching happens on the common lowparts.
+      gcc_assert (!from_move_p || src_range.count == dest_range.count);
+      unsigned int count = std::min (src_range.count, dest_range.count);
+      if (WORDS_BIG_ENDIAN)
+	{
+	  src_range.start += src_range.count - count;
+	  dest_range.start += dest_range.count - count;
+	}
+      src_range.count = count;
+      dest_range.count = count;
+
+      // Ignore (imaginary non-move) copies if the destination is still live.
+      for (auto &dest_allocno : dest_range.allocnos ())
+	if (bitmap_bit_p (m_live_allocnos, dest_allocno.id))
+	  return;
+
+      for (unsigned int i = 0; i < src_range.count; ++i)
+	{
+	  auto *dest_allocno = dest_range.allocno (i);
+	  auto *src_allocno = src_range.allocno (i);
+	  if (src_allocno->end_point > dest_allocno->start_point)
+	    {
+	      gcc_assert (src_allocno->copy_dest == INVALID_ALLOCNO
+			  || src_allocno->copy_dest == dest_allocno->id);
+	      src_allocno->copy_dest = dest_allocno->id;
+	      src_allocno->hard_regno = dest_allocno->hard_regno;
+	      dest_allocno->is_copy_dest = 1;
+	    }
+	  else if (from_move_p
+		   && src_allocno->end_point <= dest_allocno->end_point
+		   && src_allocno->num_defs == 0
+		   && dest_allocno->num_defs == 1)
+	    dest_allocno->equiv_allocno = src_allocno->id;
+	}
+    }
+}
+
+// Record any relevant allocno-related information about the constraints
+// on INSN, which has already been extracted.
+void
+early_ra::record_constraints (rtx_insn *insn)
+{
+  preprocess_constraints (insn);
+
+  int operand_matches[MAX_RECOG_OPERANDS];
+  for (int i = 0; i < recog_data.n_operands; ++i)
+    operand_matches[i] = -1;
+
+  auto alts = get_preferred_alternatives (insn);
+  bool any_ok = recog_data.n_alternatives == 0;
+
+  // The set of output operands that are earlyclobber in at least one
+  // alternative.
+  operand_mask earlyclobber_operands = 0;
+
+  // The set of output operands that are matched to inputs in at least
+  // one alternative.
+  operand_mask matched_operands = 0;
+
+  // The set of output operands that are not matched to inputs in at least
+  // one alternative.
+  operand_mask unmatched_operands = 0;
+
+  // The set of input operands that are matched to outputs in at least one
+  // alternative, or that overlap with such an input if the output is not
+  // earlyclobber.  The latter part of the condition copes with things
+  // like y = x * x, where the first x is tied to the destination, and where
+  // y is not earlyclobber.
+  operand_mask matches_operands = 0;
+
+  for (int altno = 0; altno < recog_data.n_alternatives; ++altno)
+    {
+      if (!(alts & ALTERNATIVE_BIT (altno)))
+	continue;
+
+      auto *op_alt = &recog_op_alt[altno * recog_data.n_operands];
+      if (!likely_alternative_match_p (op_alt))
+	continue;
+
+      any_ok = true;
+
+      // Update the information for operand DEST_OPNO based on the constraint
+      // information for operand SRC_OPNO.  The numbers can be different for
+      // swapped commutative operands.
+      auto record_operand = [&](int src_opno, int dest_opno)
+	{
+	  int matches = op_alt[src_opno].matches;
+	  // A matched earlyclobber cannot be used if the same operand value
+	  // occurs in an unmatched operand.  E.g. for y = x * x, a matched
+	  // earlyclobber on the first input does not cover the second input.
+	  if (matches >= 0)
+	    {
+	      rtx op = recog_data.operand[dest_opno];
+	      operand_mask overlaps = 0;
+	      for (int i = 0; i < recog_data.n_operands; ++i)
+		if (i != dest_opno
+		    && !recog_data.is_operator[i]
+		    && recog_data.operand_type[i] != OP_OUT
+		    && reg_overlap_mentioned_p (op, recog_data.operand[i]))
+		  overlaps |= 1U << i;
+	      if (!op_alt[matches].earlyclobber || overlaps == 0)
+		{
+		  operand_matches[dest_opno] = matches;
+		  matches_operands |= (1U << dest_opno) | overlaps;
+		}
+	    }
+	};
+
+      auto reject = count_rejects (op_alt);
+      for (int opno = 0; opno < recog_data.n_operands; ++opno)
+	{
+	  operand_mask op_mask = operand_mask (1) << opno;
+
+	  if (recog_data.operand_type[opno] != OP_IN)
+	    {
+	      if (reject == 0 && op_alt[opno].matched >= 0)
+		matched_operands |= op_mask;
+	      else
+		unmatched_operands |= op_mask;
+	    }
+
+	  if (op_alt[opno].earlyclobber)
+	    earlyclobber_operands |= op_mask;
+
+	  // Punt for now on scratches.  If we wanted to handle them,
+	  // we'd need to create allocnos for them, like IRA does.
+	  rtx op = recog_data.operand[opno];
+	  if (GET_CODE (op) == SCRATCH
+	      && reg_classes_intersect_p (op_alt[opno].cl, FP_REGS))
+	    m_allocation_successful = false;
+
+	  // Record filter information, which applies to the first register
+	  // in the operand.
+	  if (auto filters = alternative_register_filters (op_alt, opno))
+	    if (auto range = get_allocno_subgroup (recog_data.operand[opno]))
+	      for (unsigned int fpr = range.start; fpr < 32; ++fpr)
+		if (!test_register_filters (filters, fpr))
+		  range.group->fpr_candidates &= ~(1U << (fpr - range.start));
+
+	  if (reject == 0)
+	    {
+	      // Record possible matched operands.
+	      record_operand (opno, opno);
+	      if (recog_data.constraints[opno][0] == '%')
+		{
+		  record_operand (opno, opno + 1);
+		  record_operand (opno + 1, opno);
+		}
+	    }
+	}
+    }
+
+  if (!any_ok)
+    {
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	fprintf (dump_file, "       -- no match\n");
+      m_allocation_successful = false;
+    }
+
+  // Record if there is an output operand that is never earlyclobber and never
+  // matched to an input.  See the comment below for how this is used.
+  rtx dest_op = NULL_RTX;
+  for (int opno = 0; opno < recog_data.n_operands; ++opno)
+    {
+      auto op_mask = operand_mask (1) << opno;
+      if (recog_data.operand_type[opno] == OP_OUT
+	  && (earlyclobber_operands & op_mask) == 0
+	  && (matched_operands & op_mask) == 0)
+	{
+	  dest_op = recog_data.operand[opno];
+	  break;
+	}
+    }
+
+  for (int opno = 0; opno < recog_data.n_operands; ++opno)
+    {
+      auto op_mask = operand_mask (1) << opno;
+      rtx op = recog_data.operand[opno];
+      int matches = operand_matches[opno];
+
+      // Punt for now on operands that already have a fixed choice of
+      // register, since we don't have IRA's ability to find an alternative.
+      // It's better if earlier passes don't create this kind of situation.
+      if (REG_P (op) && FP_REGNUM_P (REGNO (op)))
+	m_allocation_successful = false;
+
+      // Treat input operands as being earlyclobbered if an output is
+      // sometimes earlyclobber and if the input never matches an output.
+      // Do the same if there is an output that is always matched to an
+      // input, and if this operand doesn't match that input.  In both
+      // cases, tying the input and the output would lead to an impossible
+      // combination (or at least one that is difficult to reload).
+      if (recog_data.operand_type[opno] != OP_OUT
+	  && ((earlyclobber_operands && matches < 0)
+	      || ((matched_operands & ~unmatched_operands)
+		  && !(matches_operands & op_mask))))
+	for (auto &allocno : get_allocno_subgroup (op).allocnos ())
+	  if (allocno.end_point + 1 == m_current_point)
+	    allocno.is_earlyclobbered = true;
+
+      // Create copies between operands that can be tied.  This (deliberately)
+      // might add several copies to the same destination register; later code
+      // can then choose between them based on other criteria.
+      //
+      // If there is an output operand that is never matched or earlyclobber,
+      // and an input operand that never matches an output operand, create
+      // a tentative copy between them.  This allows hard register preferences
+      // to be transmitted along the copy chains.
+      if (matches >= 0)
+	record_copy (recog_data.operand[matches], op);
+      else if (dest_op && recog_data.operand_type[opno] == OP_IN)
+	record_copy (dest_op, op);
+    }
+}
+
+// If FLAGS is DF_REF_AT_TOP, model the artificial uses and defs at the
+// start of the current basic block, otherwise model the artificial uses
+// and defs at the end of the basic block.  This is done as part of a
+// backwards walk, so defs should be processed before uses.
+void
+early_ra::record_artificial_refs (unsigned int flags)
+{
+  df_ref ref;
+
+  FOR_EACH_ARTIFICIAL_DEF (ref, m_current_bb->index)
+    if ((DF_REF_FLAGS (ref) & DF_REF_AT_TOP) == flags
+	&& IN_RANGE (DF_REF_REGNO (ref), V0_REGNUM, V31_REGNUM))
+      record_fpr_def (DF_REF_REGNO (ref));
+  m_current_point += 1;
+
+  FOR_EACH_ARTIFICIAL_USE (ref, m_current_bb->index)
+    if ((DF_REF_FLAGS (ref) & DF_REF_AT_TOP) == flags
+	&& IN_RANGE (DF_REF_REGNO (ref), V0_REGNUM, V31_REGNUM))
+      record_fpr_use (DF_REF_REGNO (ref));
+  m_current_point += 1;
+}
+
+// Model the register references in INSN as part of a backwards walk.
+void
+early_ra::record_insn_refs (rtx_insn *insn)
+{
+  df_ref ref;
+
+  // Record all definitions, excluding partial call clobbers.
+  FOR_EACH_INSN_DEF (ref, insn)
+    if (IN_RANGE (DF_REF_REGNO (ref), V0_REGNUM, V31_REGNUM))
+      record_fpr_def (DF_REF_REGNO (ref));
+    else
+      {
+	auto range = get_allocno_subgroup (DF_REF_REG (ref));
+	for (auto &allocno : range.allocnos ())
+	  {
+	    // If the destination is unused, record a momentary blip
+	    // in its live range.
+	    if (!bitmap_bit_p (m_live_allocnos, allocno.id))
+	      record_allocno_use (&allocno);
+	    record_allocno_def (&allocno);
+	  }
+      }
+  m_current_point += 1;
+
+  // Model the call made by a call insn as a separate phase in the
+  // evaluation of the insn.  Any partial call clobbers happen at that
+  // point, rather than in the definition or use phase of the insn.
+  if (auto *call_insn = dyn_cast<rtx_call_insn *> (insn))
+    {
+      function_abi abi = insn_callee_abi (call_insn);
+      m_call_points[abi.id ()].safe_push (m_current_point);
+      m_current_point += 1;
+    }
+
+  // Record all uses.  We can ignore READ_MODIFY_WRITE uses of plain subregs,
+  // since we track the FPR-sized parts of them individually.
+  FOR_EACH_INSN_USE (ref, insn)
+    if (IN_RANGE (DF_REF_REGNO (ref), V0_REGNUM, V31_REGNUM))
+      record_fpr_use (DF_REF_REGNO (ref));
+    else if (!DF_REF_FLAGS_IS_SET (ref, DF_REF_READ_WRITE)
+	     || DF_REF_FLAGS_IS_SET (ref, DF_REF_STRICT_LOW_PART)
+	     || DF_REF_FLAGS_IS_SET (ref, DF_REF_ZERO_EXTRACT))
+      {
+	auto range = get_allocno_subgroup (DF_REF_REG (ref));
+	for (auto &allocno : range.allocnos ())
+	  record_allocno_use (&allocno);
+      }
+  m_current_point += 1;
+}
+
+// ALLOCNO->is_strong_copy_src is true.  See whether ALLOCNO heads a
+// natural chain that has an affinity with the same hard register at
+// both ends.
+bool
+early_ra::consider_strong_copy_src_chain (allocno_info *allocno)
+{
+  auto *src_allocno = allocno;
+  while (src_allocno->copy_dest != INVALID_ALLOCNO)
+    {
+      auto *dest_allocno = m_allocnos[src_allocno->copy_dest];
+      if (dest_allocno->start_point > src_allocno->end_point
+	  || dest_allocno->hard_regno != src_allocno->hard_regno)
+	return false;
+      gcc_checking_assert (dest_allocno->is_copy_dest);
+      src_allocno = dest_allocno;
+    }
+
+  while (allocno->copy_dest != INVALID_ALLOCNO)
+    {
+      allocno->is_strong_copy_src = 1;
+      allocno = m_allocnos[allocno->copy_dest];
+      allocno->is_strong_copy_dest = 1;
+    }
+  return true;
+}
+
+// ALLOCNO1 and ALLOCNO2 are linked in some way, and might end up being
+// chained together.  See whether chaining them requires the containing
+// groups to have the same stride, or whether it requires them to have
+// different strides.  Return 1 if they should have the same stride,
+// -1 if they should have different strides, or 0 if it doesn't matter.
+int
+early_ra::strided_polarity_pref (allocno_info *allocno1,
+				 allocno_info *allocno2)
+{
+  if (allocno1->offset + 1 < allocno1->group_size
+      && allocno2->offset + 1 < allocno2->group_size)
+    {
+      if (is_chain_candidate (allocno1 + 1, allocno2 + 1))
+	return 1;
+      else
+	return -1;
+    }
+
+  if (allocno1->offset > 0 && allocno2->offset > 0)
+    {
+      if (is_chain_candidate (allocno1 - 1, allocno2 - 1))
+	return 1;
+      else
+	return -1;
+    }
+
+  return 0;
+}
+
+// Decide which groups should be strided.  Also complete "strong" copy chains.
+void
+early_ra::find_strided_accesses ()
+{
+  // This function forms a graph of allocnos, linked by equivalences and
+  // natural copy chains.  It temporarily uses chain_next to record the
+  // reverse of equivalence edges (equiv_allocno) and chain_prev to record
+  // the reverse of copy edges (copy_dest).
+  unsigned int allocno_info::*links[] = {
+    &allocno_info::chain_next,
+    &allocno_info::chain_prev,
+    &allocno_info::copy_dest,
+    &allocno_info::equiv_allocno
+  };
+
+  // Set up the temporary reverse edges.  Check for strong copy chains.
+  for (unsigned int i = m_allocnos.length (); i-- > 0; )
+    {
+      auto *allocno1 = m_allocnos[i];
+      if (allocno1->copy_dest != INVALID_ALLOCNO)
+	m_allocnos[allocno1->copy_dest]->chain_prev = allocno1->id;
+      if (allocno1->equiv_allocno != INVALID_ALLOCNO)
+	m_allocnos[allocno1->equiv_allocno]->chain_next = allocno1->id;
+
+      if (allocno1->is_strong_copy_src
+	  && (allocno1->is_copy_dest
+	      || !consider_strong_copy_src_chain (allocno1)))
+	allocno1->is_strong_copy_src = false;
+    }
+
+  // Partition the graph into cliques based on edges that have the following
+  // properties:
+  //
+  // - the edge joins two allocnos whose groups have a free choice between
+  //   consecutive and strided allocations.
+  //
+  // - the two groups have a relative strided polarity preference (that is
+  //   they should make the same choice between consecutive and strided,
+  //   or they should make opposite choices).
+  //
+  // Assign relative polarities to each group connected in this way.
+  //
+  // The aim is to discover natural move-free striding choices, which will
+  // often exist in carefully written ACLE code.
+  unsigned int num_edges = m_allocnos.length () * ARRAY_SIZE (links);
+  auto_sbitmap visited_edges (num_edges);
+  bitmap_clear (visited_edges);
+
+  auto_vec<unsigned int, 32> worklist;
+  for (unsigned int i = 0; i < num_edges; ++i)
+    {
+      if (!bitmap_set_bit (visited_edges, i))
+	continue;
+      worklist.quick_push (i);
+      while (!worklist.is_empty ())
+	{
+	  auto ei = worklist.pop ();
+	  auto *allocno1 = m_allocnos[ei / ARRAY_SIZE (links)];
+	  auto ai2 = allocno1->*links[ei % ARRAY_SIZE (links)];
+	  if (ai2 == INVALID_ALLOCNO)
+	    continue;
+
+	  auto *allocno2 = m_allocnos[ai2];
+	  auto *group1 = allocno1->group ();
+	  auto *group2 = allocno2->group ();
+	  if (!group1->has_flexible_stride || !group2->has_flexible_stride)
+	    continue;
+
+	  int pref = strided_polarity_pref (allocno1, allocno2);
+	  if (pref == 0)
+	    continue;
+
+	  for (auto *group : { group1, group2 })
+	    for (auto &allocno : group->allocnos ())
+	      for (unsigned int j = 0; j < ARRAY_SIZE (links); ++j)
+		if (bitmap_set_bit (visited_edges, allocno.id * 4 + j))
+		  worklist.safe_push (allocno.id * 4 + j);
+
+	  if (group1->strided_polarity)
+	    group2->strided_polarity = group1->strided_polarity * pref;
+	  else if (group1->strided_polarity)
+	    group2->strided_polarity = group1->strided_polarity * pref;
+	  else
+	    {
+	      group1->strided_polarity = 1;
+	      group2->strided_polarity = pref;
+	    }
+	}
+    }
+
+  // Now look for edges between allocnos in multi-register groups where:
+  //
+  // - the two groups have a relative strided polarity preference (as above).
+  //
+  // - one group (G1) has a free choice between consecutive and strided
+  //   allocations.
+  //
+  // - the other group (G2) must use consecutive allocations.
+  //
+  // Update G1's individual preference for strided or consecutive allocations
+  // based on G2.  If the previous loop chose a polarity for G1, work out
+  // whether it is better for polarity 1 or -1 to correspond to consecutive
+  // allocation.
+  int consecutive_pref = 0;
+  for (unsigned int i = m_allocnos.length (); i-- > 0; )
+    {
+      auto *allocno1 = m_allocnos[i];
+      for (auto link : links)
+	{
+	  auto ai2 = allocno1->*link;
+	  if (ai2 == INVALID_ALLOCNO)
+	    continue;
+
+	  auto *allocno2 = m_allocnos[ai2];
+	  auto *group1 = allocno1->group ();
+	  auto *group2 = allocno2->group ();
+	  if (group1->has_flexible_stride == group2->has_flexible_stride)
+	    continue;
+
+	  int pref = strided_polarity_pref (allocno1, allocno2);
+	  if (pref == 0)
+	    continue;
+
+	  auto *group = (group1->has_flexible_stride ? group1 : group2);
+	  consecutive_pref += group->strided_polarity * pref;
+	  group->consecutive_pref += pref;
+	}
+    }
+
+  // If it doesn't matter whether polarity 1 or -1 corresponds to consecutive
+  // allocation, arbitrarily pick 1.
+  if (consecutive_pref == 0)
+    consecutive_pref = 1;
+
+  // Record which multi-register groups should use strided allocations.
+  // Clear out the temporary edges.
+  for (unsigned int ai = 0; ai < m_allocnos.length (); ++ai)
+    {
+      auto *allocno = m_allocnos[ai];
+      allocno->chain_prev = INVALID_ALLOCNO;
+      allocno->chain_next = INVALID_ALLOCNO;
+
+      if (allocno->offset != 0)
+	continue;
+
+      auto *group = allocno->group ();
+      if (!group->has_flexible_stride)
+	continue;
+
+      bool make_strided = (group->strided_polarity
+			   ? (consecutive_pref * group->strided_polarity) < 0
+			   : group->consecutive_pref < 0);
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	fprintf (dump_file, "Allocno [%d:%d]: strided polarity %d,"
+		 " consecutive pref %d, %s\n",
+		 allocno->id, allocno->id + group->size - 1,
+		 group->strided_polarity, group->consecutive_pref,
+		 make_strided ? "making strided" : "keeping consecutive");
+      if (!make_strided)
+	continue;
+
+      // 2-register groups have a stride of 8 FPRs and must start in
+      // registers matching the mask 0x17.  4-register groups have a stride
+      // of 4 FPRs and must start in registers matching the mask 0x13.
+      group->stride = group->size == 2 ? 8 : 4;
+      gcc_checking_assert (group->fpr_candidates
+			   == (group->size == 2 ? 0x55555555 : 0x11111111));
+      group->fpr_candidates = (group->size == 2 ? 0xff00ff : 0xf000f);
+    }
+}
+
+// Compare the allocnos at *ALLOCNO1_PTR and *ALLOCNO2_PTR and return a <=>
+// result that puts allocnos in order of increasing FIELD.
+template<unsigned int early_ra::allocno_info::*field>
+int
+early_ra::cmp_increasing (const void *allocno1_ptr, const void *allocno2_ptr)
+{
+  auto *allocno1 = *(allocno_info *const *) allocno1_ptr;
+  auto *allocno2 = *(allocno_info *const *) allocno2_ptr;
+
+  if (allocno1->*field != allocno2->*field)
+    return allocno1->*field < allocno2->*field ? -1 : 1;
+  return (allocno1->id < allocno2->id ? -1
+	  : allocno1->id == allocno2->id ? 0 : 1);
+}
+
+// Return true if we should consider chaining ALLOCNO1 onto the head
+// of ALLOCNO2.  This is just a local test of the two allocnos; it doesn't
+// guarantee that chaining them would give a self-consistent system.
+bool
+early_ra::is_chain_candidate (allocno_info *allocno1, allocno_info *allocno2)
+{
+  if (allocno1->equiv_allocno != INVALID_ALLOCNO)
+    allocno1 = m_allocnos[allocno1->equiv_allocno];
+
+  if (allocno2->start_point >= allocno1->end_point
+      && allocno2->equiv_allocno != allocno1->id)
+    return false;
+
+  if (allocno2->is_strong_copy_dest)
+    {
+      if (!allocno1->is_strong_copy_src
+	  || allocno1->copy_dest != allocno2->id)
+	return false;
+    }
+  else if (allocno2->is_copy_dest)
+    {
+      if (allocno1->copy_dest != allocno2->id)
+	return false;
+    }
+  else if (allocno1->is_earlyclobbered)
+    {
+      if (allocno1->end_point == allocno2->start_point + 1)
+	return false;
+    }
+
+  return true;
+}
+
+// We're trying to chain allocno ALLOCNO1 to a later allocno.
+// Rate how good a choice ALLOCNO2 would be, with higher being better.
+int
+early_ra::rate_chain (allocno_info *allocno1, allocno_info *allocno2)
+{
+  int score = 0;
+  if (allocno2->is_strong_copy_dest)
+    score += 256;
+  else if (allocno2->is_copy_dest)
+    score += 128;
+
+  // Prefer well-aligned matches.
+  auto *group1 = allocno1->group ();
+  auto *group2 = allocno2->group ();
+  if (group1->stride == 1 && group2->stride == 1)
+    {
+      unsigned int min_size = std::min (group1->color_rep ()->size,
+					group2->color_rep ()->size);
+      if ((group1->color_rep_offset + allocno1->offset) % min_size
+	  == (group2->color_rep_offset + allocno2->offset) % min_size)
+	score += min_size;
+      else
+	score -= min_size;
+    }
+  return score;
+}
+
+// Sort the chain_candidate_infos at ARG1 and ARG2 in order of decreasing
+// score.
+int
+early_ra::cmp_chain_candidates (const void *arg1, const void *arg2)
+{
+  auto &candidate1 = *(const chain_candidate_info *) arg1;
+  auto &candidate2 = *(const chain_candidate_info *) arg2;
+  if (candidate1.score != candidate2.score)
+    return candidate1.score > candidate2.score ? -1 : 1;
+
+  // Prefer to increase the gap between uses of the allocated register,
+  // to give the scheduler more freedom.
+  auto *allocno1 = candidate1.allocno;
+  auto *allocno2 = candidate2.allocno;
+  if (allocno1->start_point != allocno2->start_point)
+    return allocno1->start_point < allocno2->start_point ? -1 : 1;
+
+  if (allocno1 != allocno2)
+    return allocno1->id < allocno2->id ? -1 : 1;
+
+  return 0;
+}
+
+// Join the chains of allocnos that start at HEADI1 and HEADI2.
+// HEADI1 is either empty or a single allocno.
+void
+early_ra::chain_allocnos (unsigned int &headi1, unsigned int &headi2)
+{
+  if (headi1 == INVALID_ALLOCNO)
+    headi1 = headi2;
+  else if (headi2 == INVALID_ALLOCNO)
+    headi2 = headi1;
+  else
+    {
+      auto *head1 = m_allocnos[headi1];
+      auto *head2 = m_allocnos[headi2];
+      gcc_checking_assert (head1->chain_next == INVALID_ALLOCNO
+			   && head1->chain_prev == INVALID_ALLOCNO
+			   && head2->chain_prev == INVALID_ALLOCNO);
+
+      if (head1->equiv_allocno != INVALID_ALLOCNO
+	  && m_allocnos[head1->equiv_allocno]->copy_dest == headi2)
+	{
+	  head1->is_copy_dest = head2->is_copy_dest;
+	  head1->is_strong_copy_dest = head2->is_strong_copy_dest;
+	  m_allocnos[head1->equiv_allocno]->copy_dest = headi1;
+	}
+      head1->chain_next = headi2;
+      head2->chain_prev = headi1;
+
+      headi2 = headi1;
+    }
+}
+
+// Set the color representative of ALLOCNO's group to REP, such that ALLOCNO
+// ends being at allocno offset REP_OFFSET from the start of REP.
+void
+early_ra::set_single_color_rep (allocno_info *allocno, allocno_group_info *rep,
+				unsigned int rep_offset)
+{
+  auto *group = allocno->group ();
+  if (group->m_color_rep == rep)
+    return;
+
+  group->m_color_rep = rep;
+  gcc_checking_assert (multiple_p (group->stride, rep->stride));
+  unsigned int factor = group->stride / rep->stride;
+  gcc_checking_assert (rep_offset >= allocno->offset * factor);
+  group->color_rep_offset = rep_offset - allocno->offset * factor;
+  rep->fpr_size = std::max (rep->fpr_size, group->fpr_size);
+  rep->fpr_candidates &= (group->fpr_candidates
+			  >> (group->color_rep_offset * rep->stride));
+}
+
+// REP1 and REP2 are color representatives.  Change REP1's color representative
+// to REP2, with REP1 starting at allocno offset REP2_OFFSET into REP2.
+void
+early_ra::set_color_rep (allocno_group_info *rep1, allocno_group_info *rep2,
+			 unsigned int rep2_offset)
+{
+  gcc_checking_assert (rep1 != rep2
+		       && rep2->m_color_rep == rep2
+		       && multiple_p (rep1->stride, rep2->stride));
+
+  auto heads1 = rep1->chain_heads ();
+  auto heads2 = rep2->chain_heads ();
+  for (unsigned int i1 = 0; i1 < heads1.size (); ++i1)
+    if (heads1[i1] != INVALID_ALLOCNO)
+      {
+	unsigned int i2 = rep2_offset + i1 * rep1->stride / rep2->stride;
+	if (heads2[i2] == INVALID_ALLOCNO)
+	  heads2[i2] = heads1[i1];
+	else
+	  gcc_checking_assert (heads2[i2] == heads1[i1]);
+	set_single_color_rep (m_allocnos[heads1[i1]], rep2, i2);
+      }
+}
+
+// Try to chain ALLOCNO1 to the head of the chain starting at ALLOCNO2.
+// Return true on success.
+bool
+early_ra::try_to_chain_allocnos (allocno_info *allocno1,
+				 allocno_info *allocno2)
+{
+  auto *group1 = allocno1->group ()->color_rep ();
+  auto *group2 = allocno2->group ()->color_rep ();
+
+  // Avoid trying to tie different subgroups of the same group.  This can
+  // happen if the parts of a register are defined and used piecemeal.
+  if (group1 == group2)
+    return false;
+
+  // The stride (in FPRs) between allocnos of each color representative.
+  auto fpr_stride1 = group1->stride;
+  auto fpr_stride2 = group2->stride;
+
+  // The offset (in FPRs) of each allocno group from its color representative.
+  auto fpr_offset1 = allocno1->group ()->color_rep_offset * fpr_stride1;
+  auto fpr_offset2 = allocno2->group ()->color_rep_offset * fpr_stride2;
+
+  // The offset (in FPRs) of each allocno from its color representative.
+  fpr_offset1 += allocno1->offset * allocno1->group ()->stride;
+  fpr_offset2 += allocno2->offset * allocno2->group ()->stride;
+
+  // The FPR overlap is in multiples of the larger stride.
+  auto max_fpr_stride = std::max (fpr_stride1, fpr_stride2);
+  auto min_fpr_offset = std::min (fpr_offset1, fpr_offset2);
+  auto fpr_overlap_offset = ROUND_DOWN (min_fpr_offset, max_fpr_stride);
+
+  // The offset (in FPRs) of the start of the overlapping region from
+  // each color representative.
+  fpr_offset1 -= fpr_overlap_offset;
+  fpr_offset2 -= fpr_overlap_offset;
+
+  // The number of FPRs in each color representative after the start
+  // of the overlapping region.
+  auto fpr_after1 = (group1->size - 1) * fpr_stride1 - fpr_offset1;
+  auto fpr_after2 = (group2->size - 1) * fpr_stride2 - fpr_offset2;
+
+  auto min_fpr_after = std::min (fpr_after1, fpr_after2);
+
+  // The number of overlapping allocnos.
+  auto allocno_overlap_size = min_fpr_after / max_fpr_stride + 1;
+
+  // The offset (in allocnos) of the overlapping region from the start
+  // of each color representative.
+  auto allocno_offset1 = fpr_offset1 / fpr_stride1;
+  auto allocno_offset2 = fpr_offset2 / fpr_stride2;
+
+  // The stride (in allocnos) between overlapping allocnos.
+  auto allocno_stride1 = max_fpr_stride / fpr_stride1;
+  auto allocno_stride2 = max_fpr_stride / fpr_stride2;
+
+  // Reject combinations that are impossible to allocate.
+  auto fprs1 = group1->fpr_candidates;
+  auto fprs2 = group2->fpr_candidates;
+  if (fpr_offset1 > fpr_offset2)
+    fprs2 >>= (fpr_offset1 - fpr_offset2);
+  else
+    fprs1 >>= (fpr_offset2 - fpr_offset1);
+  if ((fprs1 & fprs2) == 0)
+    {
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	fprintf (dump_file, "    - cannot chain %d->%d, no FPRs in common"
+		 " (%08x@%d and %08x@%d)\n", allocno1->id, allocno2->id,
+		 group1->fpr_candidates, fpr_offset1,
+		 group2->fpr_candidates, fpr_offset2);
+      return false;
+    }
+
+  // Check whether the chain can be formed.
+  auto heads1 = group1->chain_heads ();
+  auto heads2 = group2->chain_heads ();
+  for (unsigned int i = 0; i < allocno_overlap_size; ++i)
+    {
+      auto headi1 = heads1[allocno_offset1 + i * allocno_stride1];
+      auto headi2 = heads2[allocno_offset2 + i * allocno_stride2];
+      if (headi1 != INVALID_ALLOCNO && headi2 != INVALID_ALLOCNO)
+	{
+	  auto *head1 = m_allocnos[headi1];
+	  auto *head2 = m_allocnos[headi2];
+	  if (head1->chain_next != INVALID_ALLOCNO)
+	    return false;
+	  if (head2->equiv_allocno != head1->id
+	      && head1->end_point <= head2->start_point)
+	    return false;
+	}
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "    - chaining allocnos [");
+      for (unsigned int i = 0; i < allocno_overlap_size; ++i)
+	fprintf (dump_file, "%s%d", i ? "," : "",
+		 heads1[allocno_offset1 + i * allocno_stride1]);
+      fprintf (dump_file, "] and [");
+      for (unsigned int i = 0; i < allocno_overlap_size; ++i)
+	fprintf (dump_file, "%s%d", i ? "," : "",
+		 heads2[allocno_offset2 + i * allocno_stride2]);
+      fprintf (dump_file, "]\n");
+    }
+
+  // Chain the allocnos, updating the chain heads.
+  for (unsigned int i = 0; i < allocno_overlap_size; ++i)
+    chain_allocnos (heads1[allocno_offset1 + i * allocno_stride1],
+		    heads2[allocno_offset2 + i * allocno_stride2]);
+
+  // Pick a color representative for the merged groups.
+  allocno_group_info *new_rep;
+  if (allocno_offset1 == 0
+      && group1->size == allocno_overlap_size * allocno_stride1
+      && multiple_p (fpr_stride1, fpr_stride2))
+    {
+      // The first group fits within the second.
+      set_color_rep (group1, group2, allocno_offset2);
+      new_rep = group2;
+    }
+  else if (allocno_offset2 == 0
+	   && group2->size == allocno_overlap_size * allocno_stride2
+	   && multiple_p (fpr_stride2, fpr_stride1))
+    {
+      // The second group fits within the first.
+      set_color_rep (group2, group1, allocno_offset1);
+      new_rep = group1;
+    }
+  else
+    {
+      // We need a new group that is big enough to span both groups.
+      // The new group always has an FPR stride of 1.
+      auto max_fpr_offset = std::max (fpr_offset1, fpr_offset2);
+      auto max_fpr_after = std::max (fpr_after1, fpr_after2);
+      auto new_size = max_fpr_offset + max_fpr_after + 1;
+      new_rep = create_allocno_group (INVALID_REGNUM, new_size);
+
+      set_color_rep (group1, new_rep, max_fpr_offset - fpr_offset1);
+      set_color_rep (group2, new_rep, max_fpr_offset - fpr_offset2);
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "    - new frontier [");
+      auto new_heads = new_rep->chain_heads ();
+      for (unsigned int i = 0; i < new_heads.size (); ++i)
+	{
+	  if (i)
+	    fprintf (dump_file, ",");
+	  if (new_heads[i] == INVALID_ALLOCNO)
+	    fprintf (dump_file, "-");
+	  else
+	    fprintf (dump_file, "%d", new_heads[i]);
+	}
+      fprintf (dump_file, "]\n");
+    }
+
+  return true;
+}
+
+// Create a color_info for color representative GROUP.
+void
+early_ra::create_color (allocno_group_info *group)
+{
+  auto *color = region_allocate<color_info> ();
+  color->id = m_colors.length ();
+  color->hard_regno = FIRST_PSEUDO_REGISTER;
+  color->group = group;
+
+  gcc_checking_assert (group->m_color_rep == group);
+  group->has_color = true;
+  group->color = m_colors.length ();
+
+  m_colors.safe_push (color);
+}
+
+// Form allocnos into chains.  Create colors for each resulting clique.
+void
+early_ra::form_chains ()
+{
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    fprintf (dump_file, "\nChaining allocnos:\n");
+
+  // Perform (modified) interval graph coloring.  First sort by
+  // increasing start point.
+  m_sorted_allocnos.reserve (m_allocnos.length ());
+  m_sorted_allocnos.splice (m_allocnos);
+  m_sorted_allocnos.qsort (cmp_increasing<&allocno_info::start_point>);
+
+  // During this phase, color representatives are only correct for
+  // unprocessed allocno groups (where the color representative is
+  // the group itself) and for groups that contain a current chain head.
+  unsigned int ti = 0;
+  auto_vec<chain_candidate_info> candidates;
+  for (unsigned int hi = 0; hi < m_sorted_allocnos.length (); ++hi)
+    {
+      auto *allocno1 = m_sorted_allocnos[hi];
+      if (allocno1->chain_next != INVALID_ALLOCNO)
+	continue;
+
+      // Record conflicts with direct uses for FPR hard registers.
+      auto *group1 = allocno1->group ();
+      for (unsigned int fpr = allocno1->offset; fpr < 32; ++fpr)
+	if (fpr_conflicts_with_allocno_p (fpr, allocno1))
+	  group1->fpr_candidates &= ~(1U << (fpr - allocno1->offset));
+
+      // Record conflicts due to partially call-clobbered registers.
+      // (Full clobbers are handled by the previous loop.)
+      for (unsigned int abi_id = 0; abi_id < NUM_ABI_IDS; ++abi_id)
+	if (call_in_range_p (abi_id, allocno1->start_point,
+			     allocno1->end_point))
+	  {
+	    auto fprs = partial_fpr_clobbers (abi_id, group1->fpr_size);
+	    group1->fpr_candidates &= ~fprs >> allocno1->offset;
+	  }
+
+      // Find earlier allocnos (in processing order) that could be chained
+      // to this one.
+      candidates.truncate (0);
+      for (unsigned int sci = ti; sci < hi; ++sci)
+	{
+	  auto *allocno2 = m_sorted_allocnos[sci];
+	  if (allocno2->chain_prev == INVALID_ALLOCNO)
+	    {
+	      if (!is_chain_candidate (allocno1, allocno2))
+		continue;
+	      chain_candidate_info candidate;
+	      candidate.allocno = allocno2;
+	      candidate.score = rate_chain (allocno1, allocno2);
+	      candidates.safe_push (candidate);
+	    }
+	  else if (sci == ti)
+	    ++ti;
+	}
+
+      // Sort the candidates by decreasing score.
+      candidates.qsort (cmp_chain_candidates);
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	{
+	  fprintf (dump_file, "  Chain candidates for %d:", allocno1->id);
+	  for (auto &candidate : candidates)
+	    fprintf (dump_file, " %d(%d)", candidate.allocno->id,
+		     candidate.score);
+	  fprintf (dump_file, "\n");
+	}
+
+      // Pick the first candidate that works.
+      for (auto &candidate : candidates)
+	if (try_to_chain_allocnos (allocno1, candidate.allocno))
+	  break;
+    }
+
+  // Create color_infos for each group.  Make sure that each group's
+  // color representative is up to date.
+  for (unsigned int hi = m_sorted_allocnos.length (); hi-- > 0; )
+    {
+      auto *allocno = m_sorted_allocnos[hi];
+      auto *rep = allocno->group ()->color_rep ();
+      if (rep->has_color)
+	continue;
+
+      create_color (rep);
+      auto heads = rep->chain_heads ();
+      for (unsigned int i = 0; i < heads.size (); ++i)
+	{
+	  unsigned int ai = heads[i];
+	  while (ai != INVALID_ALLOCNO)
+	    {
+	      allocno = m_allocnos[ai];
+	      set_single_color_rep (allocno, rep, i * rep->stride);
+	      ai = allocno->chain_next;
+	    }
+	}
+    }
+}
+
+// Return true if the given FPR (starting at 0) conflicts with allocno
+// ALLOCNO.
+bool
+early_ra::fpr_conflicts_with_allocno_p (unsigned int fpr,
+					allocno_info *allocno)
+{
+  auto &ranges = m_fpr_ranges[fpr];
+  unsigned int start_i = 0;
+  unsigned int end_i = ranges.length ();
+  while (start_i < end_i)
+    {
+      unsigned int mid_i = (start_i + end_i) / 2;
+      auto &range = ranges[mid_i];
+      if (allocno->end_point > range.start_point)
+	start_i = mid_i + 1;
+      else if (allocno->start_point < range.end_point)
+	end_i = mid_i;
+      else
+	{
+	  if (range.allocno != allocno->id)
+	    return true;
+	  // The FPR is equivalent to ALLOCNO for this particular range.
+	  // See whether ALLOCNO conflicts with a neighboring range.
+	  if (mid_i > 0
+	      && ranges[mid_i - 1].start_point >= allocno->end_point)
+	    return true;
+	  if (mid_i + 1 < ranges.length ()
+	      && ranges[mid_i + 1].end_point <= allocno->start_point)
+	    return true;
+	  return false;
+	}
+    }
+  return false;
+}
+
+// Return true if there is a call with ABI identifier ABI_ID in the inclusive
+// program point range [START_POINT, END_POINT].
+bool
+early_ra::call_in_range_p (unsigned int abi_id, unsigned int start_point,
+			   unsigned int end_point)
+{
+  auto &points = m_call_points[abi_id];
+  unsigned int start_i = 0;
+  unsigned int end_i = points.length ();
+  while (start_i < end_i)
+    {
+      unsigned int mid_i = (start_i + end_i) / 2;
+      auto point = points[mid_i];
+      if (end_point > point)
+	start_i = mid_i + 1;
+      else if (start_point < point)
+	end_i = mid_i;
+      else
+	return true;
+    }
+  return false;
+}
+
+// Return the set of FPRs for which a value of size SIZE will be clobbered
+// by a call to a function with ABI identifier ABI_ID, but would not be
+// for some smaller size.  The set therefore excludes FPRs that are
+// fully-clobbered, like V0 in the base ABI.
+unsigned int
+early_ra::partial_fpr_clobbers (unsigned int abi_id, fpr_size_info size)
+{
+  auto &abi = function_abis[abi_id];
+  unsigned int clobbers = 0;
+  machine_mode mode = (size == FPR_D ? V8QImode
+		       : size == FPR_Q ? V16QImode : VNx16QImode);
+  for (unsigned int regno = V0_REGNUM; regno <= V31_REGNUM; ++regno)
+    if (!abi.clobbers_full_reg_p (regno)
+	&& abi.clobbers_reg_p (mode, regno))
+      clobbers |= 1U << (regno - V0_REGNUM);
+  return clobbers;
+}
+
+// Process copies between pseudo registers and hard registers and update
+// the FPR preferences for the associated colors.
+void
+early_ra::process_copies ()
+{
+  for (auto &copy : m_allocno_copies)
+    {
+      auto *allocno = m_allocnos[copy.allocno];
+      auto *group = allocno->group ();
+      auto offset = group->color_rep_offset + allocno->offset;
+      if (offset > copy.fpr)
+	continue;
+
+      unsigned int fpr = copy.fpr - offset;
+      auto *color = m_colors[group->color_rep ()->color];
+      color->fpr_preferences[fpr] = MIN (color->fpr_preferences[fpr]
+					 + copy.weight, 127);
+    }
+}
+
+// Compare the colors at *COLOR1_PTR and *COLOR2_PTR and return a <=>
+// result that puts colors in order of decreasing size.
+int
+early_ra::cmp_decreasing_size (const void *color1_ptr, const void *color2_ptr)
+{
+  auto *color1 = *(color_info *const *) color1_ptr;
+  auto *color2 = *(color_info *const *) color2_ptr;
+
+  if (color1->group->size != color2->group->size)
+    return color1->group->size > color2->group->size ? -1 : 1;
+  return (color1->id < color2->id ? -1
+	  : color1->id == color2->id ? 0 : 1);
+}
+
+// Allocate a register to each color.  If we run out of registers,
+// give up on doing a full allocation of the FPR-based pseudos in the
+// region.
+void
+early_ra::allocate_colors ()
+{
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    fprintf (dump_file, "\nAllocating registers:\n");
+
+  auto_vec<color_info *> sorted_colors;
+  sorted_colors.safe_splice (m_colors);
+  sorted_colors.qsort (cmp_decreasing_size);
+
+  for (unsigned int i = 0; i < 32; ++i)
+    if (!crtl->abi->clobbers_full_reg_p (V0_REGNUM + i))
+      m_call_preserved_fprs |= 1U << i;
+
+  for (auto *color : sorted_colors)
+    {
+      unsigned int candidates = color->group->fpr_candidates;
+      for (unsigned int i = 0; i < color->group->size; ++i)
+	candidates &= ~(m_allocated_fprs >> i);
+      unsigned int best = INVALID_REGNUM;
+      int best_weight = 0;
+      for (unsigned int fpr = 0; fpr <= 32U - color->group->size; ++fpr)
+	{
+	  if ((candidates & (1U << fpr)) == 0)
+	    continue;
+	  int weight = color->fpr_preferences[fpr];
+	  // Account for registers that the current function must preserve.
+	  for (unsigned int i = 0; i < color->group->size; ++i)
+	    if (m_call_preserved_fprs & (1U << (fpr + i)))
+	      weight -= 1;
+	  if (best == INVALID_REGNUM || best_weight <= weight)
+	    {
+	      best = fpr;
+	      best_weight = weight;
+	    }
+	}
+
+      if (best == INVALID_REGNUM)
+	{
+	  m_allocation_successful = false;
+	  return;
+	}
+
+      color->hard_regno = best + V0_REGNUM;
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	fprintf (dump_file, "  Allocating [v%d:v%d] to color %d\n",
+		 best, best + color->group->size - 1, color->id);
+      m_allocated_fprs |= ((1U << color->group->size) - 1) << best;
+    }
+}
+
+// See if ALLOCNO ends a subchain of single registers that can be split
+// off without affecting the rest of the chain, and without introducing
+// any moves.  Return the start of the chain if so (which might be ALLOCNO
+// itself), otherwise return null.
+early_ra::allocno_info *
+early_ra::find_independent_subchain (allocno_info *allocno)
+{
+  // Make sure ALLOCNO ends a natural subchain.
+  if (auto *next_allocno = chain_next (allocno))
+    if (next_allocno->start_point + 1 >= allocno->end_point)
+      return nullptr;
+
+  // Check the allocnos in the purported subchain and find the other end.
+  for (;;)
+    {
+      auto *group = allocno->group ();
+      if (group->m_color_rep == group)
+	return nullptr;
+      if (group->size != 1)
+	return nullptr;
+
+      auto *prev_allocno = chain_prev (allocno);
+      if (!prev_allocno || allocno->start_point + 1 < prev_allocno->end_point)
+	return allocno;
+
+      allocno = prev_allocno;
+    }
+}
+
+// Search the colors starting at index FIRST_COLOR whose FPRs do not belong
+// to FPR_CONFLICTS.  Return the first such color that has no group.  If all
+// such colors have groups, instead return the color with the latest
+// (smallest) start point.
+early_ra::color_info *
+early_ra::find_oldest_color (unsigned int first_color,
+			     unsigned int fpr_conflicts)
+{
+  color_info *best = nullptr;
+  unsigned int best_start_point = ~0U;
+  for (unsigned int ci = first_color; ci < m_colors.length (); ++ci)
+    {
+      auto *color = m_colors[ci];
+      if (fpr_conflicts & (1U << (color->hard_regno - V0_REGNUM)))
+	continue;
+      if (!color->group)
+	return color;
+      auto chain_head = color->group->chain_heads ()[0];
+      auto start_point = m_allocnos[chain_head]->start_point;
+      if (!best || best_start_point > start_point)
+	{
+	  best = color;
+	  best_start_point = start_point;
+	}
+    }
+  return best;
+}
+
+// If there are some spare FPRs that can be reused without introducing saves,
+// restores, or moves, use them to "broaden" the allocation, in order to give
+// the scheduler more freedom.  This is particularly useful for forming LDPs
+// and STPs.
+void
+early_ra::broaden_colors ()
+{
+  // Create dummy colors for every leftover FPR that can be used cheaply.
+  unsigned int first_color = m_colors.length ();
+  for (unsigned int fpr = 0; fpr < 32; ++fpr)
+    if (((m_allocated_fprs | m_call_preserved_fprs) & (1U << fpr)) == 0)
+      {
+	auto *color = region_allocate<color_info> ();
+	color->id = m_colors.length ();
+	color->hard_regno = V0_REGNUM + fpr;
+	color->group = nullptr;
+	m_colors.safe_push (color);
+      }
+
+  // Exit early if there are no spare FPRs.
+  if (first_color == m_colors.length ())
+    return;
+
+  // Go through the allocnos in order, seeing if there is a subchain of
+  // single-FPR allocnos that can be split off from the containingg clique.
+  // Allocate such subchains to the new colors on an oldest-first basis.
+  for (auto *allocno : m_sorted_allocnos)
+    if (auto *start_allocno = find_independent_subchain (allocno))
+      {
+	unsigned int fpr_conflicts = 0;
+	auto *member = allocno;
+	for (;;)
+	  {
+	    fpr_conflicts |= ~member->group ()->fpr_candidates;
+	    if (member == start_allocno)
+	      break;
+	    member = m_allocnos[member->chain_prev];
+	  }
+
+	auto *color = find_oldest_color (first_color, fpr_conflicts);
+	if (!color)
+	  continue;
+
+	if (!color->group)
+	  {
+	    auto *group = allocno->group ();
+	    color->group = group;
+	    group->color = color->id;
+	    group->chain_heads ()[0] = INVALID_ALLOCNO;
+	  }
+	else
+	  {
+	    auto chain_head = color->group->chain_heads ()[0];
+	    auto start_point = m_allocnos[chain_head]->start_point;
+	    if (start_point >= allocno->end_point)
+	      // Allocating to COLOR isn't viable, and it was the best
+	      // option available.
+	      continue;
+
+	    auto *next_allocno = chain_next (allocno);
+	    if (!next_allocno || next_allocno->start_point <= start_point)
+	      // The current allocation gives at least as much scheduling
+	      // freedom as COLOR would.
+	      continue;
+	  }
+
+	// Unlink the chain.
+	if (auto *next_allocno = chain_next (allocno))
+	  next_allocno->chain_prev = start_allocno->chain_prev;
+	if (auto *prev_allocno = chain_prev (start_allocno))
+	  prev_allocno->chain_next = allocno->chain_next;
+
+	// Make the subchain use COLOR.
+	allocno->chain_next = color->group->chain_heads ()[0];
+	if (dump_file && (dump_flags & TDF_DETAILS))
+	  fprintf (dump_file, "Moving to optional color %d (register %s):",
+		   color->id, reg_names[color->hard_regno]);
+	for (;;)
+	  {
+	    auto *group = allocno->group ();
+	    if (dump_file && (dump_flags & TDF_DETAILS))
+	      fprintf (dump_file, " r%d", group->regno);
+	    group->m_color_rep = color->group;
+	    group->color_rep_offset = 0;
+	    if (allocno == start_allocno)
+	      break;
+	    allocno = m_allocnos[allocno->chain_prev];
+	  }
+	if (dump_file && (dump_flags & TDF_DETAILS))
+	  fprintf (dump_file, "\n");
+	color->group->chain_heads ()[0] = start_allocno->id;
+      }
+}
+
+// Record the final choice of hard register for each allocno.
+void
+early_ra::finalize_allocation ()
+{
+  for (auto *allocno : m_allocnos)
+    {
+      auto *group = allocno->group ();
+      auto *rep = group->color_rep ();
+      auto rep_regno = m_colors[rep->color]->hard_regno;
+      auto group_regno = rep_regno + group->color_rep_offset;
+      allocno->hard_regno = group_regno + allocno->offset * group->stride;
+    }
+}
+
+// Replace any allocno references in REFS with the allocated register.
+bool
+early_ra::replace_regs (df_ref refs)
+{
+  bool changed = false;
+  for (df_ref ref = refs; ref; ref = DF_REF_NEXT_LOC (ref))
+    {
+      auto range = get_allocno_subgroup (DF_REF_REG (ref));
+      if (!range)
+	continue;
+
+      auto new_regno = range.allocno (0)->hard_regno;
+      *DF_REF_LOC (ref) = gen_rtx_REG (GET_MODE (DF_REF_REG (ref)), new_regno);
+      changed = true;
+    }
+  return changed;
+}
+
+// Try to make INSN match its FPR-related constraints.  If this needs
+// a source operand (SRC) to be copied to a destination operand (DEST)
+// before INSN, add the associated (DEST, SRC) pairs to MOVES.
+//
+// Return -1 on failure, otherwise return a ?/!-style reject count.
+// The reject count doesn't model the moves, just the internal alternative
+// preferences.
+int
+early_ra::try_enforce_constraints (rtx_insn *insn,
+				   vec<std::pair<int, int>> &moves)
+{
+  if (!constrain_operands (0, get_preferred_alternatives (insn)))
+    return -1;
+
+  // Pick the alternative with the lowest cost.
+  int best = -1;
+  auto alts = get_preferred_alternatives (insn);
+  for (int altno = 0; altno < recog_data.n_alternatives; ++altno)
+    {
+      if (!(alts & ALTERNATIVE_BIT (altno)))
+	continue;
+
+      auto *op_alt = &recog_op_alt[altno * recog_data.n_operands];
+      if (!likely_alternative_match_p (op_alt))
+	continue;
+
+      auto_vec<std::pair<int, int>, 4> new_moves;
+      for (int opno = 0; opno < recog_data.n_operands; ++opno)
+	{
+	  rtx op = recog_data.operand[opno];
+	  if (REG_P (op)
+	      && FP_REGNUM_P (REGNO (op))
+	      && op_alt[opno].matched >= 0)
+	    {
+	      rtx old_src = recog_data.operand[op_alt[opno].matched];
+	      if (!operands_match_p (op, old_src))
+		{
+		  for (int i = 0; i < recog_data.n_operands; ++i)
+		    if (i != opno)
+		      {
+			rtx other = recog_data.operand[i];
+			if (reg_overlap_mentioned_p (op, other))
+			  {
+			    old_src = NULL_RTX;
+			    break;
+			  }
+		      }
+		  if (!old_src)
+		    continue;
+		  new_moves.safe_push ({ opno, op_alt[opno].matched });
+		}
+	    }
+	}
+      int cost = count_rejects (op_alt) + new_moves.length () * 7;
+      if (best < 0 || cost < best)
+	{
+	  best = cost;
+	  moves.truncate (0);
+	  moves.safe_splice (new_moves);
+	}
+    }
+  return best;
+}
+
+// Make INSN matches its FPR-related constraints.
+void
+early_ra::enforce_constraints (rtx_insn *insn)
+{
+  extract_insn (insn);
+  preprocess_constraints (insn);
+
+  // First try with the operands they are.
+  auto_vec<std::pair<int, int>, 4> moves;
+  int cost = try_enforce_constraints (insn, moves);
+
+  // Next try taking advantage of commutativity.
+  for (int opno = 0; opno < recog_data.n_operands - 1; ++opno)
+    if (recog_data.constraints[opno][0] == '%')
+      {
+	std::swap (*recog_data.operand_loc[opno],
+		   *recog_data.operand_loc[opno + 1]);
+	std::swap (recog_data.operand[opno],
+		   recog_data.operand[opno + 1]);
+	auto_vec<std::pair<int, int>, 4> swapped_moves;
+	int swapped_cost = try_enforce_constraints (insn, swapped_moves);
+	if (swapped_cost >= 0 && (cost < 0 || swapped_cost < cost))
+	  {
+	    cost = swapped_cost;
+	    moves.truncate (0);
+	    moves.safe_splice (swapped_moves);
+	  }
+	else
+	  {
+	    std::swap (*recog_data.operand_loc[opno],
+		       *recog_data.operand_loc[opno + 1]);
+	    std::swap (recog_data.operand[opno],
+		       recog_data.operand[opno + 1]);
+	  }
+      }
+
+  // The allocation should ensure that there is at least one valid combination.
+  // It's too late to back out now if not.
+  gcc_assert (cost >= 0);
+  for (int i = 0; i < recog_data.n_dups; ++i)
+    {
+      int dup_of = recog_data.dup_num[i];
+      rtx new_op = *recog_data.operand_loc[dup_of];
+      if (new_op != recog_data.operand[dup_of])
+	*recog_data.dup_loc[i] = copy_rtx (new_op);
+    }
+  for (auto move : moves)
+    {
+      int dest_opno = move.first;
+      int src_opno = move.second;
+      rtx dest = recog_data.operand[dest_opno];
+      rtx old_src = recog_data.operand[src_opno];
+      rtx new_src = lowpart_subreg (GET_MODE (old_src), dest, GET_MODE (dest));
+      emit_insn_before (gen_move_insn (new_src, old_src), insn);
+      *recog_data.operand_loc[src_opno] = new_src;
+    }
+}
+
+// See whether INSN is an instruction that operates on multi-register vectors,
+// and if we have decided to make it use strided rather than consecutive
+// accesses.  Update the pattern and return true if so.
+bool
+early_ra::maybe_convert_to_strided_access (rtx_insn *insn)
+{
+  if (!NONJUMP_INSN_P (insn) || recog_memoized (insn) < 0)
+    return false;
+
+  auto stride_type = get_attr_stride_type (insn);
+  rtx pat = PATTERN (insn);
+  rtx op;
+  if (stride_type == STRIDE_TYPE_LUTI_CONSECUTIVE
+      || stride_type == STRIDE_TYPE_LD1_CONSECUTIVE)
+    op = SET_DEST (pat);
+  else if (stride_type == STRIDE_TYPE_ST1_CONSECUTIVE)
+    op = XVECEXP (SET_SRC (pat), 0, 1);
+  else
+    return false;
+
+  auto range = get_allocno_subgroup (op);
+  if (!range || range.group->stride == 1)
+    return false;
+
+  gcc_assert (range.start == 0 && range.count == range.group->size);
+  auto elt_mode = GET_MODE_INNER (GET_MODE (op));
+  auto single_mode = aarch64_full_sve_mode (elt_mode).require ();
+  auto_vec<rtx, 4> regs;
+  for (unsigned int i = 0; i < range.count; ++i)
+    regs.quick_push (gen_rtx_REG (single_mode, range.allocno (i)->hard_regno));
+
+  extract_insn (insn);
+  if (stride_type == STRIDE_TYPE_LD1_CONSECUTIVE)
+    {
+      auto unspec = XINT (SET_SRC (pat), 1);
+      if (range.count == 2)
+	pat = gen_aarch64_strided2 (unspec, GET_MODE (op), regs[0], regs[1],
+				    recog_data.operand[1],
+				    recog_data.operand[2]);
+      else
+	pat = gen_aarch64_strided4 (unspec, GET_MODE (op),
+				    regs[0], regs[1], regs[2], regs[3],
+				    recog_data.operand[1],
+				    recog_data.operand[2]);
+    }
+  else if (stride_type == STRIDE_TYPE_ST1_CONSECUTIVE)
+    {
+      auto unspec = XINT (SET_SRC (pat), 1);
+      if (range.count == 2)
+	pat = gen_aarch64_strided2 (unspec, GET_MODE (op),
+				    recog_data.operand[0],
+				    recog_data.operand[2], regs[0], regs[1]);
+      else
+	pat = gen_aarch64_strided4 (unspec, GET_MODE (op),
+				    recog_data.operand[0],
+				    recog_data.operand[2],
+				    regs[0], regs[1], regs[2], regs[3]);
+      // Ensure correct sharing for the source memory.
+      //
+      // ??? Why doesn't the generator get this right?
+      XVECEXP (SET_SRC (pat), 0, XVECLEN (SET_SRC (pat), 0) - 1)
+	= *recog_data.dup_loc[0];
+    }
+  else if (stride_type == STRIDE_TYPE_LUTI_CONSECUTIVE)
+    {
+      auto bits = INTVAL (XVECEXP (SET_SRC (pat), 0, 4));
+      if (range.count == 2)
+	pat = gen_aarch64_sme_lut_strided2 (bits, single_mode,
+					    regs[0], regs[1],
+					    recog_data.operand[1],
+					    recog_data.operand[2]);
+      else
+	pat = gen_aarch64_sme_lut_strided4 (bits, single_mode,
+					    regs[0], regs[1], regs[2], regs[3],
+					    recog_data.operand[1],
+					    recog_data.operand[2]);
+    }
+  else
+    gcc_unreachable ();
+  PATTERN (insn) = pat;
+  INSN_CODE (insn) = -1;
+  df_insn_rescan (insn);
+  return true;
+}
+
+// We've successfully allocated the current region.  Apply the allocation
+// to the instructions.
+void
+early_ra::apply_allocation ()
+{
+  rtx_insn *prev;
+  for (auto insn_range : m_insn_ranges)
+    for (rtx_insn *insn = insn_range.first;
+	 insn != insn_range.second;
+	 insn = prev)
+      {
+	prev = PREV_INSN (insn);
+	if (!INSN_P (insn))
+	  continue;
+
+	bool changed = maybe_convert_to_strided_access (insn);
+	changed |= replace_regs (DF_INSN_DEFS (insn));
+	changed |= replace_regs (DF_INSN_USES (insn));
+	if (changed && NONDEBUG_INSN_P (insn))
+	  {
+	    if (GET_CODE (PATTERN (insn)) != USE
+		&& GET_CODE (PATTERN (insn)) != CLOBBER
+		&& !is_move_set (PATTERN (insn)))
+	      enforce_constraints (insn);
+
+	    // A REG_EQUIV note establishes an equivalence throughout
+	    // the function, but here we're reusing hard registers for
+	    // multiple pseudo registers.  We also no longer need REG_EQUIV
+	    // notes that record potential spill locations, since we've
+	    // allocated the pseudo register without spilling.
+	    rtx *ptr = &REG_NOTES (insn);
+	    while (*ptr)
+	      if (REG_NOTE_KIND (*ptr) == REG_EQUIV)
+		*ptr = XEXP (*ptr, 1);
+	      else
+		ptr = &XEXP (*ptr, 1);
+	  }
+	changed |= replace_regs (DF_INSN_EQ_USES (insn));
+	if (changed)
+	  df_insn_rescan (insn);
+      }
+
+  for (auto *insn : m_dead_insns)
+    delete_insn (insn);
+}
+
+// Try to allocate the current region.  Update the instructions if successful.
+void
+early_ra::process_region ()
+{
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      dump_fpr_ranges ();
+      dump_copies ();
+      dump_allocnos ();
+    }
+
+  find_strided_accesses ();
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    dump_allocnos ();
+
+  form_chains ();
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    dump_allocnos ();
+
+  process_copies ();
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    dump_colors ();
+
+  allocate_colors ();
+  if (!m_allocation_successful)
+    return;
+
+  broaden_colors ();
+  finalize_allocation ();
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nAllocation successful\nFinal allocation:\n");
+      dump_allocnos ();
+      dump_colors ();
+    }
+
+  apply_allocation ();
+}
+
+// Return true if INSN would become dead if we successfully allocate the
+// current region.
+bool
+early_ra::is_dead_insn (rtx_insn *insn)
+{
+  rtx set = single_set (insn);
+  if (!set)
+    return false;
+
+  rtx dest = SET_DEST (set);
+  auto dest_range = get_allocno_subgroup (dest);
+  if (!dest_range)
+    return false;
+
+  for (auto &allocno : dest_range.allocnos ())
+    if (bitmap_bit_p (m_live_allocnos, allocno.id))
+      return false;
+
+  if (side_effects_p (set))
+    return false;
+
+  return true;
+}
+
+// Build up information about block BB.  IS_ISOLATED is true if the
+// block is not part of a larger region.
+void
+early_ra::process_block (basic_block bb, bool is_isolated)
+{
+  m_current_bb = bb;
+
+  // Process live-out FPRs.
+  bitmap live_out = df_get_live_out (bb);
+  for (unsigned int regno = V0_REGNUM; regno <= V31_REGNUM; ++regno)
+    if (bitmap_bit_p (live_out, regno))
+      record_fpr_use (regno);
+
+  // Process live-out allocnos.  We don't track individual FPR liveness
+  // across block boundaries, so we have to assume that the whole pseudo
+  // register is live.
+  bitmap_iterator bi;
+  unsigned int regno;
+  EXECUTE_IF_AND_IN_BITMAP (df_get_live_out (bb), m_fpr_pseudos,
+			    FIRST_PSEUDO_REGISTER, regno, bi)
+    {
+      auto range = get_allocno_subgroup (regno_reg_rtx[regno]);
+      for (auto &allocno : range.allocnos ())
+	record_allocno_use (&allocno);
+    }
+
+  m_current_point += 1;
+
+  record_artificial_refs (0);
+
+  bool is_first = true;
+  rtx_insn *start_insn = BB_END (bb);
+  rtx_insn *insn;
+  FOR_BB_INSNS_REVERSE (bb, insn)
+    {
+      if (!NONDEBUG_INSN_P (insn))
+	continue;
+
+      // CLOBBERs are used to prevent pseudos from being upwards exposed.
+      // We can ignore them if allocation is successful.
+      if (GET_CODE (PATTERN (insn)) == CLOBBER)
+	{
+	  if (get_allocno_subgroup (XEXP (PATTERN (insn), 0)))
+	    m_dead_insns.safe_push (insn);
+	  continue;
+	}
+
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	{
+	  if (is_first)
+	    fprintf (dump_file, "\nBlock %d:\n", bb->index);
+	  fprintf (dump_file, "%6d:", m_current_point);
+	  pretty_printer rtl_slim_pp;
+	  rtl_slim_pp.buffer->stream = dump_file;
+	  print_insn (&rtl_slim_pp, insn, 1);
+	  pp_flush (&rtl_slim_pp);
+	  fprintf (dump_file, "\n");
+	}
+      is_first = false;
+
+      if (is_dead_insn (insn))
+	{
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    fprintf (dump_file, "%14s -- dead\n", "");
+	  m_dead_insns.safe_push (insn);
+	}
+      else
+	{
+	  record_insn_refs (insn);
+	  rtx pat = PATTERN (insn);
+	  if (is_move_set (pat))
+	    record_copy (SET_DEST (pat), SET_SRC (pat), true);
+	  else
+	    {
+	      extract_insn (insn);
+	      record_constraints (insn);
+	    }
+	}
+
+      // See whether we have a complete region, with no remaining live
+      // allocnos.
+      if (is_isolated
+	  && bitmap_empty_p (m_live_allocnos)
+	  && m_live_fprs == 0
+	  && m_allocation_successful
+	  && !m_allocnos.is_empty ())
+	{
+	  rtx_insn *prev_insn = PREV_INSN (insn);
+	  m_insn_ranges.safe_push ({ start_insn, prev_insn });
+	  process_region ();
+	  start_new_region ();
+	  is_first = true;
+	  start_insn = prev_insn;
+	}
+    }
+  m_insn_ranges.safe_push ({ start_insn, BB_HEAD (bb) });
+
+  record_artificial_refs (DF_REF_AT_TOP);
+
+  // Process live-in FPRs.
+  bitmap live_in = df_get_live_in (bb);
+  for (unsigned int regno = V0_REGNUM; regno <= V31_REGNUM; ++regno)
+    if (bitmap_bit_p (live_in, regno)
+	&& (m_live_fprs & (1U << (regno - V0_REGNUM))))
+      record_fpr_def (regno);
+
+  // Process live-in allocnos.
+  EXECUTE_IF_AND_IN_BITMAP (live_in, m_fpr_pseudos,
+			    FIRST_PSEUDO_REGISTER, regno, bi)
+    {
+      auto range = get_allocno_subgroup (regno_reg_rtx[regno]);
+      for (auto &allocno : range.allocnos ())
+	if (bitmap_bit_p (m_live_allocnos, allocno.id))
+	  record_allocno_def (&allocno);
+    }
+
+  m_current_point += 1;
+
+  bitmap_clear (m_live_allocnos);
+  m_live_fprs = 0;
+}
+
+// Divide the function into regions, such that there no edges into or out
+// of the region have live "FPR pseudos".
+void
+early_ra::process_blocks ()
+{
+  auto_sbitmap visited (last_basic_block_for_fn (m_fn));
+  auto_sbitmap fpr_pseudos_live_out (last_basic_block_for_fn (m_fn));
+  auto_sbitmap fpr_pseudos_live_in (last_basic_block_for_fn (m_fn));
+
+  bitmap_clear (visited);
+  bitmap_clear (fpr_pseudos_live_out);
+  bitmap_clear (fpr_pseudos_live_in);
+
+  // Record which blocks have live FPR pseudos on entry and exit.
+  basic_block bb;
+  FOR_EACH_BB_FN (bb, m_fn)
+    {
+      if (bitmap_intersect_p (df_get_live_out (bb), m_fpr_pseudos))
+	bitmap_set_bit (fpr_pseudos_live_out, bb->index);
+      if (bitmap_intersect_p (df_get_live_in (bb), m_fpr_pseudos))
+	bitmap_set_bit (fpr_pseudos_live_in, bb->index);
+    }
+
+  struct stack_node { edge_iterator ei; basic_block bb; };
+
+  auto_vec<stack_node, 32> stack;
+  auto_vec<basic_block, 32> region;
+
+  // Go through the function in reverse postorder and process the region
+  // containing each block.
+  unsigned int n_blocks = df_get_n_blocks (DF_FORWARD);
+  int *order = df_get_postorder (DF_FORWARD);
+  for (unsigned int bbi = 0; bbi < n_blocks; ++bbi)
+    {
+      basic_block bb = BASIC_BLOCK_FOR_FN (m_fn, order[bbi]);
+      if (bb->index < NUM_FIXED_BLOCKS)
+	continue;
+
+      if (!bitmap_set_bit (visited, bb->index))
+	continue;
+
+      // Process forward edges before backward edges (so push backward
+      // edges first).  Build the region in an approximation of reverse
+      // program order.
+      if (bitmap_bit_p (fpr_pseudos_live_in, bb->index))
+	stack.quick_push ({ ei_start (bb->preds), nullptr });
+      if (bitmap_bit_p (fpr_pseudos_live_out, bb->index))
+	stack.quick_push ({ ei_start (bb->succs), bb });
+      else
+	region.safe_push (bb);
+      while (!stack.is_empty ())
+	{
+	  auto &node = stack.last ();
+	  if (ei_end_p (node.ei))
+	    {
+	      if (node.bb)
+		region.safe_push (node.bb);
+	      stack.pop ();
+	      continue;
+	    }
+	  edge e = ei_edge (node.ei);
+	  if (node.bb)
+	    {
+	      // A forward edge from a node that has not yet been added
+	      // to region.
+	      if (bitmap_bit_p (fpr_pseudos_live_in, e->dest->index)
+		  && bitmap_set_bit (visited, e->dest->index))
+		{
+		  stack.safe_push ({ ei_start (e->dest->preds), nullptr });
+		  if (bitmap_bit_p (fpr_pseudos_live_out, e->dest->index))
+		    stack.safe_push ({ ei_start (e->dest->succs), e->dest });
+		  else
+		    region.safe_push (e->dest);
+		}
+	      else
+		ei_next (&node.ei);
+	    }
+	  else
+	    {
+	      // A backward edge from a node that has already been added
+	      // to the region.
+	      if (bitmap_bit_p (fpr_pseudos_live_out, e->src->index)
+		  && bitmap_set_bit (visited, e->src->index))
+		{
+		  if (bitmap_bit_p (fpr_pseudos_live_in, e->src->index))
+		    stack.safe_push ({ ei_start (e->src->preds), nullptr });
+		  stack.safe_push ({ ei_start (e->src->succs), e->src });
+		}
+	      else
+		ei_next (&node.ei);
+	    }
+	}
+
+      m_current_point = 2;
+      start_new_region ();
+
+      if (region.is_empty ())
+	process_block (bb, true);
+      else
+	{
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    {
+	      fprintf (dump_file, "\nRegion (from %d):", bb->index);
+	      for (unsigned int j = 0; j < region.length (); ++j)
+		fprintf (dump_file, " %d", region[j]->index);
+	      fprintf (dump_file, "\n");
+	    }
+	  for (unsigned int j = 0; j < region.length (); ++j)
+	    {
+	      basic_block bb = region[j];
+	      bool is_isolated
+		= ((j == 0 && !bitmap_bit_p (fpr_pseudos_live_out, bb->index))
+		   || (j == region.length () - 1
+		       && !bitmap_bit_p (fpr_pseudos_live_in, bb->index)));
+	      process_block (bb, is_isolated);
+	    }
+	}
+      region.truncate (0);
+
+      if (!m_allocnos.is_empty () && m_allocation_successful)
+	process_region ();
+    }
+}
+
+// Run the pass on the current function.
+void
+early_ra::execute ()
+{
+  df_analyze ();
+
+  preprocess_insns ();
+  propagate_pseudo_reg_info ();
+  choose_fpr_pseudos ();
+  if (bitmap_empty_p (m_fpr_pseudos))
+    return;
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    dump_pseudo_regs ();
+
+  process_blocks ();
+  df_verify ();
+}
+
+class pass_early_ra : public rtl_opt_pass
+{
+public:
+  pass_early_ra (gcc::context *ctxt)
+    : rtl_opt_pass (pass_data_early_ra, ctxt)
+  {}
+
+  // opt_pass methods:
+  virtual bool gate (function *);
+  virtual unsigned int execute (function *);
+};
+
+bool
+pass_early_ra::gate (function *)
+{
+  // Require a vector ISA to be enabled.
+  if (!TARGET_SIMD && !TARGET_SVE)
+    return false;
+
+  if (aarch64_early_ra == AARCH64_EARLY_RA_NONE)
+    return false;
+
+  if (aarch64_early_ra == AARCH64_EARLY_RA_STRIDED
+      && !TARGET_STREAMING_SME2)
+    return false;
+
+  return true;
+}
+
+unsigned int
+pass_early_ra::execute (function *fn)
+{
+  early_ra (fn).execute ();
+  return 0;
+}
+
+} // end namespace
+
+// Create a new CC fusion pass instance.
+
+rtl_opt_pass *
+make_pass_aarch64_early_ra (gcc::context *ctxt)
+{
+  return new pass_early_ra (ctxt);
+}
diff --git a/gcc/config/aarch64/aarch64-opts.h b/gcc/config/aarch64/aarch64-opts.h
index 01151e93d17..adb19d564de 100644
--- a/gcc/config/aarch64/aarch64-opts.h
+++ b/gcc/config/aarch64/aarch64-opts.h
@@ -120,4 +120,15 @@  enum aarch64_ldp_stp_policy {
   AARCH64_LDP_STP_POLICY_NEVER
 };
 
+/* An enum specifying when the early-ra pass should be run:
+   - AARCH64_EARLY_RA_ALL: for all functions
+   - AARCH64_EARLY_RA_STRIDED: for functions that have access to strided
+     multi-register instructions
+   - AARCH64_EARLY_RA_NONE: for no functions.  */
+enum aarch64_early_ra_scope {
+  AARCH64_EARLY_RA_ALL,
+  AARCH64_EARLY_RA_STRIDED,
+  AARCH64_EARLY_RA_NONE
+};
+
 #endif
diff --git a/gcc/config/aarch64/aarch64-passes.def b/gcc/config/aarch64/aarch64-passes.def
index 662a13fd5e6..2d792e9aa50 100644
--- a/gcc/config/aarch64/aarch64-passes.def
+++ b/gcc/config/aarch64/aarch64-passes.def
@@ -18,6 +18,7 @@ 
    along with GCC; see the file COPYING3.  If not see
    <http://www.gnu.org/licenses/>.  */
 
+INSERT_PASS_BEFORE (pass_sched, 1, pass_aarch64_early_ra);
 INSERT_PASS_AFTER (pass_regrename, 1, pass_fma_steering);
 INSERT_PASS_BEFORE (pass_reorder_blocks, 1, pass_track_speculation);
 INSERT_PASS_BEFORE (pass_late_thread_prologue_and_epilogue, 1, pass_switch_pstate_sm);
diff --git a/gcc/config/aarch64/aarch64-protos.h b/gcc/config/aarch64/aarch64-protos.h
index f2075a17732..d1af7f40891 100644
--- a/gcc/config/aarch64/aarch64-protos.h
+++ b/gcc/config/aarch64/aarch64-protos.h
@@ -891,6 +891,7 @@  bool aarch64_sme_ldr_vnum_offset_p (rtx, rtx);
 rtx aarch64_simd_vect_par_cnst_half (machine_mode, int, bool);
 rtx aarch64_gen_stepped_int_parallel (unsigned int, int, int);
 bool aarch64_stepped_int_parallel_p (rtx, int);
+bool aarch64_strided_registers_p (rtx *, unsigned int, unsigned int);
 rtx aarch64_tls_get_addr (void);
 unsigned aarch64_debugger_regno (unsigned);
 unsigned aarch64_trampoline_size (void);
@@ -1063,6 +1064,7 @@  void aarch64_get_all_extension_candidates (auto_vec<const char *> *candidates);
 std::string aarch64_get_extension_string_for_isa_flags (aarch64_feature_flags,
 							aarch64_feature_flags);
 
+rtl_opt_pass *make_pass_aarch64_early_ra (gcc::context *);
 rtl_opt_pass *make_pass_fma_steering (gcc::context *);
 rtl_opt_pass *make_pass_track_speculation (gcc::context *);
 rtl_opt_pass *make_pass_tag_collision_avoidance (gcc::context *);
diff --git a/gcc/config/aarch64/aarch64-sme.md b/gcc/config/aarch64/aarch64-sme.md
index 6cba6ab5f74..575a10c6f65 100644
--- a/gcc/config/aarch64/aarch64-sme.md
+++ b/gcc/config/aarch64/aarch64-sme.md
@@ -1981,4 +1981,74 @@  (define_insn "@aarch64_sme_lut<LUTI_BITS><mode>"
   "TARGET_STREAMING_SME2
    && !(<LUTI_BITS> == 4 && <vector_count> == 4 && <elem_bits> == 8)"
   "luti<LUTI_BITS>\t%0, zt0, %1[%2]"
+  [(set_attr "stride_type" "luti_consecutive")]
+)
+
+(define_insn "@aarch64_sme_lut<LUTI_BITS><mode>_strided2"
+  [(set (match_operand:SVE_FULL_BHS 0 "aarch64_simd_register" "=Uwd")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_operand:VNx16QI 2 "register_operand" "w")
+	   (match_operand:DI 3 "const_int_operand")
+	   (const_int LUTI_BITS)
+	   (const_int 0)]
+	  UNSPEC_SME_LUTI))
+   (set (match_operand:SVE_FULL_BHS 1 "aarch64_simd_register" "=w")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_dup 2)
+	   (match_dup 3)
+	   (const_int LUTI_BITS)
+	   (const_int 1)]
+	  UNSPEC_SME_LUTI))]
+  "TARGET_STREAMING_SME2
+   && aarch64_strided_registers_p (operands, 2, 8)"
+  "luti<LUTI_BITS>\t{%0.<Vetype>, %1.<Vetype>}, zt0, %2[%3]"
+  [(set_attr "stride_type" "luti_strided")]
+)
+
+(define_insn "@aarch64_sme_lut<LUTI_BITS><mode>_strided4"
+  [(set (match_operand:SVE_FULL_BHS 0 "aarch64_simd_register" "=Uwt")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_operand:VNx16QI 4 "register_operand" "w")
+	   (match_operand:DI 5 "const_int_operand")
+	   (const_int LUTI_BITS)
+	   (const_int 0)]
+	  UNSPEC_SME_LUTI))
+   (set (match_operand:SVE_FULL_BHS 1 "aarch64_simd_register" "=w")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_dup 4)
+	   (match_dup 5)
+	   (const_int LUTI_BITS)
+	   (const_int 1)]
+	  UNSPEC_SME_LUTI))
+   (set (match_operand:SVE_FULL_BHS 2 "aarch64_simd_register" "=w")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_dup 4)
+	   (match_dup 5)
+	   (const_int LUTI_BITS)
+	   (const_int 2)]
+	  UNSPEC_SME_LUTI))
+   (set (match_operand:SVE_FULL_BHS 3 "aarch64_simd_register" "=w")
+	(unspec:SVE_FULL_BHS
+	  [(reg:V8DI ZT0_REGNUM)
+	   (reg:DI SME_STATE_REGNUM)
+	   (match_dup 4)
+	   (match_dup 5)
+	   (const_int LUTI_BITS)
+	   (const_int 3)]
+	  UNSPEC_SME_LUTI))]
+  "TARGET_STREAMING_SME2
+   && !(<LUTI_BITS> == 4 && <elem_bits> == 8)
+   && aarch64_strided_registers_p (operands, 4, 4)"
+  "luti<LUTI_BITS>\t{%0.<Vetype>, %1.<Vetype>, %2.<Vetype>, %3.<Vetype>}, zt0, %4[%5]"
+  [(set_attr "stride_type" "luti_strided")]
 )
diff --git a/gcc/config/aarch64/aarch64-sve-builtins-base.cc b/gcc/config/aarch64/aarch64-sve-builtins-base.cc
index 6492da0b383..4e5a88aa03a 100644
--- a/gcc/config/aarch64/aarch64-sve-builtins-base.cc
+++ b/gcc/config/aarch64/aarch64-sve-builtins-base.cc
@@ -1305,7 +1305,7 @@  public:
       icode = convert_optab_handler (maskload_optab,
 				     e.vector_mode (0), e.gp_mode (0));
     else
-      icode = code_for_aarch64_ld1 (e.tuple_mode (0));
+      icode = code_for_aarch64 (UNSPEC_LD1_COUNT, e.tuple_mode (0));
     return e.use_contiguous_load_insn (icode);
   }
 };
@@ -1605,7 +1605,10 @@  public:
   rtx
   expand (function_expander &e) const override
   {
-    insn_code icode = code_for_aarch64_ldnt1 (e.tuple_mode (0));
+    insn_code icode = (e.vectors_per_tuple () == 1
+		       ? code_for_aarch64_ldnt1 (e.vector_mode (0))
+		       : code_for_aarch64 (UNSPEC_LDNT1_COUNT,
+					   e.tuple_mode (0)));
     return e.use_contiguous_load_insn (icode);
   }
 };
@@ -2415,7 +2418,7 @@  public:
       icode = convert_optab_handler (maskstore_optab,
 				     e.vector_mode (0), e.gp_mode (0));
     else
-      icode = code_for_aarch64_st1 (e.tuple_mode (0));
+      icode = code_for_aarch64 (UNSPEC_ST1_COUNT, e.tuple_mode (0));
     return e.use_contiguous_store_insn (icode);
   }
 };
@@ -2533,7 +2536,10 @@  public:
   rtx
   expand (function_expander &e) const override
   {
-    insn_code icode = code_for_aarch64_stnt1 (e.tuple_mode (0));
+    insn_code icode = (e.vectors_per_tuple () == 1
+		       ? code_for_aarch64_stnt1 (e.vector_mode (0))
+		       : code_for_aarch64 (UNSPEC_STNT1_COUNT,
+					   e.tuple_mode (0)));
     return e.use_contiguous_store_insn (icode);
   }
 };
diff --git a/gcc/config/aarch64/aarch64-sve.md b/gcc/config/aarch64/aarch64-sve.md
index d911f657871..fdd14d15096 100644
--- a/gcc/config/aarch64/aarch64-sve.md
+++ b/gcc/config/aarch64/aarch64-sve.md
@@ -1277,17 +1277,6 @@  (define_insn "maskload<mode><vpred>"
   "ld1<Vesize>\t%0.<Vctype>, %2/z, %1"
 )
 
-;; Predicated LD1 (multi), with a count as predicate.
-(define_insn "@aarch64_ld1<mode>"
-  [(set (match_operand:SVE_FULLx24 0 "aligned_register_operand" "=Uw<vector_count>")
-	(unspec:SVE_FULLx24
-	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
-	   (match_operand:SVE_FULLx24 1 "memory_operand" "m")]
-	  UNSPEC_LD1_SVE_COUNT))]
-  "TARGET_SME2 && TARGET_STREAMING"
-  "ld1<Vesize>\t%0, %K2/z, %1"
-)
-
 ;; Unpredicated LD[234].
 (define_expand "vec_load_lanes<mode><vsingle>"
   [(set (match_operand:SVE_STRUCT 0 "register_operand")
@@ -1430,17 +1419,6 @@  (define_insn "@aarch64_ldnt1<mode>"
   "ldnt1<Vesize>\t%0.<Vetype>, %2/z, %1"
 )
 
-;; Predicated contiguous non-temporal load (multi).
-(define_insn "@aarch64_ldnt1<mode>"
-  [(set (match_operand:SVE_FULLx24 0 "aligned_register_operand" "=Uw<vector_count>")
-	(unspec:SVE_FULLx24
-	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
-	   (match_operand:SVE_FULLx24 1 "memory_operand" "m")]
-	  UNSPEC_LDNT1_SVE_COUNT))]
-  "TARGET_SVE"
-  "ldnt1<Vesize>\t%0, %K2/z, %1"
-)
-
 ;; -------------------------------------------------------------------------
 ;; ---- Normal gather loads
 ;; -------------------------------------------------------------------------
@@ -2263,17 +2241,6 @@  (define_insn "maskstore<mode><vpred>"
   "st1<Vesize>\t%1.<Vctype>, %2, %0"
 )
 
-(define_insn "@aarch64_st1<mode>"
-  [(set (match_operand:SVE_FULLx24 0 "memory_operand" "+m")
-	(unspec:SVE_FULLx24
-	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
-	   (match_operand:SVE_FULLx24 1 "aligned_register_operand" "Uw<vector_count>")
-	   (match_dup 0)]
-	  UNSPEC_ST1_SVE_COUNT))]
-  "TARGET_SME2 && TARGET_STREAMING"
-  "st1<Vesize>\t%1, %K2, %0"
-)
-
 ;; Unpredicated ST[234].  This is always a full update, so the dependence
 ;; on the old value of the memory location (via (match_dup 0)) is redundant.
 ;; There doesn't seem to be any obvious benefit to treating the all-true
@@ -2373,17 +2340,6 @@  (define_insn "@aarch64_stnt1<mode>"
   "stnt1<Vesize>\t%1.<Vetype>, %2, %0"
 )
 
-(define_insn "@aarch64_stnt1<mode>"
-  [(set (match_operand:SVE_FULLx24 0 "memory_operand" "+m")
-	(unspec:SVE_FULLx24
-	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
-	   (match_operand:SVE_FULLx24 1 "aligned_register_operand" "Uw<vector_count>")
-	   (match_dup 0)]
-	  UNSPEC_STNT1_SVE_COUNT))]
-  "TARGET_SME2 && TARGET_STREAMING"
-  "stnt1<Vesize>\t%1, %K2, %0"
-)
-
 ;; -------------------------------------------------------------------------
 ;; ---- Normal scatter stores
 ;; -------------------------------------------------------------------------
diff --git a/gcc/config/aarch64/aarch64-sve2.md b/gcc/config/aarch64/aarch64-sve2.md
index 29c41ca3c93..619a95f1c31 100644
--- a/gcc/config/aarch64/aarch64-sve2.md
+++ b/gcc/config/aarch64/aarch64-sve2.md
@@ -21,8 +21,12 @@ 
 ;; The file is organised into the following sections (search for the full
 ;; line):
 ;;
-;; == Moves
+;; == Loads
+;; ---- Multi-register loads predicated by a counter
 ;; ---- Non-temporal gather loads
+;;
+;; == Stores
+;; ---- Multi-register stores predicated by a counter
 ;; ---- Non-temporal scatter stores
 ;;
 ;; == Predicate manipulation
@@ -112,9 +116,85 @@ 
 ;; ---- Optional SM4 extensions
 
 ;; =========================================================================
-;; == Moves
+;; == Loads
 ;; =========================================================================
 
+;; -------------------------------------------------------------------------
+;; ---- Multi-register loads predicated by a counter
+;; -------------------------------------------------------------------------
+;; Includes:
+;; - LD1B
+;; - LD1D
+;; - LD1H
+;; - LD1W
+;; - LDNT1B
+;; - LDNT1D
+;; - LDNT1H
+;; - LDNT1W
+;; -------------------------------------------------------------------------
+
+;; Predicated LD1 (multi), with a count as predicate.
+(define_insn "@aarch64_<optab><mode>"
+  [(set (match_operand:SVE_FULLx24 0 "aligned_register_operand" "=Uw<vector_count>")
+	(unspec:SVE_FULLx24
+	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
+	   (match_operand:SVE_FULLx24 1 "memory_operand" "m")]
+	  LD1_COUNT))]
+  "TARGET_STREAMING_SME2"
+  "<optab><Vesize>\t%0, %K2/z, %1"
+  [(set_attr "stride_type" "ld1_consecutive")]
+)
+
+(define_insn "@aarch64_<optab><mode>_strided2"
+  [(set (match_operand:<VSINGLE> 0 "aarch64_simd_register" "=Uwd")
+	(unspec:<VSINGLE>
+	  [(match_operand:VNx16BI 3 "register_operand" "Uph")
+	   (match_operand:SVE_FULLx2 2 "memory_operand" "m")
+	   (const_int 0)]
+	  LD1_COUNT))
+   (set (match_operand:<VSINGLE> 1 "aarch64_simd_register" "=w")
+	(unspec:<VSINGLE>
+	  [(match_dup 3)
+	   (match_dup 2)
+	   (const_int 1)]
+	  LD1_COUNT))]
+  "TARGET_STREAMING_SME2
+   && aarch64_strided_registers_p (operands, 2, 8)"
+  "<optab><Vesize>\t{%0.<Vetype>, %1.<Vetype>}, %K3/z, %2"
+  [(set_attr "stride_type" "ld1_strided")]
+)
+
+(define_insn "@aarch64_<optab><mode>_strided4"
+  [(set (match_operand:<VSINGLE> 0 "aarch64_simd_register" "=Uwt")
+	(unspec:<VSINGLE>
+	  [(match_operand:VNx16BI 5 "register_operand" "Uph")
+	   (match_operand:SVE_FULLx4 4 "memory_operand" "m")
+	   (const_int 0)]
+	  LD1_COUNT))
+   (set (match_operand:<VSINGLE> 1 "aarch64_simd_register" "=w")
+	(unspec:<VSINGLE>
+	  [(match_dup 5)
+	   (match_dup 4)
+	   (const_int 1)]
+	  LD1_COUNT))
+   (set (match_operand:<VSINGLE> 2 "aarch64_simd_register" "=w")
+	(unspec:<VSINGLE>
+	  [(match_dup 5)
+	   (match_dup 4)
+	   (const_int 2)]
+	  LD1_COUNT))
+   (set (match_operand:<VSINGLE> 3 "aarch64_simd_register" "=w")
+	(unspec:<VSINGLE>
+	  [(match_dup 5)
+	   (match_dup 4)
+	   (const_int 3)]
+	  LD1_COUNT))]
+  "TARGET_STREAMING_SME2
+   && aarch64_strided_registers_p (operands, 4, 4)"
+  "<optab><Vesize>\t{%0.<Vetype>, %1.<Vetype>, %2.<Vetype>, %3.<Vetype>}, %K5/z, %4"
+  [(set_attr "stride_type" "ld1_strided")]
+)
+
 ;; -------------------------------------------------------------------------
 ;; ---- Non-temporal gather loads
 ;; -------------------------------------------------------------------------
@@ -171,6 +251,66 @@  (define_insn_and_rewrite "@aarch64_gather_ldnt_<ANY_EXTEND:optab><SVE_FULL_SDI:m
   }
 )
 
+;; =========================================================================
+;; == Stores
+;; =========================================================================
+
+;; -------------------------------------------------------------------------
+;; ---- Multi-register stores predicated by a counter
+;; -------------------------------------------------------------------------
+;; Includes:
+;; - ST1B
+;; - ST1D
+;; - ST1H
+;; - ST1W
+;; - STNT1B
+;; - STNT1D
+;; - STNT1H
+;; - STNT1W
+;; -------------------------------------------------------------------------
+
+(define_insn "@aarch64_<optab><mode>"
+  [(set (match_operand:SVE_FULLx24 0 "memory_operand" "+m")
+	(unspec:SVE_FULLx24
+	  [(match_operand:VNx16BI 2 "register_operand" "Uph")
+	   (match_operand:SVE_FULLx24 1 "aligned_register_operand" "Uw<vector_count>")
+	   (match_dup 0)]
+	  ST1_COUNT))]
+  "TARGET_STREAMING_SME2"
+  "<optab><Vesize>\t%1, %K2, %0"
+  [(set_attr "stride_type" "st1_consecutive")]
+)
+
+(define_insn "@aarch64_<optab><mode>_strided2"
+  [(set (match_operand:SVE_FULLx24 0 "memory_operand" "+m")
+	(unspec:SVE_FULLx24
+	  [(match_operand:VNx16BI 1 "register_operand" "Uph")
+	   (match_operand:<VSINGLE> 2 "aarch64_simd_register" "Uwd")
+	   (match_operand:<VSINGLE> 3 "aarch64_simd_register" "w")
+	   (match_dup 0)]
+	  ST1_COUNT))]
+  "TARGET_STREAMING_SME2
+   && aarch64_strided_registers_p (operands + 2, 2, 8)"
+  "<optab><Vesize>\t{%2.<Vetype>, %3.<Vetype>}, %K1, %0"
+  [(set_attr "stride_type" "st1_strided")]
+)
+
+(define_insn "@aarch64_<optab><mode>_strided4"
+  [(set (match_operand:SVE_FULLx24 0 "memory_operand" "+m")
+	(unspec:SVE_FULLx24
+	  [(match_operand:VNx16BI 1 "register_operand" "Uph")
+	   (match_operand:<VSINGLE> 2 "aarch64_simd_register" "Uwt")
+	   (match_operand:<VSINGLE> 3 "aarch64_simd_register" "w")
+	   (match_operand:<VSINGLE> 4 "aarch64_simd_register" "w")
+	   (match_operand:<VSINGLE> 5 "aarch64_simd_register" "w")
+	   (match_dup 0)]
+	  ST1_COUNT))]
+  "TARGET_STREAMING_SME2
+   && aarch64_strided_registers_p (operands + 2, 4, 4)"
+  "<optab><Vesize>\t{%2.<Vetype>, %3.<Vetype>, %4.<Vetype>, %5.<Vetype>}, %K1, %0"
+  [(set_attr "stride_type" "st1_strided")]
+)
+
 ;; -------------------------------------------------------------------------
 ;; ---- Non-temporal scatter stores
 ;; -------------------------------------------------------------------------
diff --git a/gcc/config/aarch64/aarch64.cc b/gcc/config/aarch64/aarch64.cc
index 8f50a70083d..5cffdabc62e 100644
--- a/gcc/config/aarch64/aarch64.cc
+++ b/gcc/config/aarch64/aarch64.cc
@@ -22113,6 +22113,19 @@  aarch64_stepped_int_parallel_p (rtx op, int step)
   return true;
 }
 
+/* Return true if OPERANDS[0] to OPERANDS[NUM_OPERANDS - 1] form a
+   sequence of strided registers, with the stride being equal STRIDE.
+   The operands are already known to be FPRs.  */
+bool
+aarch64_strided_registers_p (rtx *operands, unsigned int num_operands,
+			     unsigned int stride)
+{
+  for (unsigned int i = 1; i < num_operands; ++i)
+    if (REGNO (operands[i]) != REGNO (operands[0]) + i * stride)
+      return false;
+  return true;
+}
+
 /* Bounds-check lanes.  Ensure OPERAND lies between LOW (inclusive) and
    HIGH (exclusive).  */
 void
diff --git a/gcc/config/aarch64/aarch64.md b/gcc/config/aarch64/aarch64.md
index d43f8be6e95..f4d4427a3a0 100644
--- a/gcc/config/aarch64/aarch64.md
+++ b/gcc/config/aarch64/aarch64.md
@@ -290,13 +290,9 @@  (define_c_enum "unspec" [
     UNSPEC_NZCV
     UNSPEC_XPACLRI
     UNSPEC_LD1_SVE
-    UNSPEC_LD1_SVE_COUNT
     UNSPEC_ST1_SVE
-    UNSPEC_ST1_SVE_COUNT
     UNSPEC_LDNT1_SVE
-    UNSPEC_LDNT1_SVE_COUNT
     UNSPEC_STNT1_SVE
-    UNSPEC_STNT1_SVE_COUNT
     UNSPEC_LD1RQ
     UNSPEC_LD1_GATHER
     UNSPEC_LDFF1_GATHER
@@ -531,6 +527,26 @@  (define_attr "predicated" "yes,no" (const_string "no"))
 ;; may chose to hold the tracking state encoded in SP.
 (define_attr "speculation_barrier" "true,false" (const_string "false"))
 
+;; This attribute is attached to multi-register instructions that have
+;; two forms: one in which the registers are consecutive and one in
+;; which they are strided.  The consecutive and strided forms have
+;; different define_insns, with different operands.  The mapping between
+;; the RTL of the consecutive form and the RTL of the strided form varies
+;; from one type of instruction to another.
+;;
+;; The attribute gives two pieces of information:
+;; - does the current instruction have consecutive or strided registers?
+;; - what kind of RTL rewrite is needed to move between forms?
+;;
+;; For example, all consecutive LD*1 instructions have the same basic
+;; RTL structure.  The same applies to all strided LD*1 instructions.
+;; The RTL mapping therefore applies at LD1 granularity, rather than
+;; being broken down into individual types of load.
+(define_attr "stride_type"
+  "none,ld1_consecutive,ld1_strided,st1_consecutive,st1_strided,
+   luti_consecutive,luti_strided"
+  (const_string "none"))
+
 ;; -------------------------------------------------------------------
 ;; Pipeline descriptions and scheduling
 ;; -------------------------------------------------------------------
diff --git a/gcc/config/aarch64/aarch64.opt b/gcc/config/aarch64/aarch64.opt
index f5a518202a1..df84c662d24 100644
--- a/gcc/config/aarch64/aarch64.opt
+++ b/gcc/config/aarch64/aarch64.opt
@@ -237,6 +237,24 @@  Enable the division approximation.  Enabling this reduces
 precision of division results to about 16 bits for
 single precision and to 32 bits for double precision.
 
+Enum
+Name(early_ra_scope) Type(enum aarch64_early_ra_scope)
+
+EnumValue
+Enum(early_ra_scope) String(all) Value(AARCH64_EARLY_RA_ALL)
+
+EnumValue
+Enum(early_ra_scope) String(strided) Value(AARCH64_EARLY_RA_STRIDED)
+
+EnumValue
+Enum(early_ra_scope) String(none) Value(AARCH64_EARLY_RA_NONE)
+
+mearly-ra=
+Target RejectNegative Joined Enum(early_ra_scope) Var(aarch64_early_ra) Init(AARCH64_EARLY_RA_NONE) Save
+Specify when to enable an early register allocation pass.  The possibilities
+are: all functions, functions that have access to strided multi-register
+instructions, and no functions.
+
 Enum
 Name(sve_vector_bits) Type(enum aarch64_sve_vector_bits_enum)
 The possible SVE vector lengths:
diff --git a/gcc/config/aarch64/constraints.md b/gcc/config/aarch64/constraints.md
index 8b65cab29fb..f217fca437b 100644
--- a/gcc/config/aarch64/constraints.md
+++ b/gcc/config/aarch64/constraints.md
@@ -56,6 +56,14 @@  (define_register_constraint "Uw4" "FP_REGS"
   "4-tuple-aligned floating point and SIMD vector registers."
   "regno % 4 == 0")
 
+(define_register_constraint "Uwd" "FP_REGS"
+  "@internal The first register in a tuple of 2 strided FPRs."
+  "(regno & 0x8) == 0")
+
+(define_register_constraint "Uwt" "FP_REGS"
+  "@internal The first register in a tuple of 4 strided FPRs."
+  "(regno & 0xc) == 0")
+
 (define_register_constraint "Upa" "PR_REGS"
   "SVE predicate registers p0 - p15.")
 
diff --git a/gcc/config/aarch64/iterators.md b/gcc/config/aarch64/iterators.md
index 9bbcacd9d37..4377188303c 100644
--- a/gcc/config/aarch64/iterators.md
+++ b/gcc/config/aarch64/iterators.md
@@ -926,6 +926,8 @@  (define_c_enum "unspec"
     UNSPEC_FMLSLT	; Used in aarch64-sve2.md.
     UNSPEC_HISTCNT	; Used in aarch64-sve2.md.
     UNSPEC_HISTSEG	; Used in aarch64-sve2.md.
+    UNSPEC_LD1_COUNT	; Used in aarch64-sve2.md.
+    UNSPEC_LDNT1_COUNT	; Used in aarch64-sve2.md.
     UNSPEC_MATCH	; Used in aarch64-sve2.md.
     UNSPEC_NMATCH	; Used in aarch64-sve2.md.
     UNSPEC_PEXT		; Used in aarch64-sve2.md.
@@ -994,6 +996,8 @@  (define_c_enum "unspec"
     UNSPEC_SSUBLTB	; Used in aarch64-sve2.md.
     UNSPEC_SSUBWB	; Used in aarch64-sve2.md.
     UNSPEC_SSUBWT	; Used in aarch64-sve2.md.
+    UNSPEC_ST1_COUNT	; Used in aarch64-sve2.md.
+    UNSPEC_STNT1_COUNT	; Used in aarch64-sve2.md.
     UNSPEC_SUBHNB	; Used in aarch64-sve2.md.
     UNSPEC_SUBHNT	; Used in aarch64-sve2.md.
     UNSPEC_TBL2		; Used in aarch64-sve2.md.
@@ -3163,6 +3167,10 @@  (define_int_iterator SVE_PRED_LOAD [UNSPEC_PRED_X UNSPEC_LD1_SVE])
 
 (define_int_attr pred_load [(UNSPEC_PRED_X "_x") (UNSPEC_LD1_SVE "")])
 
+(define_int_iterator LD1_COUNT [UNSPEC_LD1_COUNT UNSPEC_LDNT1_COUNT])
+
+(define_int_iterator ST1_COUNT [UNSPEC_ST1_COUNT UNSPEC_STNT1_COUNT])
+
 (define_int_iterator SVE2_U32_UNARY [UNSPEC_URECPE UNSPEC_RSQRTE])
 
 (define_int_iterator SVE2_INT_UNARY_NARROWB [UNSPEC_SQXTNB
@@ -3578,6 +3586,8 @@  (define_int_attr optab [(UNSPEC_ANDF "and")
 			(UNSPEC_FEXPA "fexpa")
 			(UNSPEC_FTSMUL "ftsmul")
 			(UNSPEC_FTSSEL "ftssel")
+			(UNSPEC_LD1_COUNT "ld1")
+			(UNSPEC_LDNT1_COUNT "ldnt1")
 			(UNSPEC_PMULLB "pmullb")
 			(UNSPEC_PMULLB_PAIR "pmullb_pair")
 			(UNSPEC_PMULLT "pmullt")
@@ -3641,6 +3651,8 @@  (define_int_attr optab [(UNSPEC_ANDF "and")
 			(UNSPEC_SQRDCMLAH90 "sqrdcmlah90")
 			(UNSPEC_SQRDCMLAH180 "sqrdcmlah180")
 			(UNSPEC_SQRDCMLAH270 "sqrdcmlah270")
+			(UNSPEC_ST1_COUNT "st1")
+			(UNSPEC_STNT1_COUNT "stnt1")
 			(UNSPEC_TRN1Q "trn1q")
 			(UNSPEC_TRN2Q "trn2q")
 			(UNSPEC_UMATMUL "umatmul")
diff --git a/gcc/config/aarch64/t-aarch64 b/gcc/config/aarch64/t-aarch64
index 0d96ae3d0b2..446a4fb2e91 100644
--- a/gcc/config/aarch64/t-aarch64
+++ b/gcc/config/aarch64/t-aarch64
@@ -194,6 +194,12 @@  aarch64-cc-fusion.o: $(srcdir)/config/aarch64/aarch64-cc-fusion.cc \
 	$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
 		$(srcdir)/config/aarch64/aarch64-cc-fusion.cc
 
+aarch64-early-ra.o: $(srcdir)/config/aarch64/aarch64-early-ra.cc \
+    $(CONFIG_H) $(SYSTEM_H) $(CORETYPES_H) $(BACKEND_H) $(RTL_H) $(DF_H) \
+    $(RTL_SSA_H) tree-pass.h
+	$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+		$(srcdir)/config/aarch64/aarch64-early-ra.cc
+
 comma=,
 MULTILIB_OPTIONS    = $(subst $(comma),/, $(patsubst %, mabi=%, $(subst $(comma),$(comma)mabi=,$(TM_MULTILIB_CONFIG))))
 MULTILIB_DIRNAMES   = $(subst $(comma), ,$(TM_MULTILIB_CONFIG))
diff --git a/gcc/doc/invoke.texi b/gcc/doc/invoke.texi
index 43341fe6e5e..9d4a0b2820a 100644
--- a/gcc/doc/invoke.texi
+++ b/gcc/doc/invoke.texi
@@ -21224,6 +21224,21 @@  Enable compiler hardening against straight line speculation (SLS).
 In addition, @samp{-mharden-sls=all} enables all SLS hardening while
 @samp{-mharden-sls=none} disables all SLS hardening.
 
+@opindex mearly-ra
+@item -mearly-ra=@var{scope}
+Determine when to enable an early register allocation pass.  This pass runs
+before instruction scheduling and tries to find a spill-free allocation of
+floating-point and vector code.  It also tries to make use of strided
+multi-register instructions, such as SME2's strided LD1 and ST1.
+
+The possible values of @var{scope} are: @var{all}, which runs the pass on
+all functions; @var{strided}, which runs the pass on functions that have
+access to strided multi-register instructions; and @var{none}, which
+disables the pass.
+
+@option{-mearly-ra=all} is the default for @option{-O2} and above, and for
+@option{-Os}.  @option{-mearly-ra=none} is the default otherwise.
+
 @opindex msve-vector-bits
 @item -msve-vector-bits=@var{bits}
 Specify the number of bits in an SVE vector register.  This option only has
diff --git a/gcc/testsuite/gcc.target/aarch64/ldp_stp_16.c b/gcc/testsuite/gcc.target/aarch64/ldp_stp_16.c
index ba14194d0a4..f1f46e051a8 100644
--- a/gcc/testsuite/gcc.target/aarch64/ldp_stp_16.c
+++ b/gcc/testsuite/gcc.target/aarch64/ldp_stp_16.c
@@ -125,8 +125,9 @@  CONS4_FN (2, float);
 
 /*
 ** cons4_4_float:
-**	ins	v([0-9]+)\.s.*
-**	...
+**	ins	v[0-9]+\.s[^\n]+
+**	ins	v[0-9]+\.s[^\n]+
+**	zip1	v([0-9]+).4s, [^\n]+
 **	stp	q\1, q\1, \[x0\]
 **	stp	q\1, q\1, \[x0, #?32\]
 **	ret
diff --git a/gcc/testsuite/gcc.target/aarch64/pr109078.c b/gcc/testsuite/gcc.target/aarch64/pr109078.c
new file mode 100644
index 00000000000..0d756722239
--- /dev/null
+++ b/gcc/testsuite/gcc.target/aarch64/pr109078.c
@@ -0,0 +1,59 @@ 
+/* { dg-options "-Ofast" } */
+/* { dg-final { check-function-bodies "**" "" "" } } */
+
+#include <arm_neon.h>
+#include <stddef.h>
+#include <stdbool.h>
+
+/*
+** simple_gemm:
+**	...
+**	tbnz	[^\n]+
+**	ld1	[^\n]+
+**	fadd	[^\n]+
+**	fadd	[^\n]+
+**	st1	[^\n]+
+**	ret
+*/
+void simple_gemm(
+  float* restrict out,
+  float const* restrict a,
+  float const* restrict b,
+  size_t k, bool zero_out
+) {
+  register float32x4x2_t o0;
+  o0.val[0] = vdupq_n_f32(0.0f);
+  o0.val[1] = vdupq_n_f32(0.0f);
+
+  // begin dot
+  {
+    register float32x4_t a0;
+    register float32x4x2_t b0;
+
+    while (k >= 1) {
+      b0 = vld1q_f32_x2(b);
+      a0 = vdupq_n_f32(a[0]);
+
+      o0.val[0] = vfmaq_f32(o0.val[0], a0, b0.val[0]);
+      o0.val[1] = vfmaq_f32(o0.val[1], a0, b0.val[1]);
+
+      b += 8;
+      a += 1;
+      k -= 1;
+    }
+  } // end dot
+
+  // begin writeback
+  {
+    if (!zero_out) {
+      register float32x4x2_t t0;
+      t0 = vld1q_f32_x2(out);
+      
+      o0.val[0] = vaddq_f32(o0.val[0], t0.val[0]);
+      o0.val[1] = vaddq_f32(o0.val[1], t0.val[1]);
+    }
+
+    // TODO: both clang and gcc generates redundant mov because of bad register allocation.
+    vst1q_f32_x2(out, o0);
+  } // end writeback
+}
diff --git a/gcc/testsuite/gcc.target/aarch64/pr109391.c b/gcc/testsuite/gcc.target/aarch64/pr109391.c
new file mode 100644
index 00000000000..232c43097c6
--- /dev/null
+++ b/gcc/testsuite/gcc.target/aarch64/pr109391.c
@@ -0,0 +1,14 @@ 
+/* { dg-options "-Ofast" } */
+
+#include <arm_neon.h>
+
+int16x8x3_t bsl(const uint16x8x3_t *check, const int16x8x3_t *in1,
+                              const int16x8x3_t *in2) {
+  int16x8x3_t out;
+  for (uint32_t j = 0; j < 3; j++) {
+    out.val[j] = vbslq_s16(check->val[j], in1->val[j], in2->val[j]);
+  }
+  return out;
+}
+
+/* { dg-final { scan-assembler-not {\tmov\t} } } */
diff --git a/gcc/testsuite/gcc.target/aarch64/sme/strided_1.c b/gcc/testsuite/gcc.target/aarch64/sme/strided_1.c
new file mode 100644
index 00000000000..3620fff3668
--- /dev/null
+++ b/gcc/testsuite/gcc.target/aarch64/sme/strided_1.c
@@ -0,0 +1,253 @@ 
+// { dg-options "-O2 -fno-schedule-insns -fno-schedule-insns2" }
+// { dg-final { check-function-bodies "**" "" } }
+
+#include <arm_sme.h>
+
+#pragma GCC target "+sme2"
+
+// This file deliberately contains nonsense code.
+
+/*
+** test1:
+**	ptrue	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	ret
+*/
+void test1(int32_t *dest, int32_t *src) __arm_streaming
+{
+  svcount_t pg = svptrue_c32();
+  svint32x4_t l0 = svld1_vnum_x4(pg, src, 0);
+  svint32x4_t l1 = svld1_vnum_x4(pg, src, 4);
+  svint32x4_t l2 = svld1_vnum_x4(pg, src, 8);
+  svint32x4_t l3 = svld1_vnum_x4(pg, src, 12);
+  svst1_vnum(pg, dest, 0,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 4,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 8,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+  svst1_vnum(pg, dest, 12,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+}
+
+/*
+** test2:
+**	ptrue	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	ld1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	st1w	[^\n]+
+**	ret
+*/
+void test2(int32_t *dest, int32_t *src) __arm_streaming
+{
+  svcount_t pg = svptrue_c32();
+  svint32x4_t l0 = svld1_vnum_x4(pg, src, 0);
+  svint32x4_t l1 = svld1_vnum_x4(pg, src, 4);
+  svint32x4_t l2 = svld1_vnum_x4(pg, src, 8);
+  svint32x4_t l3 = svld1_vnum_x4(pg, src, 12);
+  svst1_vnum(pg, dest, 0,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 4,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 8,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+  svst1_vnum(pg, dest, 12,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+  svst1_vnum(pg, dest, 16,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 20,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 24,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+  svst1_vnum(pg, dest, 28,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+}
+
+/*
+** test3:
+**	ptrue	([^\n]+)\.s
+**	ld1w	{z16\.s - z19\.s}, \1/z, \[x1\]
+**	ld1w	{z20\.s - z23\.s}, \1/z, \[x1, #4, mul vl\]
+**	ld1w	{z24\.s - z27\.s}, \1/z, \[x1, #8, mul vl\]
+**	ld1w	{z28\.s - z31\.s}, \1/z, \[x1, #12, mul vl\]
+**	sclamp	[^\n]+
+**	st1w	{z19\.s, z23\.s, z27\.s, z31\.s}, \1, \[x0, #12, mul vl\]
+**	st1w	{z16\.s, z20\.s, z24\.s, z28\.s}, \1, \[x0\]
+**	st1w	{z17\.s, z21\.s, z25\.s, z29\.s}, \1, \[x0, #4, mul vl\]
+**	st1w	{z18\.s, z22\.s, z26\.s, z30\.s}, \1, \[x0, #8, mul vl\]
+**	ret
+*/
+void test3(int32_t *dest, int32_t *src) __arm_streaming
+{
+  svcount_t pg = svptrue_c32();
+  svint32x4_t al0 = svld1_vnum_x4(pg, src, 0);
+  svint32x4_t l1 = svld1_vnum_x4(pg, src, 4);
+  svint32x4_t l2 = svld1_vnum_x4(pg, src, 8);
+  svint32x4_t l3 = svld1_vnum_x4(pg, src, 12);
+  svint32x4_t l0 = svclamp(al0, svget4(l3, 0), svget4(l3, 1));
+  svst1_vnum(pg, dest, 12,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+  svst1_vnum(pg, dest, 0,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 4,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 8,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+}
+
+/*
+** test4:
+**	ptrue	([^\n]+)\.s
+**	ld1w	{z16\.s - z19\.s}, \1/z, \[x1\]
+**	ld1w	{z20\.s - z23\.s}, \1/z, \[x1, #4, mul vl\]
+**	ld1w	{z24\.s - z27\.s}, \1/z, \[x1, #8, mul vl\]
+**	ld1w	{z28\.s - z31\.s}, \1/z, \[x1, #12, mul vl\]
+**	sclamp	[^\n]+
+**	st1w	{z16\.s, z20\.s, z24\.s, z28\.s}, \1, \[x0\]
+**	st1w	{z17\.s, z21\.s, z25\.s, z29\.s}, \1, \[x0, #4, mul vl\]
+**	st1w	{z18\.s, z22\.s, z26\.s, z30\.s}, \1, \[x0, #8, mul vl\]
+**	st1w	{z19\.s, z23\.s, z27\.s, z31\.s}, \1, \[x0, #12, mul vl\]
+**	st1w	{z16\.s, z20\.s, z24\.s, z28\.s}, \1, \[x0, #16, mul vl\]
+**	st1w	{z17\.s, z21\.s, z25\.s, z29\.s}, \1, \[x0, #20, mul vl\]
+**	st1w	{z18\.s, z22\.s, z26\.s, z30\.s}, \1, \[x0, #24, mul vl\]
+**	st1w	{z19\.s, z23\.s, z27\.s, z31\.s}, \1, \[x0, #28, mul vl\]
+**	...
+**	ret
+*/
+void test4(int32_t *dest, int32_t *src) __arm_streaming
+{
+  svcount_t pg = svptrue_c32();
+  svint32x4_t l0 = svld1_vnum_x4(pg, src, 0);
+  svint32x4_t l1 = svld1_vnum_x4(pg, src, 4);
+  svint32x4_t l2 = svld1_vnum_x4(pg, src, 8);
+  svint32x4_t l3 = svld1_vnum_x4(pg, src, 12);
+  l0 = svclamp(l0, svget4(l3, 0), svget4(l3, 1));
+  svst1_vnum(pg, dest, 0,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 4,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 8,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+  svst1_vnum(pg, dest, 12,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+  svst1_vnum(pg, dest, 16,
+	     svcreate4(svget4(l0, 0), svget4(l1, 0),
+		       svget4(l2, 0), svget4(l3, 0)));
+  svst1_vnum(pg, dest, 20,
+	     svcreate4(svget4(l0, 1), svget4(l1, 1),
+		       svget4(l2, 1), svget4(l3, 1)));
+  svst1_vnum(pg, dest, 24,
+	     svcreate4(svget4(l0, 2), svget4(l1, 2),
+		       svget4(l2, 2), svget4(l3, 2)));
+  svst1_vnum(pg, dest, 28,
+	     svcreate4(svget4(l0, 3), svget4(l1, 3),
+		       svget4(l2, 3), svget4(l3, 3)));
+}
+
+/*
+** test5:
+**	ptrue	[^\n]+
+**	ld1b	[^\n]+
+**	ld1b	[^\n]+
+**	ptrue	([^\n]+)\.s
+**	ld1w	[^\n]+, \1/z, \[x0\]
+**	luti4	{z16\.s, z20\.s, z24\.s, z28\.s}, zt0, z[0-9]+\[0\]
+**	luti4	{z17\.s, z21\.s, z25\.s, z29\.s}, zt0, z[0-9]+\[1\]
+**	luti4	{z18\.s, z22\.s, z26\.s, z30\.s}, zt0, z[0-9]+\[0\]
+**	luti4	{z19\.s, z23\.s, z27\.s, z31\.s}, zt0, z[0-9]+\[1\]
+**	uclamp	{z16\.s - z19\.s}, z[0-9]+\.s, z[0-9]+\.s
+**	uclamp	{z20\.s - z23\.s}, z[0-9]+\.s, z[0-9]+\.s
+**	uclamp	{z24\.s - z27\.s}, z[0-9]+\.s, z[0-9]+\.s
+**	uclamp	{z28\.s - z31\.s}, z[0-9]+\.s, z[0-9]+\.s
+**	st1w	{z16\.s - z19\.s}, \1, \[x0\]
+**	st1w	{z20\.s - z23\.s}, \1, \[x0, #4, mul vl\]
+**	st1w	{z24\.s - z27\.s}, \1, \[x0, #8, mul vl\]
+**	st1w	{z28\.s - z31\.s}, \1, \[x0, #12, mul vl\]
+**	ret
+*/
+void test5(uint32_t *dest, uint8_t *indices)
+  __arm_streaming __arm_preserves("za") __arm_inout("zt0")
+{
+  svuint8_t indices1 = svld1_vnum(svptrue_b8(), indices, 0);
+  svuint8_t indices2 = svld1_vnum(svptrue_b8(), indices, 2);
+
+  svcount_t pg = svptrue_c32();
+  svuint32x4_t bounds = svld1_x4(pg, dest);
+
+  svuint32x4_t x0 = svluti4_lane_zt_u32_x4(0, indices1, 0);
+  svuint32x4_t x1 = svluti4_lane_zt_u32_x4(0, indices1, 1);
+  svuint32x4_t x2 = svluti4_lane_zt_u32_x4(0, indices2, 0);
+  svuint32x4_t x3 = svluti4_lane_zt_u32_x4(0, indices2, 1);
+
+  svuint32x4_t y0 = svcreate4(svget4(x0, 0), svget4(x1, 0),
+			      svget4(x2, 0), svget4(x3, 0));
+  svuint32x4_t y1 = svcreate4(svget4(x0, 1), svget4(x1, 1),
+			      svget4(x2, 1), svget4(x3, 1));
+  svuint32x4_t y2 = svcreate4(svget4(x0, 2), svget4(x1, 2),
+			      svget4(x2, 2), svget4(x3, 2));
+  svuint32x4_t y3 = svcreate4(svget4(x0, 3), svget4(x1, 3),
+			      svget4(x2, 3), svget4(x3, 3));
+
+  y0 = svclamp(y0, svget4(bounds, 0), svget4(bounds, 1));
+  y1 = svclamp(y1, svget4(bounds, 2), svget4(bounds, 3));
+  y2 = svclamp(y2, svget4(bounds, 0), svget4(bounds, 1));
+  y3 = svclamp(y3, svget4(bounds, 2), svget4(bounds, 3));
+
+  svst1_vnum(pg, dest, 0, y0);
+  svst1_vnum(pg, dest, 4, y1);
+  svst1_vnum(pg, dest, 8, y2);
+  svst1_vnum(pg, dest, 12, y3);
+}
+
+/*
+** test6:
+**	ptrue	[^\n]+
+**	ld1h	[^\n]+
+**	sclamp	[^\n]+
+**	st1h	[^\n]+
+**	ret
+*/
+void test6(int16_t *ptr)
+  __arm_streaming __arm_preserves("za") __arm_inout("zt0")
+{
+  svcount_t pg = svptrue_c16();
+  svint16x4_t x0 = svld1_x4(pg, ptr);
+  x0 = svclamp(x0, svget4(x0, 0), svget4(x0, 3));
+  svst1(pg, ptr, x0);
+}
diff --git a/gcc/testsuite/gcc.target/aarch64/sve/pr106694.c b/gcc/testsuite/gcc.target/aarch64/sve/pr106694.c
new file mode 100644
index 00000000000..85a69d0372c
--- /dev/null
+++ b/gcc/testsuite/gcc.target/aarch64/sve/pr106694.c
@@ -0,0 +1,28 @@ 
+/* { dg-options "-Ofast" } */
+
+#include "arm_sve.h"
+
+int coalesce (svbool_t pg, int64_t* base, int n, int64_t *in1, int64_t *in2, int64_t*out)
+{
+  svint64x4_t result = svld4_s64 (pg, base);
+  svint64_t v0 = svget4_s64(result, 0);
+  svint64_t v1 = svget4_s64(result, 1);
+  svint64_t v2 = svget4_s64(result, 2);
+  svint64_t v3 = svget4_s64(result, 3);
+
+  for (int i = 0; i < n; i += 1)
+    {
+        svint64_t v18 = svld1_s64(pg, in1);
+        svint64_t v19 = svld1_s64(pg, in2);
+        v0 = svmad_s64_z(pg, v0, v18, v19);
+        v1 = svmad_s64_z(pg, v1, v18, v19);
+        v2 = svmad_s64_z(pg, v2, v18, v19);
+        v3 = svmad_s64_z(pg, v3, v18, v19);
+    }
+  svst1_s64(pg, out+0,v0);
+  svst1_s64(pg, out+1,v1);
+  svst1_s64(pg, out+2,v2);
+  svst1_s64(pg, out+3,v3);
+}
+
+/* { dg-final { scan-assembler-not {\tmov\tz} } } */
diff --git a/gcc/testsuite/gcc.target/aarch64/sve/shift_1.c b/gcc/testsuite/gcc.target/aarch64/sve/shift_1.c
index 5ee66da15ca..fe819c47a5c 100644
--- a/gcc/testsuite/gcc.target/aarch64/sve/shift_1.c
+++ b/gcc/testsuite/gcc.target/aarch64/sve/shift_1.c
@@ -71,9 +71,9 @@  DO_IMMEDIATE_OPS (0, int64_t, 0);
 DO_IMMEDIATE_OPS (5, int64_t, 5);
 DO_IMMEDIATE_OPS (63, int64_t, 63);
 
-/* { dg-final { scan-assembler-times {\tasr\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
-/* { dg-final { scan-assembler-times {\tlsr\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
-/* { dg-final { scan-assembler-times {\tlsl\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
+/* { dg-final { scan-assembler-times {\tasrr?\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
+/* { dg-final { scan-assembler-times {\tlsrr?\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
+/* { dg-final { scan-assembler-times {\tlslr?\tz[0-9]+\.s, p[0-7]/m, z[0-9]+\.s, z[0-9]+\.s\n} 2 } } */
 
 /* { dg-final { scan-assembler-times {\tasrr?\tz[0-9]+\.d, p[0-7]/m, z[0-9]+\.d, z[0-9]+\.d\n} 2 } } */
 /* { dg-final { scan-assembler-times {\tlsrr?\tz[0-9]+\.d, p[0-7]/m, z[0-9]+\.d, z[0-9]+\.d\n} 2 } } */