@@ -1563,6 +1563,7 @@ OBJS = \
ipa-strub.o \
ipa.o \
ira.o \
+ pair-fusion.o \
ira-build.o \
ira-costs.o \
ira-conflicts.o \
@@ -17,18 +17,7 @@
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
-#define INCLUDE_ALGORITHM
-#define INCLUDE_FUNCTIONAL
-#define INCLUDE_LIST
-#define INCLUDE_TYPE_TRAITS
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "rtl.h"
-#include "df.h"
-#include "rtl-iter.h"
-#include "rtl-ssa.h"
+#include "pair-fusion.h"
#include "cfgcleanup.h"
#include "tree-pass.h"
#include "ordered-hash-map.h"
@@ -38,264 +27,11 @@
#include "print-tree.h"
#include "insn-attr.h"
-using namespace rtl_ssa;
-
static constexpr HOST_WIDE_INT LDP_IMM_BITS = 7;
static constexpr HOST_WIDE_INT LDP_IMM_SIGN_BIT = (1 << (LDP_IMM_BITS - 1));
static constexpr HOST_WIDE_INT LDP_MAX_IMM = LDP_IMM_SIGN_BIT - 1;
static constexpr HOST_WIDE_INT LDP_MIN_IMM = -LDP_MAX_IMM - 1;
-// We pack these fields (load_p, fpsimd_p, and size) into an integer
-// (LFS) which we use as part of the key into the main hash tables.
-//
-// The idea is that we group candidates together only if they agree on
-// the fields below. Candidates that disagree on any of these
-// properties shouldn't be merged together.
-struct lfs_fields
-{
- bool load_p;
- bool fpsimd_p;
- unsigned size;
-};
-
-using insn_list_t = std::list<insn_info *>;
-using insn_iter_t = insn_list_t::iterator;
-
-// Information about the accesses at a given offset from a particular
-// base. Stored in an access_group, see below.
-struct access_record
-{
- poly_int64 offset;
- std::list<insn_info *> cand_insns;
- std::list<access_record>::iterator place;
-
- access_record (poly_int64 off) : offset (off) {}
-};
-
-// A group of accesses where adjacent accesses could be ldp/stp
-// candidates. The splay tree supports efficient insertion,
-// while the list supports efficient iteration.
-struct access_group
-{
- splay_tree<access_record *> tree;
- std::list<access_record> list;
-
- template<typename Alloc>
- inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn);
-};
-
-// Information about a potential base candidate, used in try_fuse_pair.
-// There may be zero, one, or two viable RTL bases for a given pair.
-struct base_cand
-{
- // DEF is the def of the base register to be used by the pair.
- def_info *def;
-
- // FROM_INSN is -1 if the base candidate is already shared by both
- // candidate insns. Otherwise it holds the index of the insn from
- // which the base originated.
- //
- // In the case that the base is shared, either DEF is already used
- // by both candidate accesses, or both accesses see different versions
- // of the same regno, in which case DEF is the def consumed by the
- // first candidate access.
- int from_insn;
-
- // To form a pair, we do so by moving the first access down and the second
- // access up. To determine where to form the pair, and whether or not
- // it is safe to form the pair, we track instructions which cannot be
- // re-ordered past due to either dataflow or alias hazards.
- //
- // Since we allow changing the base used by an access, the choice of
- // base can change which instructions act as re-ordering hazards for
- // this pair (due to different dataflow). We store the initial
- // dataflow hazards for this choice of base candidate in HAZARDS.
- //
- // These hazards act as re-ordering barriers to each candidate insn
- // respectively, in program order.
- //
- // Later on, when we take alias analysis into account, we narrow
- // HAZARDS accordingly.
- insn_info *hazards[2];
-
- base_cand (def_info *def, int insn)
- : def (def), from_insn (insn), hazards {nullptr, nullptr} {}
-
- base_cand (def_info *def) : base_cand (def, -1) {}
-
- // Test if this base candidate is viable according to HAZARDS.
- bool viable () const
- {
- return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]);
- }
-};
-
-// Information about an alternate base. For a def_info D, it may
-// instead be expressed as D = BASE + OFFSET.
-struct alt_base
-{
- def_info *base;
- poly_int64 offset;
-};
-
-// Virtual base class for load/store walkers used in alias analysis.
-struct alias_walker
-{
- virtual bool conflict_p (int &budget) const = 0;
- virtual insn_info *insn () const = 0;
- virtual bool valid () const = 0;
- virtual void advance () = 0;
-};
-
-// When querying should_handle_writeback, this enum is used to
-// qualify which opportunities we are asking about.
-enum class writeback {
- // Only those writeback opportunities that arise from existing
- // auto-increment accesses.
- EXISTING,
-
- // All writeback opportunities, including those that involve folding
- // base register updates into a non-writeback pair.
- ALL
-};
-
-// This class can be overriden by targets to give a pass that fuses
-// adjacent loads and stores into load/store pair instructions.
-//
-// The target can override the various virtual functions to customize
-// the behaviour of the pass as appropriate for the target.
-struct pair_fusion {
- pair_fusion ();
-
- // Given:
- // - an rtx REG_OP, the non-memory operand in a load/store insn,
- // - a machine_mode MEM_MODE, the mode of the MEM in that insn, and
- // - a boolean LOAD_P (true iff the insn is a load), then:
- // return true if the access should be considered an FP/SIMD access.
- // Such accesses are segregated from GPR accesses, since we only want
- // to form pairs for accesses that use the same register file.
- virtual bool fpsimd_op_p (rtx, machine_mode, bool)
- {
- return false;
- }
-
- // Return true if we should consider forming pairs from memory
- // accesses with operand mode MODE at this stage in compilation.
- virtual bool pair_operand_mode_ok_p (machine_mode mode) = 0;
-
- // Return true iff REG_OP is a suitable register operand for a paired
- // memory access, where LOAD_P is true if we're asking about loads and
- // false for stores. MODE gives the mode of the operand.
- virtual bool pair_reg_operand_ok_p (bool load_p, rtx reg_op,
- machine_mode mode) = 0;
-
- // Return alias check limit.
- // This is needed to avoid unbounded quadratic behaviour when
- // performing alias analysis.
- virtual int pair_mem_alias_check_limit () = 0;
-
- // Return true if we should try to handle writeback opportunities.
- // WHICH determines the kinds of writeback opportunities the caller
- // is asking about.
- virtual bool should_handle_writeback (enum writeback which) = 0;
-
- // Given BASE_MEM, the mem from the lower candidate access for a pair,
- // and LOAD_P (true if the access is a load), check if we should proceed
- // to form the pair given the target's code generation policy on
- // paired accesses.
- virtual bool pair_mem_ok_with_policy (rtx base_mem, bool load_p) = 0;
-
- // Generate the pattern for a paired access. PATS gives the patterns
- // for the individual memory accesses (which by this point must share a
- // common base register). If WRITEBACK is non-NULL, then this rtx
- // describes the update to the base register that should be performed by
- // the resulting insn. LOAD_P is true iff the accesses are loads.
- virtual rtx gen_pair (rtx *pats, rtx writeback, bool load_p) = 0;
-
- // Return true if INSN is a paired memory access. If so, set LOAD_P to
- // true iff INSN is a load pair.
- virtual bool pair_mem_insn_p (rtx_insn *insn, bool &load_p) = 0;
-
- // Return true if we should track loads.
- virtual bool track_loads_p ()
- {
- return true;
- }
-
- // Return true if we should track stores.
- virtual bool track_stores_p ()
- {
- return true;
- }
-
- // Return true if OFFSET is in range for a paired memory access.
- virtual bool pair_mem_in_range_p (HOST_WIDE_INT offset) = 0;
-
- // Given a load/store pair insn in PATTERN, unpack the insn, storing
- // the register operands in REGS, and returning the mem. LOAD_P is
- // true for loads and false for stores.
- virtual rtx destructure_pair (rtx regs[2], rtx pattern, bool load_p) = 0;
-
- // Given a pair mem in MEM, register operands in REGS, and an rtx
- // representing the effect of writeback on the base register in WB_EFFECT,
- // return an insn representing a writeback variant of this pair.
- // LOAD_P is true iff the pair is a load.
- // This is used when promoting existing non-writeback pairs to writeback
- // variants.
- virtual rtx gen_promote_writeback_pair (rtx wb_effect, rtx mem,
- rtx regs[2], bool load_p) = 0;
-
- void process_block (bb_info *bb);
- inline insn_info *find_trailing_add (insn_info *insns[2],
- const insn_range_info &pair_range,
- int initial_writeback,
- rtx *writeback_effect,
- def_info **add_def,
- def_info *base_def,
- poly_int64 initial_offset,
- unsigned access_size);
- inline int get_viable_bases (insn_info *insns[2],
- vec<base_cand> &base_cands,
- rtx cand_mems[2],
- unsigned access_size,
- bool reversed);
- inline void do_alias_analysis (insn_info *alias_hazards[4],
- alias_walker *walkers[4],
- bool load_p);
- inline void try_promote_writeback (insn_info *insn, bool load_p);
- inline void run ();
- ~pair_fusion ();
-};
-
-pair_fusion::pair_fusion ()
-{
- calculate_dominance_info (CDI_DOMINATORS);
- df_analyze ();
- crtl->ssa = new rtl_ssa::function_info (cfun);
-}
-
-pair_fusion::~pair_fusion ()
-{
- if (crtl->ssa->perform_pending_updates ())
- cleanup_cfg (0);
-
- free_dominance_info (CDI_DOMINATORS);
-
- delete crtl->ssa;
- crtl->ssa = nullptr;
-}
-
-// This is the main function to start the pass.
-void
-pair_fusion::run ()
-{
- if (!track_loads_p () && !track_stores_p ())
- return;
-
- for (auto bb : crtl->ssa->bbs ())
- process_block (bb);
-}
-
struct aarch64_pair_fusion : public pair_fusion
{
bool fpsimd_op_p (rtx reg_op, machine_mode mem_mode,
@@ -367,83 +103,6 @@ struct aarch64_pair_fusion : public pair_fusion
rtx destructure_pair (rtx regs[2], rtx pattern, bool load_p) override final;
};
-// State used by the pass for a given basic block.
-struct pair_fusion_bb_info
-{
- using def_hash = nofree_ptr_hash<def_info>;
- using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>;
- using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>;
-
- // Map of <tree base, LFS> -> access_group.
- ordered_hash_map<expr_key_t, access_group> expr_map;
-
- // Map of <RTL-SSA def_info *, LFS> -> access_group.
- ordered_hash_map<def_key_t, access_group> def_map;
-
- // Given the def_info for an RTL base register, express it as an offset from
- // some canonical base instead.
- //
- // Canonicalizing bases in this way allows us to identify adjacent accesses
- // even if they see different base register defs.
- hash_map<def_hash, alt_base> canon_base_map;
-
- static const size_t obstack_alignment = sizeof (void *);
-
- pair_fusion_bb_info (bb_info *bb, pair_fusion *d)
- : m_bb (bb), m_pass (d), m_emitted_tombstone (false)
- {
- obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE,
- obstack_alignment, obstack_chunk_alloc,
- obstack_chunk_free);
- }
- ~pair_fusion_bb_info ()
- {
- obstack_free (&m_obstack, nullptr);
-
- if (m_emitted_tombstone)
- {
- bitmap_release (&m_tombstone_bitmap);
- bitmap_obstack_release (&m_bitmap_obstack);
- }
- }
-
- inline void track_access (insn_info *, bool load, rtx mem);
- inline void transform ();
- inline void cleanup_tombstones ();
-
-private:
- obstack m_obstack;
- bb_info *m_bb;
- pair_fusion *m_pass;
-
- // State for keeping track of tombstone insns emitted for this BB.
- bitmap_obstack m_bitmap_obstack;
- bitmap_head m_tombstone_bitmap;
- bool m_emitted_tombstone;
-
- inline splay_tree_node<access_record *> *node_alloc (access_record *);
-
- template<typename Map>
- inline void traverse_base_map (Map &map);
- inline void transform_for_base (int load_size, access_group &group);
-
- inline void merge_pairs (insn_list_t &, insn_list_t &,
- bool load_p, unsigned access_size);
-
- inline bool try_fuse_pair (bool load_p, unsigned access_size,
- insn_info *i1, insn_info *i2);
-
- inline bool fuse_pair (bool load_p, unsigned access_size,
- int writeback,
- insn_info *i1, insn_info *i2,
- base_cand &base,
- const insn_range_info &move_range);
-
- inline void track_tombstone (int uid);
-
- inline bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs);
-};
-
bool
aarch64_pair_fusion::pair_mem_insn_p (rtx_insn *rti, bool &load_p)
{
@@ -483,103 +142,6 @@ aarch64_pair_fusion::gen_pair (rtx *pats, rtx writeback, bool load_p)
return pair_pat;
}
-splay_tree_node<access_record *> *
-pair_fusion_bb_info::node_alloc (access_record *access)
-{
- using T = splay_tree_node<access_record *>;
- void *addr = obstack_alloc (&m_obstack, sizeof (T));
- return new (addr) T (access);
-}
-
-// Given a mem MEM, if the address has side effects, return a MEM that accesses
-// the same address but without the side effects. Otherwise, return
-// MEM unchanged.
-static rtx
-drop_writeback (rtx mem)
-{
- rtx addr = XEXP (mem, 0);
-
- if (!side_effects_p (addr))
- return mem;
-
- switch (GET_CODE (addr))
- {
- case PRE_MODIFY:
- addr = XEXP (addr, 1);
- break;
- case POST_MODIFY:
- case POST_INC:
- case POST_DEC:
- addr = XEXP (addr, 0);
- break;
- case PRE_INC:
- case PRE_DEC:
- {
- poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem));
- if (GET_CODE (addr) == PRE_DEC)
- adjustment *= -1;
- addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment);
- break;
- }
- default:
- gcc_unreachable ();
- }
-
- return change_address (mem, GET_MODE (mem), addr);
-}
-
-// Convenience wrapper around strip_offset that can also look through
-// RTX_AUTOINC addresses. The interface is like strip_offset except we take a
-// MEM so that we know the mode of the access.
-static rtx
-pair_mem_strip_offset (rtx mem, poly_int64 *offset)
-{
- rtx addr = XEXP (mem, 0);
-
- switch (GET_CODE (addr))
- {
- case PRE_MODIFY:
- case POST_MODIFY:
- addr = strip_offset (XEXP (addr, 1), offset);
- gcc_checking_assert (REG_P (addr));
- gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr));
- break;
- case PRE_INC:
- case POST_INC:
- addr = XEXP (addr, 0);
- *offset = GET_MODE_SIZE (GET_MODE (mem));
- gcc_checking_assert (REG_P (addr));
- break;
- case PRE_DEC:
- case POST_DEC:
- addr = XEXP (addr, 0);
- *offset = -GET_MODE_SIZE (GET_MODE (mem));
- gcc_checking_assert (REG_P (addr));
- break;
-
- default:
- addr = strip_offset (addr, offset);
- }
-
- return addr;
-}
-
-// Return true if X is a PRE_{INC,DEC,MODIFY} rtx.
-static bool
-any_pre_modify_p (rtx x)
-{
- const auto code = GET_CODE (x);
- return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY;
-}
-
-// Return true if X is a POST_{INC,DEC,MODIFY} rtx.
-static bool
-any_post_modify_p (rtx x)
-{
- const auto code = GET_CODE (x);
- return code == POST_INC || code == POST_DEC || code == POST_MODIFY;
-}
-
// Return true if we should consider forming ldp/stp insns from memory
// accesses with operand mode MODE at this stage in compilation.
bool
@@ -594,2816 +156,109 @@ aarch64_pair_fusion::pair_operand_mode_ok_p (machine_mode mode)
return reload_completed || mode != TImode;
}
-// Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these
-// into an integer for use as a hash table key.
-static int
-encode_lfs (lfs_fields fields)
-{
- int size_log2 = exact_log2 (fields.size);
- gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4);
- return ((int)fields.load_p << 3)
- | ((int)fields.fpsimd_p << 2)
- | (size_log2 - 2);
-}
-
-// Inverse of encode_lfs.
-static lfs_fields
-decode_lfs (int lfs)
-{
- bool load_p = (lfs & (1 << 3));
- bool fpsimd_p = (lfs & (1 << 2));
- unsigned size = 1U << ((lfs & 3) + 2);
- return { load_p, fpsimd_p, size };
-}
-
-// Track the access INSN at offset OFFSET in this access group.
-// ALLOC_NODE is used to allocate splay tree nodes.
-template<typename Alloc>
-void
-access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn)
+// Given a pair mode MODE, return a canonical mode to be used for a single
+// operand of such a pair. Currently we only use this when promoting a
+// non-writeback pair into a writeback pair, as it isn't otherwise clear
+// which mode to use when storing a modeless CONST_INT.
+static machine_mode
+aarch64_operand_mode_for_pair_mode (machine_mode mode)
{
- auto insert_before = [&](std::list<access_record>::iterator after)
- {
- auto it = list.emplace (after, offset);
- it->cand_insns.push_back (insn);
- it->place = it;
- return &*it;
- };
-
- if (!list.size ())
- {
- auto access = insert_before (list.end ());
- tree.insert_max_node (alloc_node (access));
- return;
- }
-
- auto compare = [&](splay_tree_node<access_record *> *node)
- {
- return compare_sizes_for_sort (offset, node->value ()->offset);
- };
- auto result = tree.lookup (compare);
- splay_tree_node<access_record *> *node = tree.root ();
- if (result == 0)
- node->value ()->cand_insns.push_back (insn);
- else
+ switch (mode)
{
- auto it = node->value ()->place;
- auto after = (result > 0) ? std::next (it) : it;
- auto access = insert_before (after);
- tree.insert_child (node, result > 0, alloc_node (access));
+ case E_V2x4QImode:
+ return SImode;
+ case E_V2x8QImode:
+ return DImode;
+ case E_V2x16QImode:
+ return V16QImode;
+ default:
+ gcc_unreachable ();
}
}
-// Given a candidate access INSN (with mem MEM), see if it has a suitable
-// MEM_EXPR base (i.e. a tree decl) relative to which we can track the access.
-// LFS is used as part of the key to the hash table, see track_access.
-bool
-pair_fusion_bb_info::track_via_mem_expr (insn_info *insn, rtx mem,
- lfs_fields lfs)
+// Given a load pair insn in PATTERN, unpack the insn, storing
+// the registers in REGS and returning the mem.
+static rtx
+aarch64_destructure_load_pair (rtx regs[2], rtx pattern)
{
- if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem))
- return false;
-
- poly_int64 offset;
- tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem),
- &offset);
- if (!base_expr || !DECL_P (base_expr))
- return false;
-
- offset += MEM_OFFSET (mem);
-
- const machine_mode mem_mode = GET_MODE (mem);
- const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
-
- // Punt on misaligned offsets. Paired memory access instructions require
- // offsets to be a multiple of the access size, and we believe that
- // misaligned offsets on MEM_EXPR bases are likely to lead to misaligned
- // offsets w.r.t. RTL bases.
- if (!multiple_p (offset, mem_size))
- return false;
-
- const auto key = std::make_pair (base_expr, encode_lfs (lfs));
- access_group &group = expr_map.get_or_insert (key, NULL);
- auto alloc = [&](access_record *access) { return node_alloc (access); };
- group.track (alloc, offset, insn);
+ rtx mem = NULL_RTX;
- if (dump_file)
+ for (int i = 0; i < 2; i++)
{
- fprintf (dump_file, "[bb %u] tracking insn %d via ",
- m_bb->index (), insn->uid ());
- print_node_brief (dump_file, "mem expr", base_expr, 0);
- fprintf (dump_file, " [L=%d FP=%d, %smode, off=",
- lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]);
- print_dec (offset, dump_file);
- fprintf (dump_file, "]\n");
+ rtx pat = XVECEXP (pattern, 0, i);
+ regs[i] = XEXP (pat, 0);
+ rtx unspec = XEXP (pat, 1);
+ gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
+ rtx this_mem = XVECEXP (unspec, 0, 0);
+ if (mem)
+ gcc_checking_assert (rtx_equal_p (mem, this_mem));
+ else
+ {
+ gcc_checking_assert (MEM_P (this_mem));
+ mem = this_mem;
+ }
}
- return true;
+ return mem;
}
-// Main function to begin pair discovery. Given a memory access INSN,
-// determine whether it could be a candidate for fusing into a paired
-// access, and if so, track it in the appropriate data structure for
-// this basic block. LOAD_P is true if the access is a load, and MEM
-// is the mem rtx that occurs in INSN.
-void
-pair_fusion_bb_info::track_access (insn_info *insn, bool load_p, rtx mem)
+// Given a store pair insn in PATTERN, unpack the insn, storing
+// the register operands in REGS, and returning the mem.
+static rtx
+aarch64_destructure_store_pair (rtx regs[2], rtx pattern)
{
- // We can't combine volatile MEMs, so punt on these.
- if (MEM_VOLATILE_P (mem))
- return;
-
- // Ignore writeback accesses if the hook says to do so.
- if (!m_pass->should_handle_writeback (writeback::EXISTING)
- && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
- return;
-
- const machine_mode mem_mode = GET_MODE (mem);
- if (!m_pass->pair_operand_mode_ok_p (mem_mode))
- return;
-
- rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p);
-
- if (!m_pass->pair_reg_operand_ok_p (load_p, reg_op, mem_mode))
- return;
-
- // We want to segregate FP/SIMD accesses from GPR accesses.
- const bool fpsimd_op_p = m_pass->fpsimd_op_p (reg_op, mem_mode, load_p);
-
- // Note pair_operand_mode_ok_p already rejected VL modes.
- const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
- const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size };
-
- if (track_via_mem_expr (insn, mem, lfs))
- return;
-
- poly_int64 mem_off;
- rtx addr = XEXP (mem, 0);
- const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
- rtx base = pair_mem_strip_offset (mem, &mem_off);
- if (!REG_P (base))
- return;
+ rtx mem = XEXP (pattern, 0);
+ rtx unspec = XEXP (pattern, 1);
+ gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
+ for (int i = 0; i < 2; i++)
+ regs[i] = XVECEXP (unspec, 0, i);
+ return mem;
+}
- // Need to calculate two (possibly different) offsets:
- // - Offset at which the access occurs.
- // - Offset of the new base def.
- poly_int64 access_off;
- if (autoinc_p && any_post_modify_p (addr))
- access_off = 0;
+rtx
+aarch64_pair_fusion::destructure_pair (rtx regs[2], rtx pattern, bool load_p)
+{
+ if (load_p)
+ return aarch64_destructure_load_pair (regs, pattern);
else
- access_off = mem_off;
-
- poly_int64 new_def_off = mem_off;
-
- // Punt on accesses relative to eliminable regs. Since we don't know the
- // elimination offset pre-RA, we should postpone forming pairs on such
- // accesses until after RA.
- //
- // As it stands, addresses in range for an individual load/store but not
- // for a paired access are currently reloaded inefficiently,
- // ending up with a separate base register for each pair.
- //
- // In theory LRA should make use of
- // targetm.legitimize_address_displacement to promote sharing of
- // bases among multiple (nearby) address reloads, but the current
- // LRA code returns early from process_address_1 for operands that
- // satisfy "m", even if they don't satisfy the real (relaxed) address
- // constraint; this early return means we never get to the code
- // that calls targetm.legitimize_address_displacement.
- //
- // So for now, it's better to punt when we can't be sure that the
- // offset is in range for paired access. On aarch64, out-of-range cases
- // can then be handled after RA by the out-of-range LDP/STP peepholes.
- // Eventually, it would be nice to handle known out-of-range opportunities
- // in the pass itself (for stack accesses, this would be in the post-RA pass).
- if (!reload_completed
- && (REGNO (base) == FRAME_POINTER_REGNUM
- || REGNO (base) == ARG_POINTER_REGNUM))
- return;
-
- // Now need to find def of base register.
- use_info *base_use = find_access (insn->uses (), REGNO (base));
- gcc_assert (base_use);
- def_info *base_def = base_use->def ();
- if (!base_def)
- {
- if (dump_file)
- fprintf (dump_file,
- "base register (regno %d) of insn %d is undefined",
- REGNO (base), insn->uid ());
- return;
- }
-
- alt_base *canon_base = canon_base_map.get (base_def);
- if (canon_base)
- {
- // Express this as the combined offset from the canonical base.
- base_def = canon_base->base;
- new_def_off += canon_base->offset;
- access_off += canon_base->offset;
- }
-
- if (autoinc_p)
- {
- auto def = find_access (insn->defs (), REGNO (base));
- gcc_assert (def);
-
- // Record that DEF = BASE_DEF + MEM_OFF.
- if (dump_file)
- {
- pretty_printer pp;
- pp_access (&pp, def, 0);
- pp_string (&pp, " = ");
- pp_access (&pp, base_def, 0);
- fprintf (dump_file, "[bb %u] recording %s + ",
- m_bb->index (), pp_formatted_text (&pp));
- print_dec (new_def_off, dump_file);
- fprintf (dump_file, "\n");
- }
-
- alt_base base_rec { base_def, new_def_off };
- if (canon_base_map.put (def, base_rec))
- gcc_unreachable (); // Base defs should be unique.
- }
-
- // Punt on misaligned offsets. Paired memory accesses require offsets
- // to be a multiple of the access size.
- if (!multiple_p (mem_off, mem_size))
- return;
-
- const auto key = std::make_pair (base_def, encode_lfs (lfs));
- access_group &group = def_map.get_or_insert (key, NULL);
- auto alloc = [&](access_record *access) { return node_alloc (access); };
- group.track (alloc, access_off, insn);
-
- if (dump_file)
- {
- pretty_printer pp;
- pp_access (&pp, base_def, 0);
-
- fprintf (dump_file, "[bb %u] tracking insn %d via %s",
- m_bb->index (), insn->uid (), pp_formatted_text (&pp));
- fprintf (dump_file,
- " [L=%d, WB=%d, FP=%d, %smode, off=",
- lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]);
- print_dec (access_off, dump_file);
- fprintf (dump_file, "]\n");
- }
+ return aarch64_destructure_store_pair (regs, pattern);
}
-// Dummy predicate that never ignores any insns.
-static bool no_ignore (insn_info *) { return false; }
-
-// Return the latest dataflow hazard before INSN.
-//
-// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
-// dataflow purposes. This is needed when considering changing the RTL base of
-// an access discovered through a MEM_EXPR base.
-//
-// If IGNORE_INSN is non-NULL, we should further ignore any hazards arising
-// from that insn.
-//
-// N.B. we ignore any defs/uses of memory here as we deal with that separately,
-// making use of alias disambiguation.
-static insn_info *
-latest_hazard_before (insn_info *insn, rtx *ignore,
- insn_info *ignore_insn = nullptr)
+rtx
+aarch64_pair_fusion::gen_promote_writeback_pair (rtx wb_effect, rtx pair_mem,
+ rtx regs[2],
+ bool load_p)
{
- insn_info *result = nullptr;
-
- // If the insn can throw then it is at the end of a BB and we can't
- // move it, model this by recording a hazard in the previous insn
- // which will prevent moving the insn up.
- if (cfun->can_throw_non_call_exceptions
- && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX))
- return insn->prev_nondebug_insn ();
+ auto op_mode = aarch64_operand_mode_for_pair_mode (GET_MODE (pair_mem));
- // Return true if we registered the hazard.
- auto hazard = [&](insn_info *h) -> bool
+ machine_mode modes[2];
+ for (int i = 0; i < 2; i++)
{
- gcc_checking_assert (*h < *insn);
- if (h == ignore_insn)
- return false;
+ machine_mode mode = GET_MODE (regs[i]);
+ if (load_p)
+ gcc_checking_assert (mode != VOIDmode);
+ else if (mode == VOIDmode)
+ mode = op_mode;
- if (!result || *h > *result)
- result = h;
+ modes[i] = mode;
+ }
- return true;
- };
+ const auto op_size = GET_MODE_SIZE (modes[0]);
+ gcc_checking_assert (known_eq (op_size, GET_MODE_SIZE (modes[1])));
- rtx pat = PATTERN (insn->rtl ());
- auto ignore_use = [&](use_info *u)
+ rtx pats[2];
+ for (int i = 0; i < 2; i++)
{
- if (u->is_mem ())
- return true;
-
- return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
- };
-
- // Find defs of uses in INSN (RaW).
- for (auto use : insn->uses ())
- if (!ignore_use (use) && use->def ())
- hazard (use->def ()->insn ());
-
- // Find previous defs (WaW) or previous uses (WaR) of defs in INSN.
- for (auto def : insn->defs ())
- {
- if (def->is_mem ())
- continue;
-
- if (def->prev_def ())
- {
- hazard (def->prev_def ()->insn ()); // WaW
-
- auto set = dyn_cast<set_info *> (def->prev_def ());
- if (set && set->has_nondebug_insn_uses ())
- for (auto use : set->reverse_nondebug_insn_uses ())
- if (use->insn () != insn && hazard (use->insn ())) // WaR
- break;
- }
-
- if (!HARD_REGISTER_NUM_P (def->regno ()))
- continue;
-
- // Also need to check backwards for call clobbers (WaW).
- for (auto call_group : def->ebb ()->call_clobbers ())
- {
- if (!call_group->clobbers (def->resource ()))
- continue;
-
- auto clobber_insn = prev_call_clobbers_ignoring (*call_group,
- def->insn (),
- no_ignore);
- if (clobber_insn)
- hazard (clobber_insn);
- }
-
- }
-
- return result;
-}
-
-// Return the first dataflow hazard after INSN.
-//
-// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
-// dataflow purposes. This is needed when considering changing the RTL base of
-// an access discovered through a MEM_EXPR base.
-//
-// N.B. we ignore any defs/uses of memory here as we deal with that separately,
-// making use of alias disambiguation.
-static insn_info *
-first_hazard_after (insn_info *insn, rtx *ignore)
-{
- insn_info *result = nullptr;
- auto hazard = [insn, &result](insn_info *h)
- {
- gcc_checking_assert (*h > *insn);
- if (!result || *h < *result)
- result = h;
- };
-
- rtx pat = PATTERN (insn->rtl ());
- auto ignore_use = [&](use_info *u)
- {
- if (u->is_mem ())
- return true;
-
- return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
- };
-
- for (auto def : insn->defs ())
- {
- if (def->is_mem ())
- continue;
-
- if (def->next_def ())
- hazard (def->next_def ()->insn ()); // WaW
-
- auto set = dyn_cast<set_info *> (def);
- if (set && set->has_nondebug_insn_uses ())
- hazard (set->first_nondebug_insn_use ()->insn ()); // RaW
-
- if (!HARD_REGISTER_NUM_P (def->regno ()))
- continue;
-
- // Also check for call clobbers of this def (WaW).
- for (auto call_group : def->ebb ()->call_clobbers ())
- {
- if (!call_group->clobbers (def->resource ()))
- continue;
-
- auto clobber_insn = next_call_clobbers_ignoring (*call_group,
- def->insn (),
- no_ignore);
- if (clobber_insn)
- hazard (clobber_insn);
- }
- }
-
- // Find any subsequent defs of uses in INSN (WaR).
- for (auto use : insn->uses ())
- {
- if (ignore_use (use))
- continue;
-
- if (use->def ())
- {
- auto def = use->def ()->next_def ();
- if (def && def->insn () == insn)
- def = def->next_def ();
-
- if (def)
- hazard (def->insn ());
- }
-
- if (!HARD_REGISTER_NUM_P (use->regno ()))
- continue;
-
- // Also need to handle call clobbers of our uses (again WaR).
- //
- // See restrict_movement_for_uses_ignoring for why we don't
- // need to check backwards for call clobbers.
- for (auto call_group : use->ebb ()->call_clobbers ())
- {
- if (!call_group->clobbers (use->resource ()))
- continue;
-
- auto clobber_insn = next_call_clobbers_ignoring (*call_group,
- use->insn (),
- no_ignore);
- if (clobber_insn)
- hazard (clobber_insn);
- }
- }
-
- return result;
-}
-
-// Return true iff R1 and R2 overlap.
-static bool
-ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2)
-{
- // If either range is empty, then their intersection is empty.
- if (!r1 || !r2)
- return false;
-
- // When do they not overlap? When one range finishes before the other
- // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first).
- // Inverting this, we get the below.
- return *r1.last >= *r2.first && *r2.last >= *r1.first;
-}
-
-// Get the range of insns that def feeds.
-static insn_range_info get_def_range (def_info *def)
-{
- insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn ();
- return { def->insn (), last };
-}
-
-// Given a def (of memory), return the downwards range within which we
-// can safely move this def.
-static insn_range_info
-def_downwards_move_range (def_info *def)
-{
- auto range = get_def_range (def);
-
- auto set = dyn_cast<set_info *> (def);
- if (!set || !set->has_any_uses ())
- return range;
-
- auto use = set->first_nondebug_insn_use ();
- if (use)
- range = move_earlier_than (range, use->insn ());
-
- return range;
-}
-
-// Given a def (of memory), return the upwards range within which we can
-// safely move this def.
-static insn_range_info
-def_upwards_move_range (def_info *def)
-{
- def_info *prev = def->prev_def ();
- insn_range_info range { prev->insn (), def->insn () };
-
- auto set = dyn_cast<set_info *> (prev);
- if (!set || !set->has_any_uses ())
- return range;
-
- auto use = set->last_nondebug_insn_use ();
- if (use)
- range = move_later_than (range, use->insn ());
-
- return range;
-}
-
-// Class that implements a state machine for building the changes needed to form
-// a store pair instruction. This allows us to easily build the changes in
-// program order, as required by rtl-ssa.
-struct store_change_builder
-{
- enum class state
- {
- FIRST,
- INSERT,
- FIXUP_USE,
- LAST,
- DONE
- };
-
- enum class action
- {
- TOMBSTONE,
- CHANGE,
- INSERT,
- FIXUP_USE
- };
-
- struct change
- {
- action type;
- insn_info *insn;
- };
-
- bool done () const { return m_state == state::DONE; }
-
- store_change_builder (insn_info *insns[2],
- insn_info *repurpose,
- insn_info *dest)
- : m_state (state::FIRST), m_insns { insns[0], insns[1] },
- m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {}
-
- change get_change () const
- {
- switch (m_state)
- {
- case state::FIRST:
- return {
- m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
- m_insns[0]
- };
- case state::LAST:
- return {
- m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
- m_insns[1]
- };
- case state::INSERT:
- return { action::INSERT, m_dest };
- case state::FIXUP_USE:
- return { action::FIXUP_USE, m_use->insn () };
- case state::DONE:
- break;
- }
-
- gcc_unreachable ();
- }
-
- // Transition to the next state.
- void advance ()
- {
- switch (m_state)
- {
- case state::FIRST:
- if (m_repurpose)
- m_state = state::LAST;
- else
- m_state = state::INSERT;
- break;
- case state::INSERT:
- {
- def_info *def = memory_access (m_insns[0]->defs ());
- while (*def->next_def ()->insn () <= *m_dest)
- def = def->next_def ();
-
- // Now we know DEF feeds the insertion point for the new stp.
- // Look for any uses of DEF that will consume the new stp.
- gcc_assert (*def->insn () <= *m_dest
- && *def->next_def ()->insn () > *m_dest);
-
- auto set = as_a<set_info *> (def);
- for (auto use : set->nondebug_insn_uses ())
- if (*use->insn () > *m_dest)
- {
- m_use = use;
- break;
- }
-
- if (m_use)
- m_state = state::FIXUP_USE;
- else
- m_state = state::LAST;
- break;
- }
- case state::FIXUP_USE:
- m_use = m_use->next_nondebug_insn_use ();
- if (!m_use)
- m_state = state::LAST;
- break;
- case state::LAST:
- m_state = state::DONE;
- break;
- case state::DONE:
- gcc_unreachable ();
- }
- }
-
-private:
- state m_state;
-
- // Original candidate stores.
- insn_info *m_insns[2];
-
- // If non-null, this is a candidate insn to change into an stp. Otherwise we
- // are deleting both original insns and inserting a new insn for the stp.
- insn_info *m_repurpose;
-
- // Destionation of the stp, it will be placed immediately after m_dest.
- insn_info *m_dest;
-
- // Current nondebug use that needs updating due to stp insertion.
- use_info *m_use;
-};
-
-// Given candidate store insns FIRST and SECOND, see if we can re-purpose one
-// of them (together with its def of memory) for the stp insn. If so, return
-// that insn. Otherwise, return null.
-static insn_info *
-try_repurpose_store (insn_info *first,
- insn_info *second,
- const insn_range_info &move_range)
-{
- def_info * const defs[2] = {
- memory_access (first->defs ()),
- memory_access (second->defs ())
- };
-
- if (move_range.includes (first)
- || ranges_overlap_p (move_range, def_downwards_move_range (defs[0])))
- return first;
-
- if (move_range.includes (second)
- || ranges_overlap_p (move_range, def_upwards_move_range (defs[1])))
- return second;
-
- return nullptr;
-}
-
-// Generate the RTL pattern for a "tombstone"; used temporarily during this pass
-// to replace stores that are marked for deletion where we can't immediately
-// delete the store (since there are uses of mem hanging off the store).
-//
-// These are deleted at the end of the pass and uses re-parented appropriately
-// at this point.
-static rtx
-gen_tombstone (void)
-{
- return gen_rtx_CLOBBER (VOIDmode,
- gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)));
-}
-
-// Given a pair mode MODE, return a canonical mode to be used for a single
-// operand of such a pair. Currently we only use this when promoting a
-// non-writeback pair into a writeback pair, as it isn't otherwise clear
-// which mode to use when storing a modeless CONST_INT.
-static machine_mode
-aarch64_operand_mode_for_pair_mode (machine_mode mode)
-{
- switch (mode)
- {
- case E_V2x4QImode:
- return SImode;
- case E_V2x8QImode:
- return DImode;
- case E_V2x16QImode:
- return V16QImode;
- default:
- gcc_unreachable ();
- }
-}
-
-// Go through the reg notes rooted at NOTE, dropping those that we should drop,
-// and preserving those that we want to keep by prepending them to (and
-// returning) RESULT. EH_REGION is used to make sure we have at most one
-// REG_EH_REGION note in the resulting list. FR_EXPR is used to return any
-// REG_FRAME_RELATED_EXPR note we find, as these can need special handling in
-// combine_reg_notes.
-static rtx
-filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr)
-{
- for (; note; note = XEXP (note, 1))
- {
- switch (REG_NOTE_KIND (note))
- {
- case REG_DEAD:
- // REG_DEAD notes aren't required to be maintained.
- case REG_EQUAL:
- case REG_EQUIV:
- case REG_UNUSED:
- case REG_NOALIAS:
- // These can all be dropped. For REG_EQU{AL,IV} they cannot apply to
- // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see
- // rtl-ssa/changes.cc:update_notes.
- //
- // Similarly, REG_NOALIAS cannot apply to a parallel.
- case REG_INC:
- // When we form the pair insn, the reg update is implemented
- // as just another SET in the parallel, so isn't really an
- // auto-increment in the RTL sense, hence we drop the note.
- break;
- case REG_EH_REGION:
- gcc_assert (!*eh_region);
- *eh_region = true;
- result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result);
- break;
- case REG_CFA_DEF_CFA:
- case REG_CFA_OFFSET:
- case REG_CFA_RESTORE:
- result = alloc_reg_note (REG_NOTE_KIND (note),
- copy_rtx (XEXP (note, 0)),
- result);
- break;
- case REG_FRAME_RELATED_EXPR:
- gcc_assert (!*fr_expr);
- *fr_expr = copy_rtx (XEXP (note, 0));
- break;
- default:
- // Unexpected REG_NOTE kind.
- gcc_unreachable ();
- }
- }
-
- return result;
-}
-
-// Return the notes that should be attached to a combination of I1 and I2, where
-// *I1 < *I2. LOAD_P is true for loads.
-static rtx
-combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p)
-{
- // Temporary storage for REG_FRAME_RELATED_EXPR notes.
- rtx fr_expr[2] = {};
-
- bool found_eh_region = false;
- rtx result = NULL_RTX;
- result = filter_notes (REG_NOTES (i2->rtl ()), result,
- &found_eh_region, fr_expr + 1);
- result = filter_notes (REG_NOTES (i1->rtl ()), result,
- &found_eh_region, fr_expr);
-
- if (!load_p)
- {
- // Simple frame-related sp-relative saves don't need CFI notes, but when
- // we combine them into an stp we will need a CFI note as dwarf2cfi can't
- // interpret the unspec pair representation directly.
- if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0])
- fr_expr[0] = copy_rtx (PATTERN (i1->rtl ()));
- if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1])
- fr_expr[1] = copy_rtx (PATTERN (i2->rtl ()));
- }
-
- rtx fr_pat = NULL_RTX;
- if (fr_expr[0] && fr_expr[1])
- {
- // Combining two frame-related insns, need to construct
- // a REG_FRAME_RELATED_EXPR note which represents the combined
- // operation.
- RTX_FRAME_RELATED_P (fr_expr[1]) = 1;
- fr_pat = gen_rtx_PARALLEL (VOIDmode,
- gen_rtvec (2, fr_expr[0], fr_expr[1]));
- }
- else
- fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1];
-
- if (fr_pat)
- result = alloc_reg_note (REG_FRAME_RELATED_EXPR,
- fr_pat, result);
-
- return result;
-}
-
-// Given two memory accesses in PATS, at least one of which is of a
-// writeback form, extract two non-writeback memory accesses addressed
-// relative to the initial value of the base register, and output these
-// in PATS. Return an rtx that represents the overall change to the
-// base register.
-static rtx
-extract_writebacks (bool load_p, rtx pats[2], int changed)
-{
- rtx base_reg = NULL_RTX;
- poly_int64 current_offset = 0;
-
- poly_int64 offsets[2];
-
- for (int i = 0; i < 2; i++)
- {
- rtx mem = XEXP (pats[i], load_p);
- rtx reg = XEXP (pats[i], !load_p);
-
- rtx addr = XEXP (mem, 0);
- const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
-
- poly_int64 offset;
- rtx this_base = pair_mem_strip_offset (mem, &offset);
- gcc_assert (REG_P (this_base));
- if (base_reg)
- gcc_assert (rtx_equal_p (base_reg, this_base));
- else
- base_reg = this_base;
-
- // If we changed base for the current insn, then we already
- // derived the correct mem for this insn from the effective
- // address of the other access.
- if (i == changed)
- {
- gcc_checking_assert (!autoinc_p);
- offsets[i] = offset;
- continue;
- }
-
- if (autoinc_p && any_pre_modify_p (addr))
- current_offset += offset;
-
- poly_int64 this_off = current_offset;
- if (!autoinc_p)
- this_off += offset;
-
- offsets[i] = this_off;
- rtx new_mem = change_address (mem, GET_MODE (mem),
- plus_constant (GET_MODE (base_reg),
- base_reg, this_off));
- pats[i] = load_p
- ? gen_rtx_SET (reg, new_mem)
- : gen_rtx_SET (new_mem, reg);
-
- if (autoinc_p && any_post_modify_p (addr))
- current_offset += offset;
- }
-
- if (known_eq (current_offset, 0))
- return NULL_RTX;
-
- return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg),
- base_reg, current_offset));
-}
-
-// INSNS contains either {nullptr, pair insn} (when promoting an existing
-// non-writeback pair) or contains the candidate insns used to form the pair
-// (when fusing a new pair).
-//
-// PAIR_RANGE specifies where we want to form the final pair.
-// INITIAL_OFFSET gives the current base offset for the pair.
-// Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback.
-// ACCESS_SIZE gives the access size for a single arm of the pair.
-// BASE_DEF gives the initial def of the base register consumed by the pair.
-//
-// Given the above, this function looks for a trailing destructive update of the
-// base register. If there is one, we choose the first such update after
-// PAIR_DST that is still in the same BB as our pair. We return the new def in
-// *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT.
-insn_info *
-pair_fusion::find_trailing_add (insn_info *insns[2],
- const insn_range_info &pair_range,
- int initial_writeback,
- rtx *writeback_effect,
- def_info **add_def,
- def_info *base_def,
- poly_int64 initial_offset,
- unsigned access_size)
-{
- // Punt on frame-related insns, it is better to be conservative and
- // not try to form writeback pairs here, and means we don't have to
- // worry about the writeback case in forming REG_FRAME_RELATED_EXPR
- // notes (see combine_reg_notes).
- if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ()))
- || RTX_FRAME_RELATED_P (insns[1]->rtl ()))
- return nullptr;
-
- insn_info *pair_dst = pair_range.singleton ();
- gcc_assert (pair_dst);
-
- def_info *def = base_def->next_def ();
-
- // In the case that either of the initial pair insns had writeback,
- // then there will be intervening defs of the base register.
- // Skip over these.
- for (int i = 0; i < 2; i++)
- if (initial_writeback & (1 << i))
- {
- gcc_assert (def->insn () == insns[i]);
- def = def->next_def ();
- }
-
- if (!def || def->bb () != pair_dst->bb ())
- return nullptr;
-
- // DEF should now be the first def of the base register after PAIR_DST.
- insn_info *cand = def->insn ();
- gcc_assert (*cand > *pair_dst);
-
- const auto base_regno = base_def->regno ();
-
- // If CAND doesn't also use our base register,
- // it can't destructively update it.
- if (!find_access (cand->uses (), base_regno))
- return nullptr;
-
- auto rti = cand->rtl ();
-
- if (!INSN_P (rti))
- return nullptr;
-
- auto pat = PATTERN (rti);
- if (GET_CODE (pat) != SET)
- return nullptr;
-
- auto dest = XEXP (pat, 0);
- if (!REG_P (dest) || REGNO (dest) != base_regno)
- return nullptr;
-
- poly_int64 offset;
- rtx rhs_base = strip_offset (XEXP (pat, 1), &offset);
- if (!REG_P (rhs_base)
- || REGNO (rhs_base) != base_regno
- || !offset.is_constant ())
- return nullptr;
-
- // If the initial base offset is zero, we can handle any add offset
- // (post-inc). Otherwise, we require the offsets to match (pre-inc).
- if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset))
- return nullptr;
-
- auto off_hwi = offset.to_constant ();
-
- if (off_hwi % access_size != 0)
- return nullptr;
-
- off_hwi /= access_size;
-
- if (!pair_mem_in_range_p (off_hwi))
- return nullptr;
-
- auto dump_prefix = [&]()
- {
- if (!insns[0])
- fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ());
- else
- fprintf (dump_file, " (%d,%d)",
- insns[0]->uid (), insns[1]->uid ());
- };
-
- insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1]);
- if (!hazard || *hazard <= *pair_dst)
- {
- if (dump_file)
- {
- dump_prefix ();
- fprintf (dump_file,
- "folding in trailing add (%d) to use writeback form\n",
- cand->uid ());
- }
-
- *add_def = def;
- *writeback_effect = copy_rtx (pat);
- return cand;
- }
-
- if (dump_file)
- {
- dump_prefix ();
- fprintf (dump_file,
- "can't fold in trailing add (%d), hazard = %d\n",
- cand->uid (), hazard->uid ());
- }
-
- return nullptr;
-}
-
-// We just emitted a tombstone with uid UID, track it in a bitmap for
-// this BB so we can easily identify it later when cleaning up tombstones.
-void
-pair_fusion_bb_info::track_tombstone (int uid)
-{
- if (!m_emitted_tombstone)
- {
- // Lazily initialize the bitmap for tracking tombstone insns.
- bitmap_obstack_initialize (&m_bitmap_obstack);
- bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack);
- m_emitted_tombstone = true;
- }
-
- if (!bitmap_set_bit (&m_tombstone_bitmap, uid))
- gcc_unreachable (); // Bit should have changed.
-}
-
-// Reset the debug insn containing USE (the debug insn has been
-// optimized away).
-static void
-reset_debug_use (use_info *use)
-{
- auto use_insn = use->insn ();
- auto use_rtl = use_insn->rtl ();
- insn_change change (use_insn);
- change.new_uses = {};
- INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC ();
- crtl->ssa->change_insn (change);
-}
-
-// USE is a debug use that needs updating because DEF (a def of the same
-// register) is being re-ordered over it. If BASE is non-null, then DEF
-// is an update of the register BASE by a constant, given by WB_OFFSET,
-// and we can preserve debug info by accounting for the change in side
-// effects.
-static void
-fixup_debug_use (obstack_watermark &attempt,
- use_info *use,
- def_info *def,
- rtx base,
- poly_int64 wb_offset)
-{
- auto use_insn = use->insn ();
- if (base)
- {
- auto use_rtl = use_insn->rtl ();
- insn_change change (use_insn);
-
- gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base));
- change.new_uses = check_remove_regno_access (attempt,
- change.new_uses,
- use->regno ());
-
- // The effect of the writeback is to add WB_OFFSET to BASE. If
- // we're re-ordering DEF below USE, then we update USE by adding
- // WB_OFFSET to it. Otherwise, if we're re-ordering DEF above
- // USE, we update USE by undoing the effect of the writeback
- // (subtracting WB_OFFSET).
- use_info *new_use;
- if (*def->insn () > *use_insn)
- {
- // We now need USE_INSN to consume DEF. Create a new use of DEF.
- //
- // N.B. this means until we call change_insns for the main change
- // group we will temporarily have a debug use consuming a def that
- // comes after it, but RTL-SSA doesn't currently support updating
- // debug insns as part of the main change group (together with
- // nondebug changes), so we will have to live with this update
- // leaving the IR being temporarily inconsistent. It seems to
- // work out OK once the main change group is applied.
- wb_offset *= -1;
- new_use = crtl->ssa->create_use (attempt,
- use_insn,
- as_a<set_info *> (def));
- }
- else
- new_use = find_access (def->insn ()->uses (), use->regno ());
-
- change.new_uses = insert_access (attempt, new_use, change.new_uses);
-
- if (dump_file)
- {
- const char *dir = (*def->insn () < *use_insn) ? "down" : "up";
- pretty_printer pp;
- pp_string (&pp, "[");
- pp_access (&pp, use, 0);
- pp_string (&pp, "]");
- pp_string (&pp, " due to wb def ");
- pp_string (&pp, "[");
- pp_access (&pp, def, 0);
- pp_string (&pp, "]");
- fprintf (dump_file,
- " i%d: fix up debug use %s re-ordered %s, "
- "sub r%u -> r%u + ",
- use_insn->uid (), pp_formatted_text (&pp),
- dir, REGNO (base), REGNO (base));
- print_dec (wb_offset, dump_file);
- fprintf (dump_file, "\n");
- }
-
- insn_propagation prop (use_rtl, base,
- plus_constant (GET_MODE (base), base, wb_offset));
- if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl)))
- crtl->ssa->change_insn (change);
- else
- {
- if (dump_file)
- fprintf (dump_file, " i%d: RTL substitution failed (%s)"
- ", resetting debug insn", use_insn->uid (),
- prop.failure_reason);
- reset_debug_use (use);
- }
- }
- else
- {
- if (dump_file)
- {
- pretty_printer pp;
- pp_string (&pp, "[");
- pp_access (&pp, use, 0);
- pp_string (&pp, "] due to re-ordered load def [");
- pp_access (&pp, def, 0);
- pp_string (&pp, "]");
- fprintf (dump_file, " i%d: resetting debug use %s\n",
- use_insn->uid (), pp_formatted_text (&pp));
- }
- reset_debug_use (use);
- }
-}
-
-// Update debug uses when folding in a trailing add insn to form a
-// writeback pair.
-//
-// ATTEMPT is used to allocate RTL-SSA temporaries for the changes,
-// the final pair is placed immediately after PAIR_DST, TRAILING_ADD
-// is a trailing add insn which is being folded into the pair to make it
-// use writeback addressing, and WRITEBACK_EFFECT is the pattern for
-// TRAILING_ADD.
-static void
-fixup_debug_uses_trailing_add (obstack_watermark &attempt,
- insn_info *pair_dst,
- insn_info *trailing_add,
- rtx writeback_effect)
-{
- rtx base = SET_DEST (writeback_effect);
-
- poly_int64 wb_offset;
- rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset);
- gcc_checking_assert (rtx_equal_p (base, base2));
-
- auto defs = trailing_add->defs ();
- gcc_checking_assert (defs.size () == 1);
- def_info *def = defs[0];
-
- if (auto set = safe_dyn_cast<set_info *> (def->prev_def ()))
- for (auto use : iterate_safely (set->debug_insn_uses ()))
- if (*use->insn () > *pair_dst)
- // DEF is getting re-ordered above USE, fix up USE accordingly.
- fixup_debug_use (attempt, use, def, base, wb_offset);
-}
-
-// Called from fuse_pair, fixes up any debug uses that will be affected
-// by the changes.
-//
-// ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for
-// the changes, INSNS gives the candidate insns: at this point the use/def
-// information should still be as on entry to fuse_pair, but the patterns may
-// have changed, hence we pass ORIG_RTL which contains the original patterns
-// for the candidate insns.
-//
-// The final pair will be placed immediately after PAIR_DST, LOAD_P is true if
-// it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had
-// writeback, and WRITEBACK_EFFECT is an rtx describing the overall update to
-// the base register in the final pair (if any). BASE_REGNO gives the register
-// number of the base register used in the final pair.
-static void
-fixup_debug_uses (obstack_watermark &attempt,
- insn_info *insns[2],
- rtx orig_rtl[2],
- insn_info *pair_dst,
- insn_info *trailing_add,
- bool load_p,
- int writeback,
- rtx writeback_effect,
- unsigned base_regno)
-{
- // USE is a debug use that needs updating because DEF (a def of the
- // resource) is being re-ordered over it. If WRITEBACK_PAT is non-NULL,
- // then it gives the original RTL pattern for DEF's insn, and DEF is a
- // writeback update of the base register.
- //
- // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use.
- auto update_debug_use = [&](use_info *use, def_info *def,
- rtx writeback_pat)
- {
- poly_int64 offset = 0;
- rtx base = NULL_RTX;
- if (writeback_pat)
- {
- rtx mem = XEXP (writeback_pat, load_p);
- gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))
- == RTX_AUTOINC);
-
- base = pair_mem_strip_offset (mem, &offset);
- gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno);
- }
- fixup_debug_use (attempt, use, def, base, offset);
- };
-
- // Reset any debug uses of mem over which we re-ordered a store.
- //
- // It would be nice to try and preserve debug info here, but it seems that
- // would require doing alias analysis to see if the store aliases with the
- // debug use, which seems a little extravagant just to preserve debug info.
- if (!load_p)
- {
- auto def = memory_access (insns[0]->defs ());
- auto last_def = memory_access (insns[1]->defs ());
- for (; def != last_def; def = def->next_def ())
- {
- auto set = as_a<set_info *> (def);
- for (auto use : iterate_safely (set->debug_insn_uses ()))
- {
- if (dump_file)
- fprintf (dump_file, " i%d: resetting debug use of mem\n",
- use->insn ()->uid ());
- reset_debug_use (use);
- }
- }
- }
-
- // Now let's take care of register uses, starting with debug uses
- // attached to defs from our first insn.
- for (auto def : insns[0]->defs ())
- {
- auto set = dyn_cast<set_info *> (def);
- if (!set || set->is_mem () || !set->first_debug_insn_use ())
- continue;
-
- def_info *defs[2] = {
- def,
- find_access (insns[1]->defs (), def->regno ())
- };
-
- rtx writeback_pats[2] = {};
- if (def->regno () == base_regno)
- for (int i = 0; i < 2; i++)
- if (writeback & (1 << i))
- {
- gcc_checking_assert (defs[i]);
- writeback_pats[i] = orig_rtl[i];
- }
-
- // Now that we've characterized the defs involved, go through the
- // debug uses and determine how to update them (if needed).
- for (auto use : iterate_safely (set->debug_insn_uses ()))
- {
- if (*pair_dst < *use->insn () && defs[1])
- // We're re-ordering defs[1] above a previous use of the
- // same resource.
- update_debug_use (use, defs[1], writeback_pats[1]);
- else if (*pair_dst >= *use->insn ())
- // We're re-ordering defs[0] below its use.
- update_debug_use (use, defs[0], writeback_pats[0]);
- }
- }
-
- // Now let's look at registers which are def'd by the second insn
- // but not by the first insn, there may still be debug uses of a
- // previous def which can be affected by moving the second insn up.
- for (auto def : insns[1]->defs ())
- {
- // This should be M log N where N is the number of defs in
- // insns[0] and M is the number of defs in insns[1].
- if (def->is_mem () || find_access (insns[0]->defs (), def->regno ()))
- continue;
-
- auto prev_set = safe_dyn_cast<set_info *> (def->prev_def ());
- if (!prev_set)
- continue;
-
- rtx writeback_pat = NULL_RTX;
- if (def->regno () == base_regno && (writeback & 2))
- writeback_pat = orig_rtl[1];
-
- // We have a def in insns[1] which isn't def'd by the first insn.
- // Look to the previous def and see if it has any debug uses.
- for (auto use : iterate_safely (prev_set->debug_insn_uses ()))
- if (*pair_dst < *use->insn ())
- // We're ordering DEF above a previous use of the same register.
- update_debug_use (use, def, writeback_pat);
- }
-
- if ((writeback & 2) && !writeback_effect)
- {
- // If the second insn initially had writeback but the final
- // pair does not, then there may be trailing debug uses of the
- // second writeback def which need re-parenting: do that.
- auto def = find_access (insns[1]->defs (), base_regno);
- gcc_assert (def);
- auto set = as_a<set_info *> (def);
- for (auto use : iterate_safely (set->debug_insn_uses ()))
- {
- insn_change change (use->insn ());
- change.new_uses = check_remove_regno_access (attempt,
- change.new_uses,
- base_regno);
- auto new_use = find_access (insns[0]->uses (), base_regno);
-
- // N.B. insns must have already shared a common base due to writeback.
- gcc_assert (new_use);
-
- if (dump_file)
- fprintf (dump_file,
- " i%d: cancelling wb, re-parenting trailing debug use\n",
- use->insn ()->uid ());
-
- change.new_uses = insert_access (attempt, new_use, change.new_uses);
- crtl->ssa->change_insn (change);
- }
- }
- else if (trailing_add)
- fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add,
- writeback_effect);
-}
-
-// Try and actually fuse the pair given by insns I1 and I2.
-//
-// Here we've done enough analysis to know this is safe, we only
-// reject the pair at this stage if either the tuning policy says to,
-// or recog fails on the final pair insn.
-//
-// LOAD_P is true for loads, ACCESS_SIZE gives the access size of each
-// candidate insn. Bit i of WRITEBACK is set if the ith insn (in program
-// order) uses writeback.
-//
-// BASE gives the chosen base candidate for the pair and MOVE_RANGE is
-// a singleton range which says where to place the pair.
-bool
-pair_fusion_bb_info::fuse_pair (bool load_p,
- unsigned access_size,
- int writeback,
- insn_info *i1, insn_info *i2,
- base_cand &base,
- const insn_range_info &move_range)
-{
- auto attempt = crtl->ssa->new_change_attempt ();
-
- auto make_change = [&attempt](insn_info *insn)
- {
- return crtl->ssa->change_alloc<insn_change> (attempt, insn);
- };
- auto make_delete = [&attempt](insn_info *insn)
- {
- return crtl->ssa->change_alloc<insn_change> (attempt,
- insn,
- insn_change::DELETE);
- };
-
- insn_info *first = (*i1 < *i2) ? i1 : i2;
- insn_info *second = (first == i1) ? i2 : i1;
-
- insn_info *pair_dst = move_range.singleton ();
- gcc_assert (pair_dst);
-
- insn_info *insns[2] = { first, second };
-
- auto_vec<insn_change *> changes;
- auto_vec<int, 2> tombstone_uids (2);
-
- rtx pats[2] = {
- PATTERN (first->rtl ()),
- PATTERN (second->rtl ())
- };
-
- // Make copies of the patterns as we might need to refer to the original RTL
- // later, for example when updating debug uses (which is after we've updated
- // one or both of the patterns in the candidate insns).
- rtx orig_rtl[2];
- for (int i = 0; i < 2; i++)
- orig_rtl[i] = copy_rtx (pats[i]);
-
- use_array input_uses[2] = { first->uses (), second->uses () };
- def_array input_defs[2] = { first->defs (), second->defs () };
-
- int changed_insn = -1;
- if (base.from_insn != -1)
- {
- // If we're not already using a shared base, we need
- // to re-write one of the accesses to use the base from
- // the other insn.
- gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1);
- changed_insn = !base.from_insn;
-
- rtx base_pat = pats[base.from_insn];
- rtx change_pat = pats[changed_insn];
- rtx base_mem = XEXP (base_pat, load_p);
- rtx change_mem = XEXP (change_pat, load_p);
-
- const bool lower_base_p = (insns[base.from_insn] == i1);
- HOST_WIDE_INT adjust_amt = access_size;
- if (!lower_base_p)
- adjust_amt *= -1;
-
- rtx change_reg = XEXP (change_pat, !load_p);
- rtx effective_base = drop_writeback (base_mem);
- rtx adjusted_addr = plus_constant (Pmode,
- XEXP (effective_base, 0),
- adjust_amt);
- rtx new_mem = replace_equiv_address_nv (change_mem, adjusted_addr);
- rtx new_set = load_p
- ? gen_rtx_SET (change_reg, new_mem)
- : gen_rtx_SET (new_mem, change_reg);
-
- pats[changed_insn] = new_set;
-
- auto keep_use = [&](use_info *u)
- {
- return refers_to_regno_p (u->regno (), u->regno () + 1,
- change_pat, &XEXP (change_pat, load_p));
- };
-
- // Drop any uses that only occur in the old address.
- input_uses[changed_insn] = filter_accesses (attempt,
- input_uses[changed_insn],
- keep_use);
- }
-
- rtx writeback_effect = NULL_RTX;
- if (writeback)
- writeback_effect = extract_writebacks (load_p, pats, changed_insn);
-
- const auto base_regno = base.def->regno ();
-
- if (base.from_insn == -1 && (writeback & 1))
- {
- // If the first of the candidate insns had a writeback form, we'll need to
- // drop the use of the updated base register from the second insn's uses.
- //
- // N.B. we needn't worry about the base register occurring as a store
- // operand, as we checked that there was no non-address true dependence
- // between the insns in try_fuse_pair.
- gcc_checking_assert (find_access (input_uses[1], base_regno));
- input_uses[1] = check_remove_regno_access (attempt,
- input_uses[1],
- base_regno);
- }
-
- // Go through and drop uses that only occur in register notes,
- // as we won't be preserving those.
- for (int i = 0; i < 2; i++)
- {
- auto rti = insns[i]->rtl ();
- if (!REG_NOTES (rti))
- continue;
-
- input_uses[i] = remove_note_accesses (attempt, input_uses[i]);
- }
-
- // Edge case: if the first insn is a writeback load and the
- // second insn is a non-writeback load which transfers into the base
- // register, then we should drop the writeback altogether as the
- // update of the base register from the second load should prevail.
- //
- // For example:
- // ldr x2, [x1], #8
- // ldr x1, [x1]
- // -->
- // ldp x2, x1, [x1]
- if (writeback == 1
- && load_p
- && find_access (input_defs[1], base_regno))
- {
- if (dump_file)
- fprintf (dump_file,
- " load pair: i%d has wb but subsequent i%d has non-wb "
- "update of base (r%d), dropping wb\n",
- insns[0]->uid (), insns[1]->uid (), base_regno);
- gcc_assert (writeback_effect);
- writeback_effect = NULL_RTX;
- }
-
- // So far the patterns have been in instruction order,
- // now we want them in offset order.
- if (i1 != first)
- std::swap (pats[0], pats[1]);
-
- poly_int64 offsets[2];
- for (int i = 0; i < 2; i++)
- {
- rtx mem = XEXP (pats[i], load_p);
- gcc_checking_assert (MEM_P (mem));
- rtx base = strip_offset (XEXP (mem, 0), offsets + i);
- gcc_checking_assert (REG_P (base));
- gcc_checking_assert (base_regno == REGNO (base));
- }
-
- // If either of the original insns had writeback, but the resulting pair insn
- // does not (can happen e.g. in the load pair edge case above, or if the
- // writeback effects cancel out), then drop the def (s) of the base register
- // as appropriate.
- //
- // Also drop the first def in the case that both of the original insns had
- // writeback. The second def could well have uses, but the first def should
- // only be used by the second insn (and we dropped that use above).
- for (int i = 0; i < 2; i++)
- if ((!writeback_effect && (writeback & (1 << i)))
- || (i == 0 && writeback == 3))
- input_defs[i] = check_remove_regno_access (attempt,
- input_defs[i],
- base_regno);
-
- // If we don't currently have a writeback pair, and we don't have
- // a load that clobbers the base register, look for a trailing destructive
- // update of the base register and try and fold it in to make this into a
- // writeback pair.
- insn_info *trailing_add = nullptr;
- if (m_pass->should_handle_writeback (writeback::ALL)
- && !writeback_effect
- && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1,
- XEXP (pats[0], 0), nullptr)
- && !refers_to_regno_p (base_regno, base_regno + 1,
- XEXP (pats[1], 0), nullptr))))
- {
- def_info *add_def;
- trailing_add = m_pass->find_trailing_add (insns, move_range, writeback,
- &writeback_effect,
- &add_def, base.def, offsets[0],
- access_size);
- if (trailing_add)
- {
- // The def of the base register from the trailing add should prevail.
- input_defs[0] = insert_access (attempt, add_def, input_defs[0]);
- gcc_assert (input_defs[0].is_valid ());
- }
- }
-
- // Now that we know what base mem we're going to use, check if it's OK
- // with the pair mem policy.
- rtx first_mem = XEXP (pats[0], load_p);
- if (!m_pass->pair_mem_ok_with_policy (first_mem, load_p))
- {
- if (dump_file)
- fprintf (dump_file,
- "punting on pair (%d,%d), pair mem policy says no\n",
- i1->uid (), i2->uid ());
- return false;
- }
-
- rtx reg_notes = combine_reg_notes (first, second, load_p);
-
- rtx pair_pat = m_pass->gen_pair (pats, writeback_effect, load_p);
- insn_change *pair_change = nullptr;
- auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) {
- rtx_insn *rti = change->insn ()->rtl ();
- validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
- validate_change (rti, ®_NOTES (rti), reg_notes, true);
- };
-
- if (load_p)
- {
- changes.safe_push (make_delete (first));
- pair_change = make_change (second);
- changes.safe_push (pair_change);
-
- pair_change->move_range = move_range;
- pair_change->new_defs = merge_access_arrays (attempt,
- input_defs[0],
- input_defs[1]);
- gcc_assert (pair_change->new_defs.is_valid ());
-
- pair_change->new_uses
- = merge_access_arrays (attempt,
- drop_memory_access (input_uses[0]),
- drop_memory_access (input_uses[1]));
- gcc_assert (pair_change->new_uses.is_valid ());
- set_pair_pat (pair_change);
- }
- else
- {
- using Action = store_change_builder::action;
- insn_info *store_to_change = try_repurpose_store (first, second,
- move_range);
- store_change_builder builder (insns, store_to_change, pair_dst);
- insn_change *change;
- set_info *new_set = nullptr;
- for (; !builder.done (); builder.advance ())
- {
- auto action = builder.get_change ();
- change = (action.type == Action::INSERT)
- ? nullptr : make_change (action.insn);
- switch (action.type)
- {
- case Action::CHANGE:
- {
- set_pair_pat (change);
- change->new_uses = merge_access_arrays (attempt,
- input_uses[0],
- input_uses[1]);
- auto d1 = drop_memory_access (input_defs[0]);
- auto d2 = drop_memory_access (input_defs[1]);
- change->new_defs = merge_access_arrays (attempt, d1, d2);
- gcc_assert (change->new_defs.is_valid ());
- def_info *store_def = memory_access (change->insn ()->defs ());
- change->new_defs = insert_access (attempt,
- store_def,
- change->new_defs);
- gcc_assert (change->new_defs.is_valid ());
- change->move_range = move_range;
- pair_change = change;
- break;
- }
- case Action::TOMBSTONE:
- {
- tombstone_uids.quick_push (change->insn ()->uid ());
- rtx_insn *rti = change->insn ()->rtl ();
- validate_change (rti, &PATTERN (rti), gen_tombstone (), true);
- validate_change (rti, ®_NOTES (rti), NULL_RTX, true);
- change->new_uses = use_array (nullptr, 0);
- break;
- }
- case Action::INSERT:
- {
- if (dump_file)
- fprintf (dump_file,
- " stp: cannot re-purpose candidate stores\n");
-
- auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat);
- change = make_change (new_insn);
- change->move_range = move_range;
- change->new_uses = merge_access_arrays (attempt,
- input_uses[0],
- input_uses[1]);
- gcc_assert (change->new_uses.is_valid ());
-
- auto d1 = drop_memory_access (input_defs[0]);
- auto d2 = drop_memory_access (input_defs[1]);
- change->new_defs = merge_access_arrays (attempt, d1, d2);
- gcc_assert (change->new_defs.is_valid ());
-
- new_set = crtl->ssa->create_set (attempt, new_insn, memory);
- change->new_defs = insert_access (attempt, new_set,
- change->new_defs);
- gcc_assert (change->new_defs.is_valid ());
- pair_change = change;
- break;
- }
- case Action::FIXUP_USE:
- {
- // This use now needs to consume memory from our stp.
- if (dump_file)
- fprintf (dump_file,
- " stp: changing i%d to use mem from new stp "
- "(after i%d)\n",
- action.insn->uid (), pair_dst->uid ());
- change->new_uses = drop_memory_access (change->new_uses);
- gcc_assert (new_set);
- auto new_use = crtl->ssa->create_use (attempt, action.insn,
- new_set);
- change->new_uses = insert_access (attempt, new_use,
- change->new_uses);
- break;
- }
- }
- changes.safe_push (change);
- }
- }
-
- if (trailing_add)
- changes.safe_push (make_delete (trailing_add));
- else if ((writeback & 2) && !writeback_effect)
- {
- // The second insn initially had writeback but now the pair does not,
- // need to update any nondebug uses of the base register def in the
- // second insn. We'll take care of debug uses later.
- auto def = find_access (insns[1]->defs (), base_regno);
- gcc_assert (def);
- auto set = dyn_cast<set_info *> (def);
- if (set && set->has_nondebug_uses ())
- {
- auto orig_use = find_access (insns[0]->uses (), base_regno);
- for (auto use : set->nondebug_insn_uses ())
- {
- auto change = make_change (use->insn ());
- change->new_uses = check_remove_regno_access (attempt,
- change->new_uses,
- base_regno);
- change->new_uses = insert_access (attempt,
- orig_use,
- change->new_uses);
- changes.safe_push (change);
- }
- }
- }
-
- auto is_changing = insn_is_changing (changes);
- for (unsigned i = 0; i < changes.length (); i++)
- gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
-
- // Check the pair pattern is recog'd.
- if (!rtl_ssa::recog_ignoring (attempt, *pair_change, is_changing))
- {
- if (dump_file)
- fprintf (dump_file, " failed to form pair, recog failed\n");
-
- // Free any reg notes we allocated.
- while (reg_notes)
- {
- rtx next = XEXP (reg_notes, 1);
- free_EXPR_LIST_node (reg_notes);
- reg_notes = next;
- }
- cancel_changes (0);
- return false;
- }
-
- gcc_assert (crtl->ssa->verify_insn_changes (changes));
-
- // Fix up any debug uses that will be affected by the changes.
- if (MAY_HAVE_DEBUG_INSNS)
- fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add,
- load_p, writeback, writeback_effect, base_regno);
-
- confirm_change_group ();
- crtl->ssa->change_insns (changes);
-
- gcc_checking_assert (tombstone_uids.length () <= 2);
- for (auto uid : tombstone_uids)
- track_tombstone (uid);
-
- return true;
-}
-
-// Return true if STORE_INSN may modify mem rtx MEM. Make sure we keep
-// within our BUDGET for alias analysis.
-static bool
-store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget)
-{
- if (!budget)
- {
- if (dump_file)
- {
- fprintf (dump_file,
- "exceeded budget, assuming store %d aliases with mem ",
- store_insn->uid ());
- print_simple_rtl (dump_file, mem);
- fprintf (dump_file, "\n");
- }
-
- return true;
- }
-
- budget--;
- return memory_modified_in_insn_p (mem, store_insn->rtl ());
-}
-
-// Return true if LOAD may be modified by STORE. Make sure we keep
-// within our BUDGET for alias analysis.
-static bool
-load_modified_by_store_p (insn_info *load,
- insn_info *store,
- int &budget)
-{
- gcc_checking_assert (budget >= 0);
-
- if (!budget)
- {
- if (dump_file)
- {
- fprintf (dump_file,
- "exceeded budget, assuming load %d aliases with store %d\n",
- load->uid (), store->uid ());
- }
- return true;
- }
-
- // It isn't safe to re-order stores over calls.
- if (CALL_P (load->rtl ()))
- return true;
-
- budget--;
-
- // Iterate over all MEMs in the load, seeing if any alias with
- // our store.
- subrtx_var_iterator::array_type array;
- rtx pat = PATTERN (load->rtl ());
- FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
- if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ()))
- return true;
-
- return false;
-}
-
-// Implement some common functionality used by both store_walker
-// and load_walker.
-template<bool reverse>
-class def_walker : public alias_walker
-{
-protected:
- using def_iter_t = typename std::conditional<reverse,
- reverse_def_iterator, def_iterator>::type;
-
- static use_info *start_use_chain (def_iter_t &def_iter)
- {
- set_info *set = nullptr;
- for (; *def_iter; def_iter++)
- {
- set = dyn_cast<set_info *> (*def_iter);
- if (!set)
- continue;
-
- use_info *use = reverse
- ? set->last_nondebug_insn_use ()
- : set->first_nondebug_insn_use ();
-
- if (use)
- return use;
- }
-
- return nullptr;
- }
-
- def_iter_t def_iter;
- insn_info *limit;
- def_walker (def_info *def, insn_info *limit) :
- def_iter (def), limit (limit) {}
-
- virtual bool iter_valid () const { return *def_iter; }
-
-public:
- insn_info *insn () const override { return (*def_iter)->insn (); }
- void advance () override { def_iter++; }
- bool valid () const override final
- {
- if (!iter_valid ())
- return false;
-
- if (reverse)
- return *(insn ()) > *limit;
- else
- return *(insn ()) < *limit;
- }
-};
-
-// alias_walker that iterates over stores.
-template<bool reverse, typename InsnPredicate>
-class store_walker : public def_walker<reverse>
-{
- rtx cand_mem;
- InsnPredicate tombstone_p;
-
-public:
- store_walker (def_info *mem_def, rtx mem, insn_info *limit_insn,
- InsnPredicate tombstone_fn) :
- def_walker<reverse> (mem_def, limit_insn),
- cand_mem (mem), tombstone_p (tombstone_fn) {}
-
- bool conflict_p (int &budget) const override final
- {
- if (tombstone_p (this->insn ()))
- return false;
-
- return store_modifies_mem_p (cand_mem, this->insn (), budget);
- }
-};
-
-// alias_walker that iterates over loads.
-template<bool reverse>
-class load_walker : public def_walker<reverse>
-{
- using Base = def_walker<reverse>;
- using use_iter_t = typename std::conditional<reverse,
- reverse_use_iterator, nondebug_insn_use_iterator>::type;
-
- use_iter_t use_iter;
- insn_info *cand_store;
-
- bool iter_valid () const override final { return *use_iter; }
-
-public:
- void advance () override final
- {
- use_iter++;
- if (*use_iter)
- return;
- this->def_iter++;
- use_iter = Base::start_use_chain (this->def_iter);
- }
-
- insn_info *insn () const override final
- {
- return (*use_iter)->insn ();
- }
-
- bool conflict_p (int &budget) const override final
- {
- return load_modified_by_store_p (insn (), cand_store, budget);
- }
-
- load_walker (def_info *def, insn_info *store, insn_info *limit_insn)
- : Base (def, limit_insn),
- use_iter (Base::start_use_chain (this->def_iter)),
- cand_store (store) {}
-};
-
-// Process our alias_walkers in a round-robin fashion, proceeding until
-// nothing more can be learned from alias analysis.
-//
-// We try to maintain the invariant that if a walker becomes invalid, we
-// set its pointer to null.
-void
-pair_fusion::do_alias_analysis (insn_info *alias_hazards[4],
- alias_walker *walkers[4],
- bool load_p)
-{
- const int n_walkers = 2 + (2 * !load_p);
- int budget = pair_mem_alias_check_limit ();
-
- auto next_walker = [walkers,n_walkers](int current) -> int {
- for (int j = 1; j <= n_walkers; j++)
- {
- int idx = (current + j) % n_walkers;
- if (walkers[idx])
- return idx;
- }
- return -1;
- };
-
- int i = -1;
- for (int j = 0; j < n_walkers; j++)
- {
- alias_hazards[j] = nullptr;
- if (!walkers[j])
- continue;
-
- if (!walkers[j]->valid ())
- walkers[j] = nullptr;
- else if (i == -1)
- i = j;
- }
-
- while (i >= 0)
- {
- int insn_i = i % 2;
- int paired_i = (i & 2) + !insn_i;
- int pair_fst = (i & 2);
- int pair_snd = (i & 2) + 1;
-
- if (walkers[i]->conflict_p (budget))
- {
- alias_hazards[i] = walkers[i]->insn ();
-
- // We got an aliasing conflict for this {load,store} walker,
- // so we don't need to walk any further.
- walkers[i] = nullptr;
-
- // If we have a pair of alias conflicts that prevent
- // forming the pair, stop. There's no need to do further
- // analysis.
- if (alias_hazards[paired_i]
- && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd]))
- return;
-
- if (!load_p)
- {
- int other_pair_fst = (pair_fst ? 0 : 2);
- int other_paired_i = other_pair_fst + !insn_i;
-
- int x_pair_fst = (i == pair_fst) ? i : other_paired_i;
- int x_pair_snd = (i == pair_fst) ? other_paired_i : i;
-
- // Similarly, handle the case where we have a {load,store}
- // or {store,load} alias hazard pair that prevents forming
- // the pair.
- if (alias_hazards[other_paired_i]
- && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd])
- return;
- }
- }
-
- if (walkers[i])
- {
- walkers[i]->advance ();
-
- if (!walkers[i]->valid ())
- walkers[i] = nullptr;
- }
-
- i = next_walker (i);
- }
-}
-
-// Given INSNS (in program order) which are known to be adjacent, look
-// to see if either insn has a suitable RTL (register) base that we can
-// use to form a pair. Push these to BASE_CANDS if we find any. CAND_MEMs
-// gives the relevant mems from the candidate insns, ACCESS_SIZE gives the
-// size of a single candidate access, and REVERSED says whether the accesses
-// are inverted in offset order.
-//
-// Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback
-// addressing.
-int
-pair_fusion::get_viable_bases (insn_info *insns[2],
- vec<base_cand> &base_cands,
- rtx cand_mems[2],
- unsigned access_size,
- bool reversed)
-{
- // We discovered this pair through a common base. Need to ensure that
- // we have a common base register that is live at both locations.
- def_info *base_defs[2] = {};
- int writeback = 0;
- for (int i = 0; i < 2; i++)
- {
- const bool is_lower = (i == reversed);
- poly_int64 poly_off;
- rtx base = pair_mem_strip_offset (cand_mems[i], &poly_off);
- if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC)
- writeback |= (1 << i);
-
- if (!REG_P (base) || !poly_off.is_constant ())
- continue;
-
- // Punt on accesses relative to eliminable regs. See the comment in
- // pair_fusion_bb_info::track_access for a detailed explanation of this.
- if (!reload_completed
- && (REGNO (base) == FRAME_POINTER_REGNUM
- || REGNO (base) == ARG_POINTER_REGNUM))
- continue;
-
- HOST_WIDE_INT base_off = poly_off.to_constant ();
-
- // It should be unlikely that we ever punt here, since MEM_EXPR offset
- // alignment should be a good proxy for register offset alignment.
- if (base_off % access_size != 0)
- {
- if (dump_file)
- fprintf (dump_file,
- "base not viable, offset misaligned (insn %d)\n",
- insns[i]->uid ());
- continue;
- }
-
- base_off /= access_size;
-
- if (!is_lower)
- base_off--;
-
- if (!pair_mem_in_range_p (base_off))
- continue;
-
- use_info *use = find_access (insns[i]->uses (), REGNO (base));
- gcc_assert (use);
- base_defs[i] = use->def ();
- }
-
- if (!base_defs[0] && !base_defs[1])
- {
- if (dump_file)
- fprintf (dump_file, "no viable base register for pair (%d,%d)\n",
- insns[0]->uid (), insns[1]->uid ());
- return writeback;
- }
-
- for (int i = 0; i < 2; i++)
- if ((writeback & (1 << i)) && !base_defs[i])
- {
- if (dump_file)
- fprintf (dump_file, "insn %d has writeback but base isn't viable\n",
- insns[i]->uid ());
- return writeback;
- }
-
- if (writeback == 3
- && base_defs[0]->regno () != base_defs[1]->regno ())
- {
- if (dump_file)
- fprintf (dump_file,
- "pair (%d,%d): double writeback with distinct regs (%d,%d): "
- "punting\n",
- insns[0]->uid (), insns[1]->uid (),
- base_defs[0]->regno (), base_defs[1]->regno ());
- return writeback;
- }
-
- if (base_defs[0] && base_defs[1]
- && base_defs[0]->regno () == base_defs[1]->regno ())
- {
- // Easy case: insns already share the same base reg.
- base_cands.quick_push (base_defs[0]);
- return writeback;
- }
-
- // Otherwise, we know that one of the bases must change.
- //
- // Note that if there is writeback we must use the writeback base
- // (we know now there is exactly one).
- for (int i = 0; i < 2; i++)
- if (base_defs[i] && (!writeback || (writeback & (1 << i))))
- base_cands.quick_push (base_cand { base_defs[i], i });
-
- return writeback;
-}
-
-// Given two adjacent memory accesses of the same size, I1 and I2, try
-// and see if we can merge them into a paired access.
-//
-// ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true
-// if the accesses are both loads, otherwise they are both stores.
-bool
-pair_fusion_bb_info::try_fuse_pair (bool load_p, unsigned access_size,
- insn_info *i1, insn_info *i2)
-{
- if (dump_file)
- fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n",
- load_p, i1->uid (), i2->uid ());
-
- insn_info *insns[2];
- bool reversed = false;
- if (*i1 < *i2)
- {
- insns[0] = i1;
- insns[1] = i2;
- }
- else
- {
- insns[0] = i2;
- insns[1] = i1;
- reversed = true;
- }
-
- rtx cand_mems[2];
- rtx reg_ops[2];
- rtx pats[2];
- for (int i = 0; i < 2; i++)
- {
- pats[i] = PATTERN (insns[i]->rtl ());
- cand_mems[i] = XEXP (pats[i], load_p);
- reg_ops[i] = XEXP (pats[i], !load_p);
- }
-
- if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1]))
- {
- if (dump_file)
- fprintf (dump_file,
- "punting on load pair due to reg conflcits (%d,%d)\n",
- insns[0]->uid (), insns[1]->uid ());
- return false;
- }
-
- if (cfun->can_throw_non_call_exceptions
- && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX)
- && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
- {
- if (dump_file)
- fprintf (dump_file,
- "can't combine insns with EH side effects (%d,%d)\n",
- insns[0]->uid (), insns[1]->uid ());
- return false;
- }
-
- auto_vec<base_cand, 2> base_cands (2);
-
- int writeback = m_pass->get_viable_bases (insns, base_cands, cand_mems,
- access_size, reversed);
- if (base_cands.is_empty ())
- {
- if (dump_file)
- fprintf (dump_file, "no viable base for pair (%d,%d)\n",
- insns[0]->uid (), insns[1]->uid ());
- return false;
- }
-
- // Punt on frame-related insns with writeback. We probably won't see
- // these in practice, but this is conservative and ensures we don't
- // have to worry about these later on.
- if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ())
- || RTX_FRAME_RELATED_P (i2->rtl ())))
- {
- if (dump_file)
- fprintf (dump_file,
- "rejecting pair (%d,%d): frame-related insn with writeback\n",
- i1->uid (), i2->uid ());
- return false;
- }
-
- rtx *ignore = &XEXP (pats[1], load_p);
- for (auto use : insns[1]->uses ())
- if (!use->is_mem ()
- && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore)
- && use->def () && use->def ()->insn () == insns[0])
- {
- // N.B. we allow a true dependence on the base address, as this
- // happens in the case of auto-inc accesses. Consider a post-increment
- // load followed by a regular indexed load, for example.
- if (dump_file)
- fprintf (dump_file,
- "%d has non-address true dependence on %d, rejecting pair\n",
- insns[1]->uid (), insns[0]->uid ());
- return false;
- }
-
- unsigned i = 0;
- while (i < base_cands.length ())
- {
- base_cand &cand = base_cands[i];
-
- rtx *ignore[2] = {};
- for (int j = 0; j < 2; j++)
- if (cand.from_insn == !j)
- ignore[j] = &XEXP (cand_mems[j], 0);
-
- insn_info *h = first_hazard_after (insns[0], ignore[0]);
- if (h && *h < *insns[1])
- cand.hazards[0] = h;
-
- h = latest_hazard_before (insns[1], ignore[1]);
- if (h && *h > *insns[0])
- cand.hazards[1] = h;
-
- if (!cand.viable ())
- {
- if (dump_file)
- fprintf (dump_file,
- "pair (%d,%d): rejecting base %d due to dataflow "
- "hazards (%d,%d)\n",
- insns[0]->uid (),
- insns[1]->uid (),
- cand.def->regno (),
- cand.hazards[0]->uid (),
- cand.hazards[1]->uid ());
-
- base_cands.ordered_remove (i);
- }
- else
- i++;
- }
-
- if (base_cands.is_empty ())
- {
- if (dump_file)
- fprintf (dump_file,
- "can't form pair (%d,%d) due to dataflow hazards\n",
- insns[0]->uid (), insns[1]->uid ());
- return false;
- }
-
- insn_info *alias_hazards[4] = {};
-
- // First def of memory after the first insn, and last def of memory
- // before the second insn, respectively.
- def_info *mem_defs[2] = {};
- if (load_p)
- {
- if (!MEM_READONLY_P (cand_mems[0]))
- {
- mem_defs[0] = memory_access (insns[0]->uses ())->def ();
- gcc_checking_assert (mem_defs[0]);
- mem_defs[0] = mem_defs[0]->next_def ();
- }
- if (!MEM_READONLY_P (cand_mems[1]))
- {
- mem_defs[1] = memory_access (insns[1]->uses ())->def ();
- gcc_checking_assert (mem_defs[1]);
- }
- }
- else
- {
- mem_defs[0] = memory_access (insns[0]->defs ())->next_def ();
- mem_defs[1] = memory_access (insns[1]->defs ())->prev_def ();
- gcc_checking_assert (mem_defs[0]);
- gcc_checking_assert (mem_defs[1]);
- }
-
- auto tombstone_p = [&](insn_info *insn) -> bool {
- return m_emitted_tombstone
- && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ());
- };
-
- store_walker<false, decltype(tombstone_p)>
- forward_store_walker (mem_defs[0], cand_mems[0], insns[1], tombstone_p);
-
- store_walker<true, decltype(tombstone_p)>
- backward_store_walker (mem_defs[1], cand_mems[1], insns[0], tombstone_p);
-
- alias_walker *walkers[4] = {};
- if (mem_defs[0])
- walkers[0] = &forward_store_walker;
- if (mem_defs[1])
- walkers[1] = &backward_store_walker;
-
- if (load_p && (mem_defs[0] || mem_defs[1]))
- m_pass->do_alias_analysis (alias_hazards, walkers, load_p);
- else
- {
- // We want to find any loads hanging off the first store.
- mem_defs[0] = memory_access (insns[0]->defs ());
- load_walker<false> forward_load_walker (mem_defs[0], insns[0], insns[1]);
- load_walker<true> backward_load_walker (mem_defs[1], insns[1], insns[0]);
- walkers[2] = &forward_load_walker;
- walkers[3] = &backward_load_walker;
- m_pass->do_alias_analysis (alias_hazards, walkers, load_p);
- // Now consolidate hazards back down.
- if (alias_hazards[2]
- && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0])))
- alias_hazards[0] = alias_hazards[2];
-
- if (alias_hazards[3]
- && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1])))
- alias_hazards[1] = alias_hazards[3];
- }
-
- if (alias_hazards[0] && alias_hazards[1]
- && *alias_hazards[0] <= *alias_hazards[1])
- {
- if (dump_file)
- fprintf (dump_file,
- "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n",
- i1->uid (), i2->uid (),
- alias_hazards[0]->uid (), alias_hazards[1]->uid ());
- return false;
- }
-
- // Now narrow the hazards on each base candidate using
- // the alias hazards.
- i = 0;
- while (i < base_cands.length ())
- {
- base_cand &cand = base_cands[i];
- if (alias_hazards[0] && (!cand.hazards[0]
- || *alias_hazards[0] < *cand.hazards[0]))
- cand.hazards[0] = alias_hazards[0];
- if (alias_hazards[1] && (!cand.hazards[1]
- || *alias_hazards[1] > *cand.hazards[1]))
- cand.hazards[1] = alias_hazards[1];
-
- if (cand.viable ())
- i++;
- else
- {
- if (dump_file)
- fprintf (dump_file, "pair (%d,%d): rejecting base %d due to "
- "alias/dataflow hazards (%d,%d)",
- insns[0]->uid (), insns[1]->uid (),
- cand.def->regno (),
- cand.hazards[0]->uid (),
- cand.hazards[1]->uid ());
-
- base_cands.ordered_remove (i);
- }
- }
-
- if (base_cands.is_empty ())
- {
- if (dump_file)
- fprintf (dump_file,
- "cannot form pair (%d,%d) due to alias/dataflow hazards",
- insns[0]->uid (), insns[1]->uid ());
-
- return false;
- }
-
- base_cand *base = &base_cands[0];
- if (base_cands.length () > 1)
- {
- // If there are still multiple viable bases, it makes sense
- // to choose one that allows us to reduce register pressure,
- // for loads this means moving further down, for stores this
- // means moving further up.
- gcc_checking_assert (base_cands.length () == 2);
- const int hazard_i = !load_p;
- if (base->hazards[hazard_i])
- {
- if (!base_cands[1].hazards[hazard_i])
- base = &base_cands[1];
- else if (load_p
- && *base_cands[1].hazards[hazard_i]
- > *(base->hazards[hazard_i]))
- base = &base_cands[1];
- else if (!load_p
- && *base_cands[1].hazards[hazard_i]
- < *(base->hazards[hazard_i]))
- base = &base_cands[1];
- }
- }
-
- // Otherwise, hazards[0] > hazards[1].
- // Pair can be formed anywhere in (hazards[1], hazards[0]).
- insn_range_info range (insns[0], insns[1]);
- if (base->hazards[1])
- range.first = base->hazards[1];
- if (base->hazards[0])
- range.last = base->hazards[0]->prev_nondebug_insn ();
-
- // If the second insn can throw, narrow the move range to exactly that insn.
- // This prevents us trying to move the second insn from the end of the BB.
- if (cfun->can_throw_non_call_exceptions
- && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
- {
- gcc_assert (range.includes (insns[1]));
- range = insn_range_info (insns[1]);
- }
-
- // Placement strategy: push loads down and pull stores up, this should
- // help register pressure by reducing live ranges.
- if (load_p)
- range.first = range.last;
- else
- range.last = range.first;
-
- if (dump_file)
- {
- auto print_hazard = [](insn_info *i)
- {
- if (i)
- fprintf (dump_file, "%d", i->uid ());
- else
- fprintf (dump_file, "-");
- };
- auto print_pair = [print_hazard](insn_info **i)
- {
- print_hazard (i[0]);
- fprintf (dump_file, ",");
- print_hazard (i[1]);
- };
-
- fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (",
- load_p, insns[0]->uid (), insns[1]->uid (),
- base->def->regno ());
- print_pair (base->hazards);
- fprintf (dump_file, "), move_range: (%d,%d)\n",
- range.first->uid (), range.last->uid ());
- }
-
- return fuse_pair (load_p, access_size, writeback,
- i1, i2, *base, range);
-}
-
-static void
-dump_insn_list (FILE *f, const insn_list_t &l)
-{
- fprintf (f, "(");
-
- auto i = l.begin ();
- auto end = l.end ();
-
- if (i != end)
- fprintf (f, "%d", (*i)->uid ());
- i++;
-
- for (; i != end; i++)
- fprintf (f, ", %d", (*i)->uid ());
-
- fprintf (f, ")");
-}
-
-DEBUG_FUNCTION void
-debug (const insn_list_t &l)
-{
- dump_insn_list (stderr, l);
- fprintf (stderr, "\n");
-}
-
-// LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all insns
-// in LEFT_LIST are known to be adjacent to those in RIGHT_LIST.
-//
-// This function traverses the resulting 2D matrix of possible pair candidates
-// and attempts to merge them into pairs.
-//
-// The algorithm is straightforward: if we consider a combined list of
-// candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program order,
-// then we advance through X until we reach a crossing point (where X[i] and
-// X[i+1] come from different source lists).
-//
-// At this point we know X[i] and X[i+1] are adjacent accesses, and we try to
-// fuse them into a pair. If this succeeds, we remove X[i] and X[i+1] from
-// their original lists and continue as above.
-//
-// In the failure case, we advance through the source list containing X[i] and
-// continue as above (proceeding to the next crossing point).
-//
-// The rationale for skipping over groups of consecutive candidates from the
-// same source list is as follows:
-//
-// In the store case, the insns in the group can't be re-ordered over each
-// other as they are guaranteed to store to the same location, so we're
-// guaranteed not to lose opportunities by doing this.
-//
-// In the load case, subsequent loads from the same location are either
-// redundant (in which case they should have been cleaned up by an earlier
-// optimization pass) or there is an intervening aliasing hazard, in which case
-// we can't re-order them anyway, so provided earlier passes have cleaned up
-// redundant loads, we shouldn't miss opportunities by doing this.
-void
-pair_fusion_bb_info::merge_pairs (insn_list_t &left_list,
- insn_list_t &right_list,
- bool load_p,
- unsigned access_size)
-{
- if (dump_file)
- {
- fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p);
- dump_insn_list (dump_file, left_list);
- fprintf (dump_file, " x ");
- dump_insn_list (dump_file, right_list);
- fprintf (dump_file, "\n");
- }
-
- auto iter_l = left_list.begin ();
- auto iter_r = right_list.begin ();
-
- while (iter_l != left_list.end () && iter_r != right_list.end ())
- {
- auto next_l = std::next (iter_l);
- auto next_r = std::next (iter_r);
- if (**iter_l < **iter_r
- && next_l != left_list.end ()
- && **next_l < **iter_r)
- iter_l = next_l;
- else if (**iter_r < **iter_l
- && next_r != right_list.end ()
- && **next_r < **iter_l)
- iter_r = next_r;
- else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r))
- {
- left_list.erase (iter_l);
- iter_l = next_l;
- right_list.erase (iter_r);
- iter_r = next_r;
- }
- else if (**iter_l < **iter_r)
- iter_l = next_l;
- else
- iter_r = next_r;
- }
-}
-
-// Iterate over the accesses in GROUP, looking for adjacent sets
-// of accesses. If we find two sets of adjacent accesses, call
-// merge_pairs.
-void
-pair_fusion_bb_info::transform_for_base (int encoded_lfs,
- access_group &group)
-{
- const auto lfs = decode_lfs (encoded_lfs);
- const unsigned access_size = lfs.size;
-
- bool skip_next = true;
- access_record *prev_access = nullptr;
-
- for (auto &access : group.list)
- {
- if (skip_next)
- skip_next = false;
- else if (known_eq (access.offset, prev_access->offset + access_size))
- {
- merge_pairs (prev_access->cand_insns,
- access.cand_insns,
- lfs.load_p,
- access_size);
- skip_next = access.cand_insns.empty ();
- }
- prev_access = &access;
- }
-}
-
-// If we emitted tombstone insns for this BB, iterate through the BB
-// and remove all the tombstone insns, being sure to reparent any uses
-// of mem to previous defs when we do this.
-void
-pair_fusion_bb_info::cleanup_tombstones ()
-{
- // No need to do anything if we didn't emit a tombstone insn for this BB.
- if (!m_emitted_tombstone)
- return;
-
- for (auto insn : iterate_safely (m_bb->nondebug_insns ()))
- {
- if (!insn->is_real ()
- || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()))
- continue;
-
- auto set = as_a<set_info *> (memory_access (insn->defs ()));
- if (set->has_any_uses ())
- {
- auto prev_set = as_a<set_info *> (set->prev_def ());
- while (set->first_use ())
- crtl->ssa->reparent_use (set->first_use (), prev_set);
- }
-
- // Now set has no uses, we can delete it.
- insn_change change (insn, insn_change::DELETE);
- crtl->ssa->change_insn (change);
- }
-}
-
-template<typename Map>
-void
-pair_fusion_bb_info::traverse_base_map (Map &map)
-{
- for (auto kv : map)
- {
- const auto &key = kv.first;
- auto &value = kv.second;
- transform_for_base (key.second, value);
- }
-}
-
-void
-pair_fusion_bb_info::transform ()
-{
- traverse_base_map (expr_map);
- traverse_base_map (def_map);
-}
-
-// Given a load pair insn in PATTERN, unpack the insn, storing
-// the registers in REGS and returning the mem.
-static rtx
-aarch64_destructure_load_pair (rtx regs[2], rtx pattern)
-{
- rtx mem = NULL_RTX;
-
- for (int i = 0; i < 2; i++)
- {
- rtx pat = XVECEXP (pattern, 0, i);
- regs[i] = XEXP (pat, 0);
- rtx unspec = XEXP (pat, 1);
- gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
- rtx this_mem = XVECEXP (unspec, 0, 0);
- if (mem)
- gcc_checking_assert (rtx_equal_p (mem, this_mem));
- else
- {
- gcc_checking_assert (MEM_P (this_mem));
- mem = this_mem;
- }
- }
-
- return mem;
-}
-
-// Given a store pair insn in PATTERN, unpack the insn, storing
-// the register operands in REGS, and returning the mem.
-static rtx
-aarch64_destructure_store_pair (rtx regs[2], rtx pattern)
-{
- rtx mem = XEXP (pattern, 0);
- rtx unspec = XEXP (pattern, 1);
- gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
- for (int i = 0; i < 2; i++)
- regs[i] = XVECEXP (unspec, 0, i);
- return mem;
-}
-
-rtx
-aarch64_pair_fusion::destructure_pair (rtx regs[2], rtx pattern, bool load_p)
-{
- if (load_p)
- return aarch64_destructure_load_pair (regs, pattern);
- else
- return aarch64_destructure_store_pair (regs, pattern);
-}
-
-rtx
-aarch64_pair_fusion::gen_promote_writeback_pair (rtx wb_effect, rtx pair_mem,
- rtx regs[2],
- bool load_p)
-{
- auto op_mode = aarch64_operand_mode_for_pair_mode (GET_MODE (pair_mem));
-
- machine_mode modes[2];
- for (int i = 0; i < 2; i++)
- {
- machine_mode mode = GET_MODE (regs[i]);
- if (load_p)
- gcc_checking_assert (mode != VOIDmode);
- else if (mode == VOIDmode)
- mode = op_mode;
-
- modes[i] = mode;
- }
-
- const auto op_size = GET_MODE_SIZE (modes[0]);
- gcc_checking_assert (known_eq (op_size, GET_MODE_SIZE (modes[1])));
-
- rtx pats[2];
- for (int i = 0; i < 2; i++)
- {
- rtx mem = adjust_address_nv (pair_mem, modes[i], op_size * i);
- pats[i] = load_p
- ? gen_rtx_SET (regs[i], mem)
- : gen_rtx_SET (mem, regs[i]);
- }
+ rtx mem = adjust_address_nv (pair_mem, modes[i], op_size * i);
+ pats[i] = load_p
+ ? gen_rtx_SET (regs[i], mem)
+ : gen_rtx_SET (mem, regs[i]);
+ }
return gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (3, wb_effect, pats[0], pats[1]));
}
-// Given an existing pair insn INSN, look for a trailing update of
-// the base register which we can fold in to make this pair use
-// a writeback addressing mode.
-void
-pair_fusion::try_promote_writeback (insn_info *insn, bool load_p)
-{
- rtx regs[2];
-
- rtx mem = destructure_pair (regs, PATTERN (insn->rtl ()), load_p);
- gcc_checking_assert (MEM_P (mem));
-
- poly_int64 offset;
- rtx base = strip_offset (XEXP (mem, 0), &offset);
- gcc_assert (REG_P (base));
-
- const auto access_size = GET_MODE_SIZE (GET_MODE (mem)).to_constant () / 2;
-
- if (find_access (insn->defs (), REGNO (base)))
- {
- gcc_assert (load_p);
- if (dump_file)
- fprintf (dump_file,
- "ldp %d clobbers base r%d, can't promote to writeback\n",
- insn->uid (), REGNO (base));
- return;
- }
-
- auto base_use = find_access (insn->uses (), REGNO (base));
- gcc_assert (base_use);
-
- if (!base_use->def ())
- {
- if (dump_file)
- fprintf (dump_file,
- "found pair (i%d, L=%d): but base r%d is upwards exposed\n",
- insn->uid (), load_p, REGNO (base));
- return;
- }
-
- auto base_def = base_use->def ();
-
- rtx wb_effect = NULL_RTX;
- def_info *add_def;
- const insn_range_info pair_range (insn);
- insn_info *insns[2] = { nullptr, insn };
- insn_info *trailing_add
- = find_trailing_add (insns, pair_range, 0, &wb_effect,
- &add_def, base_def, offset,
- access_size);
- if (!trailing_add)
- return;
-
- auto attempt = crtl->ssa->new_change_attempt ();
-
- insn_change pair_change (insn);
- insn_change del_change (trailing_add, insn_change::DELETE);
- insn_change *changes[] = { &pair_change, &del_change };
-
- rtx pair_pat = gen_promote_writeback_pair (wb_effect, mem, regs, load_p);
- validate_unshare_change (insn->rtl (), &PATTERN (insn->rtl ()), pair_pat,
- true);
-
- // The pair must gain the def of the base register from the add.
- pair_change.new_defs = insert_access (attempt,
- add_def,
- pair_change.new_defs);
- gcc_assert (pair_change.new_defs.is_valid ());
-
- auto is_changing = insn_is_changing (changes);
- for (unsigned i = 0; i < ARRAY_SIZE (changes); i++)
- gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
-
- if (!rtl_ssa::recog_ignoring (attempt, pair_change, is_changing))
- {
- if (dump_file)
- fprintf (dump_file, "i%d: recog failed on wb pair, bailing out\n",
- insn->uid ());
- cancel_changes (0);
- return;
- }
-
- gcc_assert (crtl->ssa->verify_insn_changes (changes));
-
- if (MAY_HAVE_DEBUG_INSNS)
- fixup_debug_uses_trailing_add (attempt, insn, trailing_add, wb_effect);
-
- confirm_change_group ();
- crtl->ssa->change_insns (changes);
-}
-
-// Main function for the pass. Iterate over the insns in BB looking
-// for load/store candidates. If running after RA, also try and promote
-// non-writeback pairs to use writeback addressing. Then try to fuse
-// candidates into pairs.
-void pair_fusion::process_block (bb_info *bb)
-{
- const bool track_loads = track_loads_p ();
- const bool track_stores = track_stores_p ();
-
- pair_fusion_bb_info bb_state (bb, this);
-
- for (auto insn : bb->nondebug_insns ())
- {
- rtx_insn *rti = insn->rtl ();
-
- if (!rti || !INSN_P (rti))
- continue;
-
- rtx pat = PATTERN (rti);
- bool load_p;
- if (reload_completed
- && should_handle_writeback (writeback::ALL)
- && pair_mem_insn_p (rti, load_p))
- try_promote_writeback (insn, load_p);
-
- if (GET_CODE (pat) != SET)
- continue;
-
- if (track_stores && MEM_P (XEXP (pat, 0)))
- bb_state.track_access (insn, false, XEXP (pat, 0));
- else if (track_loads && MEM_P (XEXP (pat, 1)))
- bb_state.track_access (insn, true, XEXP (pat, 1));
- }
-
- bb_state.transform ();
- bb_state.cleanup_tombstones ();
-}
-
namespace {
const pass_data pass_data_ldp_fusion =
new file mode 100644
@@ -0,0 +1,2992 @@
+// Pair Mem fusion generic class implementation.
+// Copyright (C) 2024 Free Software Foundation, Inc.
+//
+// This file is part of GCC.
+//
+// GCC is free software; you can redistribute it and/or modify it
+// under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// GCC is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with GCC; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+#include "pair-fusion.h"
+#include "cfgcleanup.h"
+#include "tree-pass.h"
+#include "ordered-hash-map.h"
+#include "tree-dfa.h"
+#include "fold-const.h"
+#include "tree-hash-traits.h"
+#include "print-tree.h"
+#include "insn-attr.h"
+
+// We pack these fields (load_p, fpsimd_p, and size) into an integer
+// (LFS) which we use as part of the key into the main hash tables.
+//
+// The idea is that we group candidates together only if they agree on
+// the fields below. Candidates that disagree on any of these
+// properties shouldn't be merged together.
+struct lfs_fields
+{
+ bool load_p;
+ bool fpsimd_p;
+ unsigned size;
+};
+
+using insn_list_t = std::list<insn_info *>;
+
+// Information about the accesses at a given offset from a particular
+// base. Stored in an access_group, see below.
+struct access_record
+{
+ poly_int64 offset;
+ std::list<insn_info *> cand_insns;
+ std::list<access_record>::iterator place;
+
+ access_record (poly_int64 off) : offset (off) {}
+};
+
+// A group of accesses where adjacent accesses could be ldp/stp
+// candidates. The splay tree supports efficient insertion,
+// while the list supports efficient iteration.
+struct access_group
+{
+ splay_tree<access_record *> tree;
+ std::list<access_record> list;
+
+ template<typename Alloc>
+ inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn);
+};
+
+// Information about an alternate base. For a def_info D, it may
+// instead be expressed as D = BASE + OFFSET.
+struct alt_base
+{
+ def_info *base;
+ poly_int64 offset;
+};
+
+// Virtual base class for load/store walkers used in alias analysis.
+struct alias_walker
+{
+ virtual bool conflict_p (int &budget) const = 0;
+ virtual insn_info *insn () const = 0;
+ virtual bool valid () const = 0;
+ virtual void advance () = 0;
+};
+
+
+pair_fusion::pair_fusion ()
+{
+ calculate_dominance_info (CDI_DOMINATORS);
+ df_analyze ();
+ crtl->ssa = new rtl_ssa::function_info (cfun);
+}
+
+pair_fusion::~pair_fusion ()
+{
+ if (crtl->ssa->perform_pending_updates ())
+ cleanup_cfg (0);
+
+ free_dominance_info (CDI_DOMINATORS);
+
+ delete crtl->ssa;
+ crtl->ssa = nullptr;
+}
+
+// This is the main function to start the pass.
+void
+pair_fusion::run ()
+{
+ if (!track_loads_p () && !track_stores_p ())
+ return;
+
+ for (auto bb : crtl->ssa->bbs ())
+ process_block (bb);
+}
+
+// State used by the pass for a given basic block.
+struct pair_fusion_bb_info
+{
+ using def_hash = nofree_ptr_hash<def_info>;
+ using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>;
+ using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>;
+
+ // Map of <tree base, LFS> -> access_group.
+ ordered_hash_map<expr_key_t, access_group> expr_map;
+
+ // Map of <RTL-SSA def_info *, LFS> -> access_group.
+ ordered_hash_map<def_key_t, access_group> def_map;
+
+ // Given the def_info for an RTL base register, express it as an offset from
+ // some canonical base instead.
+ //
+ // Canonicalizing bases in this way allows us to identify adjacent accesses
+ // even if they see different base register defs.
+ hash_map<def_hash, alt_base> canon_base_map;
+
+ static const size_t obstack_alignment = sizeof (void *);
+
+ pair_fusion_bb_info (bb_info *bb, pair_fusion *d)
+ : m_bb (bb), m_pass (d), m_emitted_tombstone (false)
+ {
+ obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE,
+ obstack_alignment, obstack_chunk_alloc,
+ obstack_chunk_free);
+ }
+ ~pair_fusion_bb_info ()
+ {
+ obstack_free (&m_obstack, nullptr);
+
+ if (m_emitted_tombstone)
+ {
+ bitmap_release (&m_tombstone_bitmap);
+ bitmap_obstack_release (&m_bitmap_obstack);
+ }
+ }
+
+ inline void track_access (insn_info *, bool load, rtx mem);
+ inline void transform ();
+ inline void cleanup_tombstones ();
+
+private:
+ obstack m_obstack;
+ bb_info *m_bb;
+ pair_fusion *m_pass;
+
+ // State for keeping track of tombstone insns emitted for this BB.
+ bitmap_obstack m_bitmap_obstack;
+ bitmap_head m_tombstone_bitmap;
+ bool m_emitted_tombstone;
+
+ inline splay_tree_node<access_record *> *node_alloc (access_record *);
+
+ template<typename Map>
+ inline void traverse_base_map (Map &map);
+ inline void transform_for_base (int load_size, access_group &group);
+
+ inline void merge_pairs (insn_list_t &, insn_list_t &,
+ bool load_p, unsigned access_size);
+
+ inline bool try_fuse_pair (bool load_p, unsigned access_size,
+ insn_info *i1, insn_info *i2);
+
+ inline bool fuse_pair (bool load_p, unsigned access_size,
+ int writeback,
+ insn_info *i1, insn_info *i2,
+ base_cand &base,
+ const insn_range_info &move_range);
+
+ inline void track_tombstone (int uid);
+
+ inline bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs);
+};
+splay_tree_node<access_record *> *
+pair_fusion_bb_info::node_alloc (access_record *access)
+{
+ using T = splay_tree_node<access_record *>;
+ void *addr = obstack_alloc (&m_obstack, sizeof (T));
+ return new (addr) T (access);
+}
+
+// Given a mem MEM, if the address has side effects, return a MEM that accesses
+// the same address but without the side effects. Otherwise, return
+// MEM unchanged.
+static rtx
+drop_writeback (rtx mem)
+{
+ rtx addr = XEXP (mem, 0);
+
+ if (!side_effects_p (addr))
+ return mem;
+
+ switch (GET_CODE (addr))
+ {
+ case PRE_MODIFY:
+ addr = XEXP (addr, 1);
+ break;
+ case POST_MODIFY:
+ case POST_INC:
+ case POST_DEC:
+ addr = XEXP (addr, 0);
+ break;
+ case PRE_INC:
+ case PRE_DEC:
+ {
+ poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem));
+ if (GET_CODE (addr) == PRE_DEC)
+ adjustment *= -1;
+ addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment);
+ break;
+ }
+ default:
+ gcc_unreachable ();
+ }
+
+ return change_address (mem, GET_MODE (mem), addr);
+}
+
+// Convenience wrapper around strip_offset that can also look through
+// RTX_AUTOINC addresses. The interface is like strip_offset except we take a
+// MEM so that we know the mode of the access.
+static rtx
+pair_mem_strip_offset (rtx mem, poly_int64 *offset)
+{
+ rtx addr = XEXP (mem, 0);
+
+ switch (GET_CODE (addr))
+ {
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ addr = strip_offset (XEXP (addr, 1), offset);
+ gcc_checking_assert (REG_P (addr));
+ gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr));
+ break;
+ case PRE_INC:
+ case POST_INC:
+ addr = XEXP (addr, 0);
+ *offset = GET_MODE_SIZE (GET_MODE (mem));
+ gcc_checking_assert (REG_P (addr));
+ break;
+ case PRE_DEC:
+ case POST_DEC:
+ addr = XEXP (addr, 0);
+ *offset = -GET_MODE_SIZE (GET_MODE (mem));
+ gcc_checking_assert (REG_P (addr));
+ break;
+
+ default:
+ addr = strip_offset (addr, offset);
+ }
+
+ return addr;
+}
+
+// Return true if X is a PRE_{INC,DEC,MODIFY} rtx.
+static bool
+any_pre_modify_p (rtx x)
+{
+ const auto code = GET_CODE (x);
+ return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY;
+}
+
+// Return true if X is a POST_{INC,DEC,MODIFY} rtx.
+static bool
+any_post_modify_p (rtx x)
+{
+ const auto code = GET_CODE (x);
+ return code == POST_INC || code == POST_DEC || code == POST_MODIFY;
+}
+
+// Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these
+// into an integer for use as a hash table key.
+static int
+encode_lfs (lfs_fields fields)
+{
+ int size_log2 = exact_log2 (fields.size);
+ gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4);
+ return ((int)fields.load_p << 3)
+ | ((int)fields.fpsimd_p << 2)
+ | (size_log2 - 2);
+}
+
+// Inverse of encode_lfs.
+static lfs_fields
+decode_lfs (int lfs)
+{
+ bool load_p = (lfs & (1 << 3));
+ bool fpsimd_p = (lfs & (1 << 2));
+ unsigned size = 1U << ((lfs & 3) + 2);
+ return { load_p, fpsimd_p, size };
+}
+
+// Track the access INSN at offset OFFSET in this access group.
+// ALLOC_NODE is used to allocate splay tree nodes.
+template<typename Alloc>
+void
+access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn)
+{
+ auto insert_before = [&](std::list<access_record>::iterator after)
+ {
+ auto it = list.emplace (after, offset);
+ it->cand_insns.push_back (insn);
+ it->place = it;
+ return &*it;
+ };
+
+ if (!list.size ())
+ {
+ auto access = insert_before (list.end ());
+ tree.insert_max_node (alloc_node (access));
+ return;
+ }
+
+ auto compare = [&](splay_tree_node<access_record *> *node)
+ {
+ return compare_sizes_for_sort (offset, node->value ()->offset);
+ };
+ auto result = tree.lookup (compare);
+ splay_tree_node<access_record *> *node = tree.root ();
+ if (result == 0)
+ node->value ()->cand_insns.push_back (insn);
+ else
+ {
+ auto it = node->value ()->place;
+ auto after = (result > 0) ? std::next (it) : it;
+ auto access = insert_before (after);
+ tree.insert_child (node, result > 0, alloc_node (access));
+ }
+}
+
+// Given a candidate access INSN (with mem MEM), see if it has a suitable
+// MEM_EXPR base (i.e. a tree decl) relative to which we can track the access.
+// LFS is used as part of the key to the hash table, see track_access.
+bool
+pair_fusion_bb_info::track_via_mem_expr (insn_info *insn, rtx mem,
+ lfs_fields lfs)
+{
+ if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem))
+ return false;
+
+ poly_int64 offset;
+ tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem),
+ &offset);
+ if (!base_expr || !DECL_P (base_expr))
+ return false;
+
+ offset += MEM_OFFSET (mem);
+
+ const machine_mode mem_mode = GET_MODE (mem);
+ const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
+
+ // Punt on misaligned offsets. Paired memory access instructions require
+ // offsets to be a multiple of the access size, and we believe that
+ // misaligned offsets on MEM_EXPR bases are likely to lead to misaligned
+ // offsets w.r.t. RTL bases.
+ if (!multiple_p (offset, mem_size))
+ return false;
+
+ const auto key = std::make_pair (base_expr, encode_lfs (lfs));
+ access_group &group = expr_map.get_or_insert (key, NULL);
+ auto alloc = [&](access_record *access) { return node_alloc (access); };
+ group.track (alloc, offset, insn);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "[bb %u] tracking insn %d via ",
+ m_bb->index (), insn->uid ());
+ print_node_brief (dump_file, "mem expr", base_expr, 0);
+ fprintf (dump_file, " [L=%d FP=%d, %smode, off=",
+ lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]);
+ print_dec (offset, dump_file);
+ fprintf (dump_file, "]\n");
+ }
+
+ return true;
+}
+
+// Main function to begin pair discovery. Given a memory access INSN,
+// determine whether it could be a candidate for fusing into a paired
+// access, and if so, track it in the appropriate data structure for
+// this basic block. LOAD_P is true if the access is a load, and MEM
+// is the mem rtx that occurs in INSN.
+void
+pair_fusion_bb_info::track_access (insn_info *insn, bool load_p, rtx mem)
+{
+ // We can't combine volatile MEMs, so punt on these.
+ if (MEM_VOLATILE_P (mem))
+ return;
+
+ // Ignore writeback accesses if the hook says to do so.
+ if (!m_pass->should_handle_writeback (writeback::EXISTING)
+ && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
+ return;
+
+ const machine_mode mem_mode = GET_MODE (mem);
+ if (!m_pass->pair_operand_mode_ok_p (mem_mode))
+ return;
+
+ rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p);
+
+ if (!m_pass->pair_reg_operand_ok_p (load_p, reg_op, mem_mode))
+ return;
+
+ // We want to segregate FP/SIMD accesses from GPR accesses.
+ const bool fpsimd_op_p = m_pass->fpsimd_op_p (reg_op, mem_mode, load_p);
+
+ // Note pair_operand_mode_ok_p already rejected VL modes.
+ const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
+ const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size };
+
+ if (track_via_mem_expr (insn, mem, lfs))
+ return;
+
+ poly_int64 mem_off;
+ rtx addr = XEXP (mem, 0);
+ const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
+ rtx base = pair_mem_strip_offset (mem, &mem_off);
+ if (!REG_P (base))
+ return;
+
+ // Need to calculate two (possibly different) offsets:
+ // - Offset at which the access occurs.
+ // - Offset of the new base def.
+ poly_int64 access_off;
+ if (autoinc_p && any_post_modify_p (addr))
+ access_off = 0;
+ else
+ access_off = mem_off;
+
+ poly_int64 new_def_off = mem_off;
+
+ // Punt on accesses relative to eliminable regs. Since we don't know the
+ // elimination offset pre-RA, we should postpone forming pairs on such
+ // accesses until after RA.
+ //
+ // As it stands, addresses in range for an individual load/store but not
+ // for a paired access are currently reloaded inefficiently,
+ // ending up with a separate base register for each pair.
+ //
+ // In theory LRA should make use of
+ // targetm.legitimize_address_displacement to promote sharing of
+ // bases among multiple (nearby) address reloads, but the current
+ // LRA code returns early from process_address_1 for operands that
+ // satisfy "m", even if they don't satisfy the real (relaxed) address
+ // constraint; this early return means we never get to the code
+ // that calls targetm.legitimize_address_displacement.
+ //
+ // So for now, it's better to punt when we can't be sure that the
+ // offset is in range for paired access. On aarch64, out-of-range cases
+ // can then be handled after RA by the out-of-range LDP/STP peepholes.
+ // Eventually, it would be nice to handle known out-of-range opportunities
+ // in the pass itself (for stack accesses, this would be in the post-RA pass).
+ if (!reload_completed
+ && (REGNO (base) == FRAME_POINTER_REGNUM
+ || REGNO (base) == ARG_POINTER_REGNUM))
+ return;
+
+ // Now need to find def of base register.
+ use_info *base_use = find_access (insn->uses (), REGNO (base));
+ gcc_assert (base_use);
+ def_info *base_def = base_use->def ();
+ if (!base_def)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "base register (regno %d) of insn %d is undefined",
+ REGNO (base), insn->uid ());
+ return;
+ }
+
+ alt_base *canon_base = canon_base_map.get (base_def);
+ if (canon_base)
+ {
+ // Express this as the combined offset from the canonical base.
+ base_def = canon_base->base;
+ new_def_off += canon_base->offset;
+ access_off += canon_base->offset;
+ }
+
+ if (autoinc_p)
+ {
+ auto def = find_access (insn->defs (), REGNO (base));
+ gcc_assert (def);
+
+ // Record that DEF = BASE_DEF + MEM_OFF.
+ if (dump_file)
+ {
+ pretty_printer pp;
+ pp_access (&pp, def, 0);
+ pp_string (&pp, " = ");
+ pp_access (&pp, base_def, 0);
+ fprintf (dump_file, "[bb %u] recording %s + ",
+ m_bb->index (), pp_formatted_text (&pp));
+ print_dec (new_def_off, dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ alt_base base_rec { base_def, new_def_off };
+ if (canon_base_map.put (def, base_rec))
+ gcc_unreachable (); // Base defs should be unique.
+ }
+
+ // Punt on misaligned offsets. Paired memory accesses require offsets
+ // to be a multiple of the access size.
+ if (!multiple_p (mem_off, mem_size))
+ return;
+
+ const auto key = std::make_pair (base_def, encode_lfs (lfs));
+ access_group &group = def_map.get_or_insert (key, NULL);
+ auto alloc = [&](access_record *access) { return node_alloc (access); };
+ group.track (alloc, access_off, insn);
+
+ if (dump_file)
+ {
+ pretty_printer pp;
+ pp_access (&pp, base_def, 0);
+
+ fprintf (dump_file, "[bb %u] tracking insn %d via %s",
+ m_bb->index (), insn->uid (), pp_formatted_text (&pp));
+ fprintf (dump_file,
+ " [L=%d, WB=%d, FP=%d, %smode, off=",
+ lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]);
+ print_dec (access_off, dump_file);
+ fprintf (dump_file, "]\n");
+ }
+}
+
+// Dummy predicate that never ignores any insns.
+static bool no_ignore (insn_info *) { return false; }
+
+// Return the latest dataflow hazard before INSN.
+//
+// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
+// dataflow purposes. This is needed when considering changing the RTL base of
+// an access discovered through a MEM_EXPR base.
+//
+// If IGNORE_INSN is non-NULL, we should further ignore any hazards arising
+// from that insn.
+//
+// N.B. we ignore any defs/uses of memory here as we deal with that separately,
+// making use of alias disambiguation.
+static insn_info *
+latest_hazard_before (insn_info *insn, rtx *ignore,
+ insn_info *ignore_insn = nullptr)
+{
+ insn_info *result = nullptr;
+
+ // If the insn can throw then it is at the end of a BB and we can't
+ // move it, model this by recording a hazard in the previous insn
+ // which will prevent moving the insn up.
+ if (cfun->can_throw_non_call_exceptions
+ && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX))
+ return insn->prev_nondebug_insn ();
+
+ // Return true if we registered the hazard.
+ auto hazard = [&](insn_info *h) -> bool
+ {
+ gcc_checking_assert (*h < *insn);
+ if (h == ignore_insn)
+ return false;
+
+ if (!result || *h > *result)
+ result = h;
+
+ return true;
+ };
+
+ rtx pat = PATTERN (insn->rtl ());
+ auto ignore_use = [&](use_info *u)
+ {
+ if (u->is_mem ())
+ return true;
+
+ return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
+ };
+
+ // Find defs of uses in INSN (RaW).
+ for (auto use : insn->uses ())
+ if (!ignore_use (use) && use->def ())
+ hazard (use->def ()->insn ());
+
+ // Find previous defs (WaW) or previous uses (WaR) of defs in INSN.
+ for (auto def : insn->defs ())
+ {
+ if (def->is_mem ())
+ continue;
+
+ if (def->prev_def ())
+ {
+ hazard (def->prev_def ()->insn ()); // WaW
+
+ auto set = dyn_cast<set_info *> (def->prev_def ());
+ if (set && set->has_nondebug_insn_uses ())
+ for (auto use : set->reverse_nondebug_insn_uses ())
+ if (use->insn () != insn && hazard (use->insn ())) // WaR
+ break;
+ }
+
+ if (!HARD_REGISTER_NUM_P (def->regno ()))
+ continue;
+
+ // Also need to check backwards for call clobbers (WaW).
+ for (auto call_group : def->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (def->resource ()))
+ continue;
+
+ auto clobber_insn = prev_call_clobbers_ignoring (*call_group,
+ def->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+
+ }
+
+ return result;
+}
+
+// Return the first dataflow hazard after INSN.
+//
+// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
+// dataflow purposes. This is needed when considering changing the RTL base of
+// an access discovered through a MEM_EXPR base.
+//
+// N.B. we ignore any defs/uses of memory here as we deal with that separately,
+// making use of alias disambiguation.
+static insn_info *
+first_hazard_after (insn_info *insn, rtx *ignore)
+{
+ insn_info *result = nullptr;
+ auto hazard = [insn, &result](insn_info *h)
+ {
+ gcc_checking_assert (*h > *insn);
+ if (!result || *h < *result)
+ result = h;
+ };
+
+ rtx pat = PATTERN (insn->rtl ());
+ auto ignore_use = [&](use_info *u)
+ {
+ if (u->is_mem ())
+ return true;
+
+ return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
+ };
+
+ for (auto def : insn->defs ())
+ {
+ if (def->is_mem ())
+ continue;
+
+ if (def->next_def ())
+ hazard (def->next_def ()->insn ()); // WaW
+
+ auto set = dyn_cast<set_info *> (def);
+ if (set && set->has_nondebug_insn_uses ())
+ hazard (set->first_nondebug_insn_use ()->insn ()); // RaW
+
+ if (!HARD_REGISTER_NUM_P (def->regno ()))
+ continue;
+
+ // Also check for call clobbers of this def (WaW).
+ for (auto call_group : def->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (def->resource ()))
+ continue;
+
+ auto clobber_insn = next_call_clobbers_ignoring (*call_group,
+ def->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+ }
+
+ // Find any subsequent defs of uses in INSN (WaR).
+ for (auto use : insn->uses ())
+ {
+ if (ignore_use (use))
+ continue;
+
+ if (use->def ())
+ {
+ auto def = use->def ()->next_def ();
+ if (def && def->insn () == insn)
+ def = def->next_def ();
+
+ if (def)
+ hazard (def->insn ());
+ }
+
+ if (!HARD_REGISTER_NUM_P (use->regno ()))
+ continue;
+
+ // Also need to handle call clobbers of our uses (again WaR).
+ //
+ // See restrict_movement_for_uses_ignoring for why we don't
+ // need to check backwards for call clobbers.
+ for (auto call_group : use->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (use->resource ()))
+ continue;
+
+ auto clobber_insn = next_call_clobbers_ignoring (*call_group,
+ use->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+ }
+
+ return result;
+}
+
+// Return true iff R1 and R2 overlap.
+static bool
+ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2)
+{
+ // If either range is empty, then their intersection is empty.
+ if (!r1 || !r2)
+ return false;
+
+ // When do they not overlap? When one range finishes before the other
+ // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first).
+ // Inverting this, we get the below.
+ return *r1.last >= *r2.first && *r2.last >= *r1.first;
+}
+
+// Get the range of insns that def feeds.
+static insn_range_info get_def_range (def_info *def)
+{
+ insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn ();
+ return { def->insn (), last };
+}
+
+// Given a def (of memory), return the downwards range within which we
+// can safely move this def.
+static insn_range_info
+def_downwards_move_range (def_info *def)
+{
+ auto range = get_def_range (def);
+
+ auto set = dyn_cast<set_info *> (def);
+ if (!set || !set->has_any_uses ())
+ return range;
+
+ auto use = set->first_nondebug_insn_use ();
+ if (use)
+ range = move_earlier_than (range, use->insn ());
+
+ return range;
+}
+
+// Given a def (of memory), return the upwards range within which we can
+// safely move this def.
+static insn_range_info
+def_upwards_move_range (def_info *def)
+{
+ def_info *prev = def->prev_def ();
+ insn_range_info range { prev->insn (), def->insn () };
+
+ auto set = dyn_cast<set_info *> (prev);
+ if (!set || !set->has_any_uses ())
+ return range;
+
+ auto use = set->last_nondebug_insn_use ();
+ if (use)
+ range = move_later_than (range, use->insn ());
+
+ return range;
+}
+
+// Class that implements a state machine for building the changes needed to form
+// a store pair instruction. This allows us to easily build the changes in
+// program order, as required by rtl-ssa.
+struct store_change_builder
+{
+ enum class state
+ {
+ FIRST,
+ INSERT,
+ FIXUP_USE,
+ LAST,
+ DONE
+ };
+
+ enum class action
+ {
+ TOMBSTONE,
+ CHANGE,
+ INSERT,
+ FIXUP_USE
+ };
+
+ struct change
+ {
+ action type;
+ insn_info *insn;
+ };
+
+ bool done () const { return m_state == state::DONE; }
+
+ store_change_builder (insn_info *insns[2],
+ insn_info *repurpose,
+ insn_info *dest)
+ : m_state (state::FIRST), m_insns { insns[0], insns[1] },
+ m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {}
+
+ change get_change () const
+ {
+ switch (m_state)
+ {
+ case state::FIRST:
+ return {
+ m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
+ m_insns[0]
+ };
+ case state::LAST:
+ return {
+ m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
+ m_insns[1]
+ };
+ case state::INSERT:
+ return { action::INSERT, m_dest };
+ case state::FIXUP_USE:
+ return { action::FIXUP_USE, m_use->insn () };
+ case state::DONE:
+ break;
+ }
+
+ gcc_unreachable ();
+ }
+
+ // Transition to the next state.
+ void advance ()
+ {
+ switch (m_state)
+ {
+ case state::FIRST:
+ if (m_repurpose)
+ m_state = state::LAST;
+ else
+ m_state = state::INSERT;
+ break;
+ case state::INSERT:
+ {
+ def_info *def = memory_access (m_insns[0]->defs ());
+ while (*def->next_def ()->insn () <= *m_dest)
+ def = def->next_def ();
+
+ // Now we know DEF feeds the insertion point for the new stp.
+ // Look for any uses of DEF that will consume the new stp.
+ gcc_assert (*def->insn () <= *m_dest
+ && *def->next_def ()->insn () > *m_dest);
+
+ auto set = as_a<set_info *> (def);
+ for (auto use : set->nondebug_insn_uses ())
+ if (*use->insn () > *m_dest)
+ {
+ m_use = use;
+ break;
+ }
+
+ if (m_use)
+ m_state = state::FIXUP_USE;
+ else
+ m_state = state::LAST;
+ break;
+ }
+ case state::FIXUP_USE:
+ m_use = m_use->next_nondebug_insn_use ();
+ if (!m_use)
+ m_state = state::LAST;
+ break;
+ case state::LAST:
+ m_state = state::DONE;
+ break;
+ case state::DONE:
+ gcc_unreachable ();
+ }
+ }
+
+private:
+ state m_state;
+
+ // Original candidate stores.
+ insn_info *m_insns[2];
+
+ // If non-null, this is a candidate insn to change into an stp. Otherwise we
+ // are deleting both original insns and inserting a new insn for the stp.
+ insn_info *m_repurpose;
+
+ // Destionation of the stp, it will be placed immediately after m_dest.
+ insn_info *m_dest;
+
+ // Current nondebug use that needs updating due to stp insertion.
+ use_info *m_use;
+};
+
+// Given candidate store insns FIRST and SECOND, see if we can re-purpose one
+// of them (together with its def of memory) for the stp insn. If so, return
+// that insn. Otherwise, return null.
+static insn_info *
+try_repurpose_store (insn_info *first,
+ insn_info *second,
+ const insn_range_info &move_range)
+{
+ def_info * const defs[2] = {
+ memory_access (first->defs ()),
+ memory_access (second->defs ())
+ };
+
+ if (move_range.includes (first)
+ || ranges_overlap_p (move_range, def_downwards_move_range (defs[0])))
+ return first;
+
+ if (move_range.includes (second)
+ || ranges_overlap_p (move_range, def_upwards_move_range (defs[1])))
+ return second;
+
+ return nullptr;
+}
+
+// Generate the RTL pattern for a "tombstone"; used temporarily during this pass
+// to replace stores that are marked for deletion where we can't immediately
+// delete the store (since there are uses of mem hanging off the store).
+//
+// These are deleted at the end of the pass and uses re-parented appropriately
+// at this point.
+static rtx
+gen_tombstone (void)
+{
+ return gen_rtx_CLOBBER (VOIDmode,
+ gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)));
+}
+
+// Go through the reg notes rooted at NOTE, dropping those that we should drop,
+// and preserving those that we want to keep by prepending them to (and
+// returning) RESULT. EH_REGION is used to make sure we have at most one
+// REG_EH_REGION note in the resulting list. FR_EXPR is used to return any
+// REG_FRAME_RELATED_EXPR note we find, as these can need special handling in
+// combine_reg_notes.
+static rtx
+filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr)
+{
+ for (; note; note = XEXP (note, 1))
+ {
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_DEAD:
+ // REG_DEAD notes aren't required to be maintained.
+ case REG_EQUAL:
+ case REG_EQUIV:
+ case REG_UNUSED:
+ case REG_NOALIAS:
+ // These can all be dropped. For REG_EQU{AL,IV} they cannot apply to
+ // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see
+ // rtl-ssa/changes.cc:update_notes.
+ //
+ // Similarly, REG_NOALIAS cannot apply to a parallel.
+ case REG_INC:
+ // When we form the pair insn, the reg update is implemented
+ // as just another SET in the parallel, so isn't really an
+ // auto-increment in the RTL sense, hence we drop the note.
+ break;
+ case REG_EH_REGION:
+ gcc_assert (!*eh_region);
+ *eh_region = true;
+ result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result);
+ break;
+ case REG_CFA_DEF_CFA:
+ case REG_CFA_OFFSET:
+ case REG_CFA_RESTORE:
+ result = alloc_reg_note (REG_NOTE_KIND (note),
+ copy_rtx (XEXP (note, 0)),
+ result);
+ break;
+ case REG_FRAME_RELATED_EXPR:
+ gcc_assert (!*fr_expr);
+ *fr_expr = copy_rtx (XEXP (note, 0));
+ break;
+ default:
+ // Unexpected REG_NOTE kind.
+ gcc_unreachable ();
+ }
+ }
+
+ return result;
+}
+
+// Return the notes that should be attached to a combination of I1 and I2, where
+// *I1 < *I2. LOAD_P is true for loads.
+static rtx
+combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p)
+{
+ // Temporary storage for REG_FRAME_RELATED_EXPR notes.
+ rtx fr_expr[2] = {};
+
+ bool found_eh_region = false;
+ rtx result = NULL_RTX;
+ result = filter_notes (REG_NOTES (i2->rtl ()), result,
+ &found_eh_region, fr_expr + 1);
+ result = filter_notes (REG_NOTES (i1->rtl ()), result,
+ &found_eh_region, fr_expr);
+
+ if (!load_p)
+ {
+ // Simple frame-related sp-relative saves don't need CFI notes, but when
+ // we combine them into an stp we will need a CFI note as dwarf2cfi can't
+ // interpret the unspec pair representation directly.
+ if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0])
+ fr_expr[0] = copy_rtx (PATTERN (i1->rtl ()));
+ if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1])
+ fr_expr[1] = copy_rtx (PATTERN (i2->rtl ()));
+ }
+
+ rtx fr_pat = NULL_RTX;
+ if (fr_expr[0] && fr_expr[1])
+ {
+ // Combining two frame-related insns, need to construct
+ // a REG_FRAME_RELATED_EXPR note which represents the combined
+ // operation.
+ RTX_FRAME_RELATED_P (fr_expr[1]) = 1;
+ fr_pat = gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2, fr_expr[0], fr_expr[1]));
+ }
+ else
+ fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1];
+
+ if (fr_pat)
+ result = alloc_reg_note (REG_FRAME_RELATED_EXPR,
+ fr_pat, result);
+
+ return result;
+}
+
+// Given two memory accesses in PATS, at least one of which is of a
+// writeback form, extract two non-writeback memory accesses addressed
+// relative to the initial value of the base register, and output these
+// in PATS. Return an rtx that represents the overall change to the
+// base register.
+static rtx
+extract_writebacks (bool load_p, rtx pats[2], int changed)
+{
+ rtx base_reg = NULL_RTX;
+ poly_int64 current_offset = 0;
+
+ poly_int64 offsets[2];
+
+ for (int i = 0; i < 2; i++)
+ {
+ rtx mem = XEXP (pats[i], load_p);
+ rtx reg = XEXP (pats[i], !load_p);
+
+ rtx addr = XEXP (mem, 0);
+ const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
+
+ poly_int64 offset;
+ rtx this_base = pair_mem_strip_offset (mem, &offset);
+ gcc_assert (REG_P (this_base));
+ if (base_reg)
+ gcc_assert (rtx_equal_p (base_reg, this_base));
+ else
+ base_reg = this_base;
+
+ // If we changed base for the current insn, then we already
+ // derived the correct mem for this insn from the effective
+ // address of the other access.
+ if (i == changed)
+ {
+ gcc_checking_assert (!autoinc_p);
+ offsets[i] = offset;
+ continue;
+ }
+
+ if (autoinc_p && any_pre_modify_p (addr))
+ current_offset += offset;
+
+ poly_int64 this_off = current_offset;
+ if (!autoinc_p)
+ this_off += offset;
+
+ offsets[i] = this_off;
+ rtx new_mem = change_address (mem, GET_MODE (mem),
+ plus_constant (GET_MODE (base_reg),
+ base_reg, this_off));
+ pats[i] = load_p
+ ? gen_rtx_SET (reg, new_mem)
+ : gen_rtx_SET (new_mem, reg);
+
+ if (autoinc_p && any_post_modify_p (addr))
+ current_offset += offset;
+ }
+
+ if (known_eq (current_offset, 0))
+ return NULL_RTX;
+
+ return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg),
+ base_reg, current_offset));
+}
+
+// INSNS contains either {nullptr, pair insn} (when promoting an existing
+// non-writeback pair) or contains the candidate insns used to form the pair
+// (when fusing a new pair).
+//
+// PAIR_RANGE specifies where we want to form the final pair.
+// INITIAL_OFFSET gives the current base offset for the pair.
+// Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback.
+// ACCESS_SIZE gives the access size for a single arm of the pair.
+// BASE_DEF gives the initial def of the base register consumed by the pair.
+//
+// Given the above, this function looks for a trailing destructive update of the
+// base register. If there is one, we choose the first such update after
+// PAIR_DST that is still in the same BB as our pair. We return the new def in
+// *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT.
+insn_info *
+pair_fusion::find_trailing_add (insn_info *insns[2],
+ const insn_range_info &pair_range,
+ int initial_writeback,
+ rtx *writeback_effect,
+ def_info **add_def,
+ def_info *base_def,
+ poly_int64 initial_offset,
+ unsigned access_size)
+{
+ // Punt on frame-related insns, it is better to be conservative and
+ // not try to form writeback pairs here, and means we don't have to
+ // worry about the writeback case in forming REG_FRAME_RELATED_EXPR
+ // notes (see combine_reg_notes).
+ if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ()))
+ || RTX_FRAME_RELATED_P (insns[1]->rtl ()))
+ return nullptr;
+
+ insn_info *pair_dst = pair_range.singleton ();
+ gcc_assert (pair_dst);
+
+ def_info *def = base_def->next_def ();
+
+ // In the case that either of the initial pair insns had writeback,
+ // then there will be intervening defs of the base register.
+ // Skip over these.
+ for (int i = 0; i < 2; i++)
+ if (initial_writeback & (1 << i))
+ {
+ gcc_assert (def->insn () == insns[i]);
+ def = def->next_def ();
+ }
+
+ if (!def || def->bb () != pair_dst->bb ())
+ return nullptr;
+
+ // DEF should now be the first def of the base register after PAIR_DST.
+ insn_info *cand = def->insn ();
+ gcc_assert (*cand > *pair_dst);
+
+ const auto base_regno = base_def->regno ();
+
+ // If CAND doesn't also use our base register,
+ // it can't destructively update it.
+ if (!find_access (cand->uses (), base_regno))
+ return nullptr;
+
+ auto rti = cand->rtl ();
+
+ if (!INSN_P (rti))
+ return nullptr;
+
+ auto pat = PATTERN (rti);
+ if (GET_CODE (pat) != SET)
+ return nullptr;
+
+ auto dest = XEXP (pat, 0);
+ if (!REG_P (dest) || REGNO (dest) != base_regno)
+ return nullptr;
+
+ poly_int64 offset;
+ rtx rhs_base = strip_offset (XEXP (pat, 1), &offset);
+ if (!REG_P (rhs_base)
+ || REGNO (rhs_base) != base_regno
+ || !offset.is_constant ())
+ return nullptr;
+
+ // If the initial base offset is zero, we can handle any add offset
+ // (post-inc). Otherwise, we require the offsets to match (pre-inc).
+ if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset))
+ return nullptr;
+
+ auto off_hwi = offset.to_constant ();
+
+ if (off_hwi % access_size != 0)
+ return nullptr;
+
+ off_hwi /= access_size;
+
+ if (!pair_mem_in_range_p (off_hwi))
+ return nullptr;
+
+ auto dump_prefix = [&]()
+ {
+ if (!insns[0])
+ fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ());
+ else
+ fprintf (dump_file, " (%d,%d)",
+ insns[0]->uid (), insns[1]->uid ());
+ };
+
+ insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1]);
+ if (!hazard || *hazard <= *pair_dst)
+ {
+ if (dump_file)
+ {
+ dump_prefix ();
+ fprintf (dump_file,
+ "folding in trailing add (%d) to use writeback form\n",
+ cand->uid ());
+ }
+
+ *add_def = def;
+ *writeback_effect = copy_rtx (pat);
+ return cand;
+ }
+
+ if (dump_file)
+ {
+ dump_prefix ();
+ fprintf (dump_file,
+ "can't fold in trailing add (%d), hazard = %d\n",
+ cand->uid (), hazard->uid ());
+ }
+
+ return nullptr;
+}
+
+// We just emitted a tombstone with uid UID, track it in a bitmap for
+// this BB so we can easily identify it later when cleaning up tombstones.
+void
+pair_fusion_bb_info::track_tombstone (int uid)
+{
+ if (!m_emitted_tombstone)
+ {
+ // Lazily initialize the bitmap for tracking tombstone insns.
+ bitmap_obstack_initialize (&m_bitmap_obstack);
+ bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack);
+ m_emitted_tombstone = true;
+ }
+
+ if (!bitmap_set_bit (&m_tombstone_bitmap, uid))
+ gcc_unreachable (); // Bit should have changed.
+}
+
+// Reset the debug insn containing USE (the debug insn has been
+// optimized away).
+static void
+reset_debug_use (use_info *use)
+{
+ auto use_insn = use->insn ();
+ auto use_rtl = use_insn->rtl ();
+ insn_change change (use_insn);
+ change.new_uses = {};
+ INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC ();
+ crtl->ssa->change_insn (change);
+}
+
+// USE is a debug use that needs updating because DEF (a def of the same
+// register) is being re-ordered over it. If BASE is non-null, then DEF
+// is an update of the register BASE by a constant, given by WB_OFFSET,
+// and we can preserve debug info by accounting for the change in side
+// effects.
+static void
+fixup_debug_use (obstack_watermark &attempt,
+ use_info *use,
+ def_info *def,
+ rtx base,
+ poly_int64 wb_offset)
+{
+ auto use_insn = use->insn ();
+ if (base)
+ {
+ auto use_rtl = use_insn->rtl ();
+ insn_change change (use_insn);
+
+ gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base));
+ change.new_uses = check_remove_regno_access (attempt,
+ change.new_uses,
+ use->regno ());
+
+ // The effect of the writeback is to add WB_OFFSET to BASE. If
+ // we're re-ordering DEF below USE, then we update USE by adding
+ // WB_OFFSET to it. Otherwise, if we're re-ordering DEF above
+ // USE, we update USE by undoing the effect of the writeback
+ // (subtracting WB_OFFSET).
+ use_info *new_use;
+ if (*def->insn () > *use_insn)
+ {
+ // We now need USE_INSN to consume DEF. Create a new use of DEF.
+ //
+ // N.B. this means until we call change_insns for the main change
+ // group we will temporarily have a debug use consuming a def that
+ // comes after it, but RTL-SSA doesn't currently support updating
+ // debug insns as part of the main change group (together with
+ // nondebug changes), so we will have to live with this update
+ // leaving the IR being temporarily inconsistent. It seems to
+ // work out OK once the main change group is applied.
+ wb_offset *= -1;
+ new_use = crtl->ssa->create_use (attempt,
+ use_insn,
+ as_a<set_info *> (def));
+ }
+ else
+ new_use = find_access (def->insn ()->uses (), use->regno ());
+
+ change.new_uses = insert_access (attempt, new_use, change.new_uses);
+
+ if (dump_file)
+ {
+ const char *dir = (*def->insn () < *use_insn) ? "down" : "up";
+ pretty_printer pp;
+ pp_string (&pp, "[");
+ pp_access (&pp, use, 0);
+ pp_string (&pp, "]");
+ pp_string (&pp, " due to wb def ");
+ pp_string (&pp, "[");
+ pp_access (&pp, def, 0);
+ pp_string (&pp, "]");
+ fprintf (dump_file,
+ " i%d: fix up debug use %s re-ordered %s, "
+ "sub r%u -> r%u + ",
+ use_insn->uid (), pp_formatted_text (&pp),
+ dir, REGNO (base), REGNO (base));
+ print_dec (wb_offset, dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ insn_propagation prop (use_rtl, base,
+ plus_constant (GET_MODE (base), base, wb_offset));
+ if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl)))
+ crtl->ssa->change_insn (change);
+ else
+ {
+ if (dump_file)
+ fprintf (dump_file, " i%d: RTL substitution failed (%s)"
+ ", resetting debug insn", use_insn->uid (),
+ prop.failure_reason);
+ reset_debug_use (use);
+ }
+ }
+ else
+ {
+ if (dump_file)
+ {
+ pretty_printer pp;
+ pp_string (&pp, "[");
+ pp_access (&pp, use, 0);
+ pp_string (&pp, "] due to re-ordered load def [");
+ pp_access (&pp, def, 0);
+ pp_string (&pp, "]");
+ fprintf (dump_file, " i%d: resetting debug use %s\n",
+ use_insn->uid (), pp_formatted_text (&pp));
+ }
+ reset_debug_use (use);
+ }
+}
+
+// Update debug uses when folding in a trailing add insn to form a
+// writeback pair.
+//
+// ATTEMPT is used to allocate RTL-SSA temporaries for the changes,
+// the final pair is placed immediately after PAIR_DST, TRAILING_ADD
+// is a trailing add insn which is being folded into the pair to make it
+// use writeback addressing, and WRITEBACK_EFFECT is the pattern for
+// TRAILING_ADD.
+static void
+fixup_debug_uses_trailing_add (obstack_watermark &attempt,
+ insn_info *pair_dst,
+ insn_info *trailing_add,
+ rtx writeback_effect)
+{
+ rtx base = SET_DEST (writeback_effect);
+
+ poly_int64 wb_offset;
+ rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset);
+ gcc_checking_assert (rtx_equal_p (base, base2));
+
+ auto defs = trailing_add->defs ();
+ gcc_checking_assert (defs.size () == 1);
+ def_info *def = defs[0];
+
+ if (auto set = safe_dyn_cast<set_info *> (def->prev_def ()))
+ for (auto use : iterate_safely (set->debug_insn_uses ()))
+ if (*use->insn () > *pair_dst)
+ // DEF is getting re-ordered above USE, fix up USE accordingly.
+ fixup_debug_use (attempt, use, def, base, wb_offset);
+}
+
+// Called from fuse_pair, fixes up any debug uses that will be affected
+// by the changes.
+//
+// ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for
+// the changes, INSNS gives the candidate insns: at this point the use/def
+// information should still be as on entry to fuse_pair, but the patterns may
+// have changed, hence we pass ORIG_RTL which contains the original patterns
+// for the candidate insns.
+//
+// The final pair will be placed immediately after PAIR_DST, LOAD_P is true if
+// it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had
+// writeback, and WRITEBACK_EFFECT is an rtx describing the overall update to
+// the base register in the final pair (if any). BASE_REGNO gives the register
+// number of the base register used in the final pair.
+static void
+fixup_debug_uses (obstack_watermark &attempt,
+ insn_info *insns[2],
+ rtx orig_rtl[2],
+ insn_info *pair_dst,
+ insn_info *trailing_add,
+ bool load_p,
+ int writeback,
+ rtx writeback_effect,
+ unsigned base_regno)
+{
+ // USE is a debug use that needs updating because DEF (a def of the
+ // resource) is being re-ordered over it. If WRITEBACK_PAT is non-NULL,
+ // then it gives the original RTL pattern for DEF's insn, and DEF is a
+ // writeback update of the base register.
+ //
+ // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use.
+ auto update_debug_use = [&](use_info *use, def_info *def,
+ rtx writeback_pat)
+ {
+ poly_int64 offset = 0;
+ rtx base = NULL_RTX;
+ if (writeback_pat)
+ {
+ rtx mem = XEXP (writeback_pat, load_p);
+ gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))
+ == RTX_AUTOINC);
+
+ base = pair_mem_strip_offset (mem, &offset);
+ gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno);
+ }
+ fixup_debug_use (attempt, use, def, base, offset);
+ };
+
+ // Reset any debug uses of mem over which we re-ordered a store.
+ //
+ // It would be nice to try and preserve debug info here, but it seems that
+ // would require doing alias analysis to see if the store aliases with the
+ // debug use, which seems a little extravagant just to preserve debug info.
+ if (!load_p)
+ {
+ auto def = memory_access (insns[0]->defs ());
+ auto last_def = memory_access (insns[1]->defs ());
+ for (; def != last_def; def = def->next_def ())
+ {
+ auto set = as_a<set_info *> (def);
+ for (auto use : iterate_safely (set->debug_insn_uses ()))
+ {
+ if (dump_file)
+ fprintf (dump_file, " i%d: resetting debug use of mem\n",
+ use->insn ()->uid ());
+ reset_debug_use (use);
+ }
+ }
+ }
+
+ // Now let's take care of register uses, starting with debug uses
+ // attached to defs from our first insn.
+ for (auto def : insns[0]->defs ())
+ {
+ auto set = dyn_cast<set_info *> (def);
+ if (!set || set->is_mem () || !set->first_debug_insn_use ())
+ continue;
+
+ def_info *defs[2] = {
+ def,
+ find_access (insns[1]->defs (), def->regno ())
+ };
+
+ rtx writeback_pats[2] = {};
+ if (def->regno () == base_regno)
+ for (int i = 0; i < 2; i++)
+ if (writeback & (1 << i))
+ {
+ gcc_checking_assert (defs[i]);
+ writeback_pats[i] = orig_rtl[i];
+ }
+
+ // Now that we've characterized the defs involved, go through the
+ // debug uses and determine how to update them (if needed).
+ for (auto use : iterate_safely (set->debug_insn_uses ()))
+ {
+ if (*pair_dst < *use->insn () && defs[1])
+ // We're re-ordering defs[1] above a previous use of the
+ // same resource.
+ update_debug_use (use, defs[1], writeback_pats[1]);
+ else if (*pair_dst >= *use->insn ())
+ // We're re-ordering defs[0] below its use.
+ update_debug_use (use, defs[0], writeback_pats[0]);
+ }
+ }
+
+ // Now let's look at registers which are def'd by the second insn
+ // but not by the first insn, there may still be debug uses of a
+ // previous def which can be affected by moving the second insn up.
+ for (auto def : insns[1]->defs ())
+ {
+ // This should be M log N where N is the number of defs in
+ // insns[0] and M is the number of defs in insns[1].
+ if (def->is_mem () || find_access (insns[0]->defs (), def->regno ()))
+ continue;
+
+ auto prev_set = safe_dyn_cast<set_info *> (def->prev_def ());
+ if (!prev_set)
+ continue;
+
+ rtx writeback_pat = NULL_RTX;
+ if (def->regno () == base_regno && (writeback & 2))
+ writeback_pat = orig_rtl[1];
+
+ // We have a def in insns[1] which isn't def'd by the first insn.
+ // Look to the previous def and see if it has any debug uses.
+ for (auto use : iterate_safely (prev_set->debug_insn_uses ()))
+ if (*pair_dst < *use->insn ())
+ // We're ordering DEF above a previous use of the same register.
+ update_debug_use (use, def, writeback_pat);
+ }
+
+ if ((writeback & 2) && !writeback_effect)
+ {
+ // If the second insn initially had writeback but the final
+ // pair does not, then there may be trailing debug uses of the
+ // second writeback def which need re-parenting: do that.
+ auto def = find_access (insns[1]->defs (), base_regno);
+ gcc_assert (def);
+ auto set = as_a<set_info *> (def);
+ for (auto use : iterate_safely (set->debug_insn_uses ()))
+ {
+ insn_change change (use->insn ());
+ change.new_uses = check_remove_regno_access (attempt,
+ change.new_uses,
+ base_regno);
+ auto new_use = find_access (insns[0]->uses (), base_regno);
+
+ // N.B. insns must have already shared a common base due to writeback.
+ gcc_assert (new_use);
+
+ if (dump_file)
+ fprintf (dump_file,
+ " i%d: cancelling wb, re-parenting trailing debug use\n",
+ use->insn ()->uid ());
+
+ change.new_uses = insert_access (attempt, new_use, change.new_uses);
+ crtl->ssa->change_insn (change);
+ }
+ }
+ else if (trailing_add)
+ fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add,
+ writeback_effect);
+}
+
+// Try and actually fuse the pair given by insns I1 and I2.
+//
+// Here we've done enough analysis to know this is safe, we only
+// reject the pair at this stage if either the tuning policy says to,
+// or recog fails on the final pair insn.
+//
+// LOAD_P is true for loads, ACCESS_SIZE gives the access size of each
+// candidate insn. Bit i of WRITEBACK is set if the ith insn (in program
+// order) uses writeback.
+//
+// BASE gives the chosen base candidate for the pair and MOVE_RANGE is
+// a singleton range which says where to place the pair.
+bool
+pair_fusion_bb_info::fuse_pair (bool load_p,
+ unsigned access_size,
+ int writeback,
+ insn_info *i1, insn_info *i2,
+ base_cand &base,
+ const insn_range_info &move_range)
+{
+ auto attempt = crtl->ssa->new_change_attempt ();
+
+ auto make_change = [&attempt](insn_info *insn)
+ {
+ return crtl->ssa->change_alloc<insn_change> (attempt, insn);
+ };
+ auto make_delete = [&attempt](insn_info *insn)
+ {
+ return crtl->ssa->change_alloc<insn_change> (attempt,
+ insn,
+ insn_change::DELETE);
+ };
+
+ insn_info *first = (*i1 < *i2) ? i1 : i2;
+ insn_info *second = (first == i1) ? i2 : i1;
+
+ insn_info *pair_dst = move_range.singleton ();
+ gcc_assert (pair_dst);
+
+ insn_info *insns[2] = { first, second };
+
+ auto_vec<insn_change *> changes;
+ auto_vec<int, 2> tombstone_uids (2);
+
+ rtx pats[2] = {
+ PATTERN (first->rtl ()),
+ PATTERN (second->rtl ())
+ };
+
+ // Make copies of the patterns as we might need to refer to the original RTL
+ // later, for example when updating debug uses (which is after we've updated
+ // one or both of the patterns in the candidate insns).
+ rtx orig_rtl[2];
+ for (int i = 0; i < 2; i++)
+ orig_rtl[i] = copy_rtx (pats[i]);
+
+ use_array input_uses[2] = { first->uses (), second->uses () };
+ def_array input_defs[2] = { first->defs (), second->defs () };
+
+ int changed_insn = -1;
+ if (base.from_insn != -1)
+ {
+ // If we're not already using a shared base, we need
+ // to re-write one of the accesses to use the base from
+ // the other insn.
+ gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1);
+ changed_insn = !base.from_insn;
+
+ rtx base_pat = pats[base.from_insn];
+ rtx change_pat = pats[changed_insn];
+ rtx base_mem = XEXP (base_pat, load_p);
+ rtx change_mem = XEXP (change_pat, load_p);
+
+ const bool lower_base_p = (insns[base.from_insn] == i1);
+ HOST_WIDE_INT adjust_amt = access_size;
+ if (!lower_base_p)
+ adjust_amt *= -1;
+
+ rtx change_reg = XEXP (change_pat, !load_p);
+ rtx effective_base = drop_writeback (base_mem);
+ rtx adjusted_addr = plus_constant (Pmode,
+ XEXP (effective_base, 0),
+ adjust_amt);
+ rtx new_mem = replace_equiv_address_nv (change_mem, adjusted_addr);
+ rtx new_set = load_p
+ ? gen_rtx_SET (change_reg, new_mem)
+ : gen_rtx_SET (new_mem, change_reg);
+
+ pats[changed_insn] = new_set;
+
+ auto keep_use = [&](use_info *u)
+ {
+ return refers_to_regno_p (u->regno (), u->regno () + 1,
+ change_pat, &XEXP (change_pat, load_p));
+ };
+
+ // Drop any uses that only occur in the old address.
+ input_uses[changed_insn] = filter_accesses (attempt,
+ input_uses[changed_insn],
+ keep_use);
+ }
+
+ rtx writeback_effect = NULL_RTX;
+ if (writeback)
+ writeback_effect = extract_writebacks (load_p, pats, changed_insn);
+
+ const auto base_regno = base.def->regno ();
+
+ if (base.from_insn == -1 && (writeback & 1))
+ {
+ // If the first of the candidate insns had a writeback form, we'll need to
+ // drop the use of the updated base register from the second insn's uses.
+ //
+ // N.B. we needn't worry about the base register occurring as a store
+ // operand, as we checked that there was no non-address true dependence
+ // between the insns in try_fuse_pair.
+ gcc_checking_assert (find_access (input_uses[1], base_regno));
+ input_uses[1] = check_remove_regno_access (attempt,
+ input_uses[1],
+ base_regno);
+ }
+
+ // Go through and drop uses that only occur in register notes,
+ // as we won't be preserving those.
+ for (int i = 0; i < 2; i++)
+ {
+ auto rti = insns[i]->rtl ();
+ if (!REG_NOTES (rti))
+ continue;
+
+ input_uses[i] = remove_note_accesses (attempt, input_uses[i]);
+ }
+
+ // Edge case: if the first insn is a writeback load and the
+ // second insn is a non-writeback load which transfers into the base
+ // register, then we should drop the writeback altogether as the
+ // update of the base register from the second load should prevail.
+ //
+ // For example:
+ // ldr x2, [x1], #8
+ // ldr x1, [x1]
+ // -->
+ // ldp x2, x1, [x1]
+ if (writeback == 1
+ && load_p
+ && find_access (input_defs[1], base_regno))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ " load pair: i%d has wb but subsequent i%d has non-wb "
+ "update of base (r%d), dropping wb\n",
+ insns[0]->uid (), insns[1]->uid (), base_regno);
+ gcc_assert (writeback_effect);
+ writeback_effect = NULL_RTX;
+ }
+
+ // So far the patterns have been in instruction order,
+ // now we want them in offset order.
+ if (i1 != first)
+ std::swap (pats[0], pats[1]);
+
+ poly_int64 offsets[2];
+ for (int i = 0; i < 2; i++)
+ {
+ rtx mem = XEXP (pats[i], load_p);
+ gcc_checking_assert (MEM_P (mem));
+ rtx base = strip_offset (XEXP (mem, 0), offsets + i);
+ gcc_checking_assert (REG_P (base));
+ gcc_checking_assert (base_regno == REGNO (base));
+ }
+
+ // If either of the original insns had writeback, but the resulting pair insn
+ // does not (can happen e.g. in the load pair edge case above, or if the
+ // writeback effects cancel out), then drop the def (s) of the base register
+ // as appropriate.
+ //
+ // Also drop the first def in the case that both of the original insns had
+ // writeback. The second def could well have uses, but the first def should
+ // only be used by the second insn (and we dropped that use above).
+ for (int i = 0; i < 2; i++)
+ if ((!writeback_effect && (writeback & (1 << i)))
+ || (i == 0 && writeback == 3))
+ input_defs[i] = check_remove_regno_access (attempt,
+ input_defs[i],
+ base_regno);
+
+ // If we don't currently have a writeback pair, and we don't have
+ // a load that clobbers the base register, look for a trailing destructive
+ // update of the base register and try and fold it in to make this into a
+ // writeback pair.
+ insn_info *trailing_add = nullptr;
+ if (m_pass->should_handle_writeback (writeback::ALL)
+ && !writeback_effect
+ && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1,
+ XEXP (pats[0], 0), nullptr)
+ && !refers_to_regno_p (base_regno, base_regno + 1,
+ XEXP (pats[1], 0), nullptr))))
+ {
+ def_info *add_def;
+ trailing_add = m_pass->find_trailing_add (insns, move_range, writeback,
+ &writeback_effect,
+ &add_def, base.def, offsets[0],
+ access_size);
+ if (trailing_add)
+ {
+ // The def of the base register from the trailing add should prevail.
+ input_defs[0] = insert_access (attempt, add_def, input_defs[0]);
+ gcc_assert (input_defs[0].is_valid ());
+ }
+ }
+
+ // Now that we know what base mem we're going to use, check if it's OK
+ // with the pair mem policy.
+ rtx first_mem = XEXP (pats[0], load_p);
+ if (!m_pass->pair_mem_ok_with_policy (first_mem, load_p))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "punting on pair (%d,%d), pair mem policy says no\n",
+ i1->uid (), i2->uid ());
+ return false;
+ }
+
+ rtx reg_notes = combine_reg_notes (first, second, load_p);
+
+ rtx pair_pat = m_pass->gen_pair (pats, writeback_effect, load_p);
+ insn_change *pair_change = nullptr;
+ auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) {
+ rtx_insn *rti = change->insn ()->rtl ();
+ validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
+ validate_change (rti, ®_NOTES (rti), reg_notes, true);
+ };
+
+ if (load_p)
+ {
+ changes.safe_push (make_delete (first));
+ pair_change = make_change (second);
+ changes.safe_push (pair_change);
+
+ pair_change->move_range = move_range;
+ pair_change->new_defs = merge_access_arrays (attempt,
+ input_defs[0],
+ input_defs[1]);
+ gcc_assert (pair_change->new_defs.is_valid ());
+
+ pair_change->new_uses
+ = merge_access_arrays (attempt,
+ drop_memory_access (input_uses[0]),
+ drop_memory_access (input_uses[1]));
+ gcc_assert (pair_change->new_uses.is_valid ());
+ set_pair_pat (pair_change);
+ }
+ else
+ {
+ using Action = store_change_builder::action;
+ insn_info *store_to_change = try_repurpose_store (first, second,
+ move_range);
+ store_change_builder builder (insns, store_to_change, pair_dst);
+ insn_change *change;
+ set_info *new_set = nullptr;
+ for (; !builder.done (); builder.advance ())
+ {
+ auto action = builder.get_change ();
+ change = (action.type == Action::INSERT)
+ ? nullptr : make_change (action.insn);
+ switch (action.type)
+ {
+ case Action::CHANGE:
+ {
+ set_pair_pat (change);
+ change->new_uses = merge_access_arrays (attempt,
+ input_uses[0],
+ input_uses[1]);
+ auto d1 = drop_memory_access (input_defs[0]);
+ auto d2 = drop_memory_access (input_defs[1]);
+ change->new_defs = merge_access_arrays (attempt, d1, d2);
+ gcc_assert (change->new_defs.is_valid ());
+ def_info *store_def = memory_access (change->insn ()->defs ());
+ change->new_defs = insert_access (attempt,
+ store_def,
+ change->new_defs);
+ gcc_assert (change->new_defs.is_valid ());
+ change->move_range = move_range;
+ pair_change = change;
+ break;
+ }
+ case Action::TOMBSTONE:
+ {
+ tombstone_uids.quick_push (change->insn ()->uid ());
+ rtx_insn *rti = change->insn ()->rtl ();
+ validate_change (rti, &PATTERN (rti), gen_tombstone (), true);
+ validate_change (rti, ®_NOTES (rti), NULL_RTX, true);
+ change->new_uses = use_array (nullptr, 0);
+ break;
+ }
+ case Action::INSERT:
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ " stp: cannot re-purpose candidate stores\n");
+
+ auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat);
+ change = make_change (new_insn);
+ change->move_range = move_range;
+ change->new_uses = merge_access_arrays (attempt,
+ input_uses[0],
+ input_uses[1]);
+ gcc_assert (change->new_uses.is_valid ());
+
+ auto d1 = drop_memory_access (input_defs[0]);
+ auto d2 = drop_memory_access (input_defs[1]);
+ change->new_defs = merge_access_arrays (attempt, d1, d2);
+ gcc_assert (change->new_defs.is_valid ());
+
+ new_set = crtl->ssa->create_set (attempt, new_insn, memory);
+ change->new_defs = insert_access (attempt, new_set,
+ change->new_defs);
+ gcc_assert (change->new_defs.is_valid ());
+ pair_change = change;
+ break;
+ }
+ case Action::FIXUP_USE:
+ {
+ // This use now needs to consume memory from our stp.
+ if (dump_file)
+ fprintf (dump_file,
+ " stp: changing i%d to use mem from new stp "
+ "(after i%d)\n",
+ action.insn->uid (), pair_dst->uid ());
+ change->new_uses = drop_memory_access (change->new_uses);
+ gcc_assert (new_set);
+ auto new_use = crtl->ssa->create_use (attempt, action.insn,
+ new_set);
+ change->new_uses = insert_access (attempt, new_use,
+ change->new_uses);
+ break;
+ }
+ }
+ changes.safe_push (change);
+ }
+ }
+
+ if (trailing_add)
+ changes.safe_push (make_delete (trailing_add));
+ else if ((writeback & 2) && !writeback_effect)
+ {
+ // The second insn initially had writeback but now the pair does not,
+ // need to update any nondebug uses of the base register def in the
+ // second insn. We'll take care of debug uses later.
+ auto def = find_access (insns[1]->defs (), base_regno);
+ gcc_assert (def);
+ auto set = dyn_cast<set_info *> (def);
+ if (set && set->has_nondebug_uses ())
+ {
+ auto orig_use = find_access (insns[0]->uses (), base_regno);
+ for (auto use : set->nondebug_insn_uses ())
+ {
+ auto change = make_change (use->insn ());
+ change->new_uses = check_remove_regno_access (attempt,
+ change->new_uses,
+ base_regno);
+ change->new_uses = insert_access (attempt,
+ orig_use,
+ change->new_uses);
+ changes.safe_push (change);
+ }
+ }
+ }
+
+ auto is_changing = insn_is_changing (changes);
+ for (unsigned i = 0; i < changes.length (); i++)
+ gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
+
+ // Check the pair pattern is recog'd.
+ if (!rtl_ssa::recog_ignoring (attempt, *pair_change, is_changing))
+ {
+ if (dump_file)
+ fprintf (dump_file, " failed to form pair, recog failed\n");
+
+ // Free any reg notes we allocated.
+ while (reg_notes)
+ {
+ rtx next = XEXP (reg_notes, 1);
+ free_EXPR_LIST_node (reg_notes);
+ reg_notes = next;
+ }
+ cancel_changes (0);
+ return false;
+ }
+
+ gcc_assert (crtl->ssa->verify_insn_changes (changes));
+
+ // Fix up any debug uses that will be affected by the changes.
+ if (MAY_HAVE_DEBUG_INSNS)
+ fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add,
+ load_p, writeback, writeback_effect, base_regno);
+
+ confirm_change_group ();
+ crtl->ssa->change_insns (changes);
+
+ gcc_checking_assert (tombstone_uids.length () <= 2);
+ for (auto uid : tombstone_uids)
+ track_tombstone (uid);
+
+ return true;
+}
+
+// Return true if STORE_INSN may modify mem rtx MEM. Make sure we keep
+// within our BUDGET for alias analysis.
+static bool
+store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget)
+{
+ if (!budget)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "exceeded budget, assuming store %d aliases with mem ",
+ store_insn->uid ());
+ print_simple_rtl (dump_file, mem);
+ fprintf (dump_file, "\n");
+ }
+
+ return true;
+ }
+
+ budget--;
+ return memory_modified_in_insn_p (mem, store_insn->rtl ());
+}
+
+// Return true if LOAD may be modified by STORE. Make sure we keep
+// within our BUDGET for alias analysis.
+static bool
+load_modified_by_store_p (insn_info *load,
+ insn_info *store,
+ int &budget)
+{
+ gcc_checking_assert (budget >= 0);
+
+ if (!budget)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "exceeded budget, assuming load %d aliases with store %d\n",
+ load->uid (), store->uid ());
+ }
+ return true;
+ }
+
+ // It isn't safe to re-order stores over calls.
+ if (CALL_P (load->rtl ()))
+ return true;
+
+ budget--;
+
+ // Iterate over all MEMs in the load, seeing if any alias with
+ // our store.
+ subrtx_var_iterator::array_type array;
+ rtx pat = PATTERN (load->rtl ());
+ FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
+ if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ()))
+ return true;
+
+ return false;
+}
+
+// Implement some common functionality used by both store_walker
+// and load_walker.
+template<bool reverse>
+class def_walker : public alias_walker
+{
+protected:
+ using def_iter_t = typename std::conditional<reverse,
+ reverse_def_iterator, def_iterator>::type;
+
+ static use_info *start_use_chain (def_iter_t &def_iter)
+ {
+ set_info *set = nullptr;
+ for (; *def_iter; def_iter++)
+ {
+ set = dyn_cast<set_info *> (*def_iter);
+ if (!set)
+ continue;
+
+ use_info *use = reverse
+ ? set->last_nondebug_insn_use ()
+ : set->first_nondebug_insn_use ();
+
+ if (use)
+ return use;
+ }
+
+ return nullptr;
+ }
+
+ def_iter_t def_iter;
+ insn_info *limit;
+ def_walker (def_info *def, insn_info *limit) :
+ def_iter (def), limit (limit) {}
+
+ virtual bool iter_valid () const { return *def_iter; }
+
+public:
+ insn_info *insn () const override { return (*def_iter)->insn (); }
+ void advance () override { def_iter++; }
+ bool valid () const override final
+ {
+ if (!iter_valid ())
+ return false;
+
+ if (reverse)
+ return *(insn ()) > *limit;
+ else
+ return *(insn ()) < *limit;
+ }
+};
+
+// alias_walker that iterates over stores.
+template<bool reverse, typename InsnPredicate>
+class store_walker : public def_walker<reverse>
+{
+ rtx cand_mem;
+ InsnPredicate tombstone_p;
+
+public:
+ store_walker (def_info *mem_def, rtx mem, insn_info *limit_insn,
+ InsnPredicate tombstone_fn) :
+ def_walker<reverse> (mem_def, limit_insn),
+ cand_mem (mem), tombstone_p (tombstone_fn) {}
+
+ bool conflict_p (int &budget) const override final
+ {
+ if (tombstone_p (this->insn ()))
+ return false;
+
+ return store_modifies_mem_p (cand_mem, this->insn (), budget);
+ }
+};
+
+// alias_walker that iterates over loads.
+template<bool reverse>
+class load_walker : public def_walker<reverse>
+{
+ using Base = def_walker<reverse>;
+ using use_iter_t = typename std::conditional<reverse,
+ reverse_use_iterator, nondebug_insn_use_iterator>::type;
+
+ use_iter_t use_iter;
+ insn_info *cand_store;
+
+ bool iter_valid () const override final { return *use_iter; }
+
+public:
+ void advance () override final
+ {
+ use_iter++;
+ if (*use_iter)
+ return;
+ this->def_iter++;
+ use_iter = Base::start_use_chain (this->def_iter);
+ }
+
+ insn_info *insn () const override final
+ {
+ return (*use_iter)->insn ();
+ }
+
+ bool conflict_p (int &budget) const override final
+ {
+ return load_modified_by_store_p (insn (), cand_store, budget);
+ }
+
+ load_walker (def_info *def, insn_info *store, insn_info *limit_insn)
+ : Base (def, limit_insn),
+ use_iter (Base::start_use_chain (this->def_iter)),
+ cand_store (store) {}
+};
+
+// Process our alias_walkers in a round-robin fashion, proceeding until
+// nothing more can be learned from alias analysis.
+//
+// We try to maintain the invariant that if a walker becomes invalid, we
+// set its pointer to null.
+void
+pair_fusion::do_alias_analysis (insn_info *alias_hazards[4],
+ alias_walker *walkers[4],
+ bool load_p)
+{
+ const int n_walkers = 2 + (2 * !load_p);
+ int budget = pair_mem_alias_check_limit ();
+
+ auto next_walker = [walkers,n_walkers](int current) -> int {
+ for (int j = 1; j <= n_walkers; j++)
+ {
+ int idx = (current + j) % n_walkers;
+ if (walkers[idx])
+ return idx;
+ }
+ return -1;
+ };
+
+ int i = -1;
+ for (int j = 0; j < n_walkers; j++)
+ {
+ alias_hazards[j] = nullptr;
+ if (!walkers[j])
+ continue;
+
+ if (!walkers[j]->valid ())
+ walkers[j] = nullptr;
+ else if (i == -1)
+ i = j;
+ }
+
+ while (i >= 0)
+ {
+ int insn_i = i % 2;
+ int paired_i = (i & 2) + !insn_i;
+ int pair_fst = (i & 2);
+ int pair_snd = (i & 2) + 1;
+
+ if (walkers[i]->conflict_p (budget))
+ {
+ alias_hazards[i] = walkers[i]->insn ();
+
+ // We got an aliasing conflict for this {load,store} walker,
+ // so we don't need to walk any further.
+ walkers[i] = nullptr;
+
+ // If we have a pair of alias conflicts that prevent
+ // forming the pair, stop. There's no need to do further
+ // analysis.
+ if (alias_hazards[paired_i]
+ && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd]))
+ return;
+
+ if (!load_p)
+ {
+ int other_pair_fst = (pair_fst ? 0 : 2);
+ int other_paired_i = other_pair_fst + !insn_i;
+
+ int x_pair_fst = (i == pair_fst) ? i : other_paired_i;
+ int x_pair_snd = (i == pair_fst) ? other_paired_i : i;
+
+ // Similarly, handle the case where we have a {load,store}
+ // or {store,load} alias hazard pair that prevents forming
+ // the pair.
+ if (alias_hazards[other_paired_i]
+ && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd])
+ return;
+ }
+ }
+
+ if (walkers[i])
+ {
+ walkers[i]->advance ();
+
+ if (!walkers[i]->valid ())
+ walkers[i] = nullptr;
+ }
+
+ i = next_walker (i);
+ }
+}
+
+// Given INSNS (in program order) which are known to be adjacent, look
+// to see if either insn has a suitable RTL (register) base that we can
+// use to form a pair. Push these to BASE_CANDS if we find any. CAND_MEMs
+// gives the relevant mems from the candidate insns, ACCESS_SIZE gives the
+// size of a single candidate access, and REVERSED says whether the accesses
+// are inverted in offset order.
+//
+// Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback
+// addressing.
+int
+pair_fusion::get_viable_bases (insn_info *insns[2],
+ vec<base_cand> &base_cands,
+ rtx cand_mems[2],
+ unsigned access_size,
+ bool reversed)
+{
+ // We discovered this pair through a common base. Need to ensure that
+ // we have a common base register that is live at both locations.
+ def_info *base_defs[2] = {};
+ int writeback = 0;
+ for (int i = 0; i < 2; i++)
+ {
+ const bool is_lower = (i == reversed);
+ poly_int64 poly_off;
+ rtx base = pair_mem_strip_offset (cand_mems[i], &poly_off);
+ if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC)
+ writeback |= (1 << i);
+
+ if (!REG_P (base) || !poly_off.is_constant ())
+ continue;
+
+ // Punt on accesses relative to eliminable regs. See the comment in
+ // pair_fusion_bb_info::track_access for a detailed explanation of this.
+ if (!reload_completed
+ && (REGNO (base) == FRAME_POINTER_REGNUM
+ || REGNO (base) == ARG_POINTER_REGNUM))
+ continue;
+
+ HOST_WIDE_INT base_off = poly_off.to_constant ();
+
+ // It should be unlikely that we ever punt here, since MEM_EXPR offset
+ // alignment should be a good proxy for register offset alignment.
+ if (base_off % access_size != 0)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "base not viable, offset misaligned (insn %d)\n",
+ insns[i]->uid ());
+ continue;
+ }
+
+ base_off /= access_size;
+
+ if (!is_lower)
+ base_off--;
+
+ if (!pair_mem_in_range_p (base_off))
+ continue;
+
+ use_info *use = find_access (insns[i]->uses (), REGNO (base));
+ gcc_assert (use);
+ base_defs[i] = use->def ();
+ }
+
+ if (!base_defs[0] && !base_defs[1])
+ {
+ if (dump_file)
+ fprintf (dump_file, "no viable base register for pair (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return writeback;
+ }
+
+ for (int i = 0; i < 2; i++)
+ if ((writeback & (1 << i)) && !base_defs[i])
+ {
+ if (dump_file)
+ fprintf (dump_file, "insn %d has writeback but base isn't viable\n",
+ insns[i]->uid ());
+ return writeback;
+ }
+
+ if (writeback == 3
+ && base_defs[0]->regno () != base_defs[1]->regno ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "pair (%d,%d): double writeback with distinct regs (%d,%d): "
+ "punting\n",
+ insns[0]->uid (), insns[1]->uid (),
+ base_defs[0]->regno (), base_defs[1]->regno ());
+ return writeback;
+ }
+
+ if (base_defs[0] && base_defs[1]
+ && base_defs[0]->regno () == base_defs[1]->regno ())
+ {
+ // Easy case: insns already share the same base reg.
+ base_cands.quick_push (base_defs[0]);
+ return writeback;
+ }
+
+ // Otherwise, we know that one of the bases must change.
+ //
+ // Note that if there is writeback we must use the writeback base
+ // (we know now there is exactly one).
+ for (int i = 0; i < 2; i++)
+ if (base_defs[i] && (!writeback || (writeback & (1 << i))))
+ base_cands.quick_push (base_cand { base_defs[i], i });
+
+ return writeback;
+}
+
+// Given two adjacent memory accesses of the same size, I1 and I2, try
+// and see if we can merge them into a paired access.
+//
+// ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true
+// if the accesses are both loads, otherwise they are both stores.
+bool
+pair_fusion_bb_info::try_fuse_pair (bool load_p, unsigned access_size,
+ insn_info *i1, insn_info *i2)
+{
+ if (dump_file)
+ fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n",
+ load_p, i1->uid (), i2->uid ());
+
+ insn_info *insns[2];
+ bool reversed = false;
+ if (*i1 < *i2)
+ {
+ insns[0] = i1;
+ insns[1] = i2;
+ }
+ else
+ {
+ insns[0] = i2;
+ insns[1] = i1;
+ reversed = true;
+ }
+
+ rtx cand_mems[2];
+ rtx reg_ops[2];
+ rtx pats[2];
+ for (int i = 0; i < 2; i++)
+ {
+ pats[i] = PATTERN (insns[i]->rtl ());
+ cand_mems[i] = XEXP (pats[i], load_p);
+ reg_ops[i] = XEXP (pats[i], !load_p);
+ }
+
+ if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1]))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "punting on load pair due to reg conflcits (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ if (cfun->can_throw_non_call_exceptions
+ && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX)
+ && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "can't combine insns with EH side effects (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ auto_vec<base_cand, 2> base_cands (2);
+
+ int writeback = m_pass->get_viable_bases (insns, base_cands, cand_mems,
+ access_size, reversed);
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file, "no viable base for pair (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ // Punt on frame-related insns with writeback. We probably won't see
+ // these in practice, but this is conservative and ensures we don't
+ // have to worry about these later on.
+ if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ())
+ || RTX_FRAME_RELATED_P (i2->rtl ())))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "rejecting pair (%d,%d): frame-related insn with writeback\n",
+ i1->uid (), i2->uid ());
+ return false;
+ }
+
+ rtx *ignore = &XEXP (pats[1], load_p);
+ for (auto use : insns[1]->uses ())
+ if (!use->is_mem ()
+ && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore)
+ && use->def () && use->def ()->insn () == insns[0])
+ {
+ // N.B. we allow a true dependence on the base address, as this
+ // happens in the case of auto-inc accesses. Consider a post-increment
+ // load followed by a regular indexed load, for example.
+ if (dump_file)
+ fprintf (dump_file,
+ "%d has non-address true dependence on %d, rejecting pair\n",
+ insns[1]->uid (), insns[0]->uid ());
+ return false;
+ }
+
+ unsigned i = 0;
+ while (i < base_cands.length ())
+ {
+ base_cand &cand = base_cands[i];
+
+ rtx *ignore[2] = {};
+ for (int j = 0; j < 2; j++)
+ if (cand.from_insn == !j)
+ ignore[j] = &XEXP (cand_mems[j], 0);
+
+ insn_info *h = first_hazard_after (insns[0], ignore[0]);
+ if (h && *h < *insns[1])
+ cand.hazards[0] = h;
+
+ h = latest_hazard_before (insns[1], ignore[1]);
+ if (h && *h > *insns[0])
+ cand.hazards[1] = h;
+
+ if (!cand.viable ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "pair (%d,%d): rejecting base %d due to dataflow "
+ "hazards (%d,%d)\n",
+ insns[0]->uid (),
+ insns[1]->uid (),
+ cand.def->regno (),
+ cand.hazards[0]->uid (),
+ cand.hazards[1]->uid ());
+
+ base_cands.ordered_remove (i);
+ }
+ else
+ i++;
+ }
+
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "can't form pair (%d,%d) due to dataflow hazards\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ insn_info *alias_hazards[4] = {};
+
+ // First def of memory after the first insn, and last def of memory
+ // before the second insn, respectively.
+ def_info *mem_defs[2] = {};
+ if (load_p)
+ {
+ if (!MEM_READONLY_P (cand_mems[0]))
+ {
+ mem_defs[0] = memory_access (insns[0]->uses ())->def ();
+ gcc_checking_assert (mem_defs[0]);
+ mem_defs[0] = mem_defs[0]->next_def ();
+ }
+ if (!MEM_READONLY_P (cand_mems[1]))
+ {
+ mem_defs[1] = memory_access (insns[1]->uses ())->def ();
+ gcc_checking_assert (mem_defs[1]);
+ }
+ }
+ else
+ {
+ mem_defs[0] = memory_access (insns[0]->defs ())->next_def ();
+ mem_defs[1] = memory_access (insns[1]->defs ())->prev_def ();
+ gcc_checking_assert (mem_defs[0]);
+ gcc_checking_assert (mem_defs[1]);
+ }
+
+ auto tombstone_p = [&](insn_info *insn) -> bool {
+ return m_emitted_tombstone
+ && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ());
+ };
+
+ store_walker<false, decltype(tombstone_p)>
+ forward_store_walker (mem_defs[0], cand_mems[0], insns[1], tombstone_p);
+
+ store_walker<true, decltype(tombstone_p)>
+ backward_store_walker (mem_defs[1], cand_mems[1], insns[0], tombstone_p);
+
+ alias_walker *walkers[4] = {};
+ if (mem_defs[0])
+ walkers[0] = &forward_store_walker;
+ if (mem_defs[1])
+ walkers[1] = &backward_store_walker;
+
+ if (load_p && (mem_defs[0] || mem_defs[1]))
+ m_pass->do_alias_analysis (alias_hazards, walkers, load_p);
+ else
+ {
+ // We want to find any loads hanging off the first store.
+ mem_defs[0] = memory_access (insns[0]->defs ());
+ load_walker<false> forward_load_walker (mem_defs[0], insns[0], insns[1]);
+ load_walker<true> backward_load_walker (mem_defs[1], insns[1], insns[0]);
+ walkers[2] = &forward_load_walker;
+ walkers[3] = &backward_load_walker;
+ m_pass->do_alias_analysis (alias_hazards, walkers, load_p);
+ // Now consolidate hazards back down.
+ if (alias_hazards[2]
+ && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0])))
+ alias_hazards[0] = alias_hazards[2];
+
+ if (alias_hazards[3]
+ && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1])))
+ alias_hazards[1] = alias_hazards[3];
+ }
+
+ if (alias_hazards[0] && alias_hazards[1]
+ && *alias_hazards[0] <= *alias_hazards[1])
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n",
+ i1->uid (), i2->uid (),
+ alias_hazards[0]->uid (), alias_hazards[1]->uid ());
+ return false;
+ }
+
+ // Now narrow the hazards on each base candidate using
+ // the alias hazards.
+ i = 0;
+ while (i < base_cands.length ())
+ {
+ base_cand &cand = base_cands[i];
+ if (alias_hazards[0] && (!cand.hazards[0]
+ || *alias_hazards[0] < *cand.hazards[0]))
+ cand.hazards[0] = alias_hazards[0];
+ if (alias_hazards[1] && (!cand.hazards[1]
+ || *alias_hazards[1] > *cand.hazards[1]))
+ cand.hazards[1] = alias_hazards[1];
+
+ if (cand.viable ())
+ i++;
+ else
+ {
+ if (dump_file)
+ fprintf (dump_file, "pair (%d,%d): rejecting base %d due to "
+ "alias/dataflow hazards (%d,%d)",
+ insns[0]->uid (), insns[1]->uid (),
+ cand.def->regno (),
+ cand.hazards[0]->uid (),
+ cand.hazards[1]->uid ());
+
+ base_cands.ordered_remove (i);
+ }
+ }
+
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "cannot form pair (%d,%d) due to alias/dataflow hazards",
+ insns[0]->uid (), insns[1]->uid ());
+
+ return false;
+ }
+
+ base_cand *base = &base_cands[0];
+ if (base_cands.length () > 1)
+ {
+ // If there are still multiple viable bases, it makes sense
+ // to choose one that allows us to reduce register pressure,
+ // for loads this means moving further down, for stores this
+ // means moving further up.
+ gcc_checking_assert (base_cands.length () == 2);
+ const int hazard_i = !load_p;
+ if (base->hazards[hazard_i])
+ {
+ if (!base_cands[1].hazards[hazard_i])
+ base = &base_cands[1];
+ else if (load_p
+ && *base_cands[1].hazards[hazard_i]
+ > *(base->hazards[hazard_i]))
+ base = &base_cands[1];
+ else if (!load_p
+ && *base_cands[1].hazards[hazard_i]
+ < *(base->hazards[hazard_i]))
+ base = &base_cands[1];
+ }
+ }
+
+ // Otherwise, hazards[0] > hazards[1].
+ // Pair can be formed anywhere in (hazards[1], hazards[0]).
+ insn_range_info range (insns[0], insns[1]);
+ if (base->hazards[1])
+ range.first = base->hazards[1];
+ if (base->hazards[0])
+ range.last = base->hazards[0]->prev_nondebug_insn ();
+
+ // If the second insn can throw, narrow the move range to exactly that insn.
+ // This prevents us trying to move the second insn from the end of the BB.
+ if (cfun->can_throw_non_call_exceptions
+ && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
+ {
+ gcc_assert (range.includes (insns[1]));
+ range = insn_range_info (insns[1]);
+ }
+
+ // Placement strategy: push loads down and pull stores up, this should
+ // help register pressure by reducing live ranges.
+ if (load_p)
+ range.first = range.last;
+ else
+ range.last = range.first;
+
+ if (dump_file)
+ {
+ auto print_hazard = [](insn_info *i)
+ {
+ if (i)
+ fprintf (dump_file, "%d", i->uid ());
+ else
+ fprintf (dump_file, "-");
+ };
+ auto print_pair = [print_hazard](insn_info **i)
+ {
+ print_hazard (i[0]);
+ fprintf (dump_file, ",");
+ print_hazard (i[1]);
+ };
+
+ fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (",
+ load_p, insns[0]->uid (), insns[1]->uid (),
+ base->def->regno ());
+ print_pair (base->hazards);
+ fprintf (dump_file, "), move_range: (%d,%d)\n",
+ range.first->uid (), range.last->uid ());
+ }
+
+ return fuse_pair (load_p, access_size, writeback,
+ i1, i2, *base, range);
+}
+
+static void
+dump_insn_list (FILE *f, const insn_list_t &l)
+{
+ fprintf (f, "(");
+
+ auto i = l.begin ();
+ auto end = l.end ();
+
+ if (i != end)
+ fprintf (f, "%d", (*i)->uid ());
+ i++;
+
+ for (; i != end; i++)
+ fprintf (f, ", %d", (*i)->uid ());
+
+ fprintf (f, ")");
+}
+
+DEBUG_FUNCTION void
+debug (const insn_list_t &l)
+{
+ dump_insn_list (stderr, l);
+ fprintf (stderr, "\n");
+}
+
+// LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all insns
+// in LEFT_LIST are known to be adjacent to those in RIGHT_LIST.
+//
+// This function traverses the resulting 2D matrix of possible pair candidates
+// and attempts to merge them into pairs.
+//
+// The algorithm is straightforward: if we consider a combined list of
+// candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program order,
+// then we advance through X until we reach a crossing point (where X[i] and
+// X[i+1] come from different source lists).
+//
+// At this point we know X[i] and X[i+1] are adjacent accesses, and we try to
+// fuse them into a pair. If this succeeds, we remove X[i] and X[i+1] from
+// their original lists and continue as above.
+//
+// In the failure case, we advance through the source list containing X[i] and
+// continue as above (proceeding to the next crossing point).
+//
+// The rationale for skipping over groups of consecutive candidates from the
+// same source list is as follows:
+//
+// In the store case, the insns in the group can't be re-ordered over each
+// other as they are guaranteed to store to the same location, so we're
+// guaranteed not to lose opportunities by doing this.
+//
+// In the load case, subsequent loads from the same location are either
+// redundant (in which case they should have been cleaned up by an earlier
+// optimization pass) or there is an intervening aliasing hazard, in which case
+// we can't re-order them anyway, so provided earlier passes have cleaned up
+// redundant loads, we shouldn't miss opportunities by doing this.
+void
+pair_fusion_bb_info::merge_pairs (insn_list_t &left_list,
+ insn_list_t &right_list,
+ bool load_p,
+ unsigned access_size)
+{
+ if (dump_file)
+ {
+ fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p);
+ dump_insn_list (dump_file, left_list);
+ fprintf (dump_file, " x ");
+ dump_insn_list (dump_file, right_list);
+ fprintf (dump_file, "\n");
+ }
+
+ auto iter_l = left_list.begin ();
+ auto iter_r = right_list.begin ();
+
+ while (iter_l != left_list.end () && iter_r != right_list.end ())
+ {
+ auto next_l = std::next (iter_l);
+ auto next_r = std::next (iter_r);
+ if (**iter_l < **iter_r
+ && next_l != left_list.end ()
+ && **next_l < **iter_r)
+ iter_l = next_l;
+ else if (**iter_r < **iter_l
+ && next_r != right_list.end ()
+ && **next_r < **iter_l)
+ iter_r = next_r;
+ else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r))
+ {
+ left_list.erase (iter_l);
+ iter_l = next_l;
+ right_list.erase (iter_r);
+ iter_r = next_r;
+ }
+ else if (**iter_l < **iter_r)
+ iter_l = next_l;
+ else
+ iter_r = next_r;
+ }
+}
+
+// Iterate over the accesses in GROUP, looking for adjacent sets
+// of accesses. If we find two sets of adjacent accesses, call
+// merge_pairs.
+void
+pair_fusion_bb_info::transform_for_base (int encoded_lfs,
+ access_group &group)
+{
+ const auto lfs = decode_lfs (encoded_lfs);
+ const unsigned access_size = lfs.size;
+
+ bool skip_next = true;
+ access_record *prev_access = nullptr;
+
+ for (auto &access : group.list)
+ {
+ if (skip_next)
+ skip_next = false;
+ else if (known_eq (access.offset, prev_access->offset + access_size))
+ {
+ merge_pairs (prev_access->cand_insns,
+ access.cand_insns,
+ lfs.load_p,
+ access_size);
+ skip_next = access.cand_insns.empty ();
+ }
+ prev_access = &access;
+ }
+}
+
+// If we emitted tombstone insns for this BB, iterate through the BB
+// and remove all the tombstone insns, being sure to reparent any uses
+// of mem to previous defs when we do this.
+void
+pair_fusion_bb_info::cleanup_tombstones ()
+{
+ // No need to do anything if we didn't emit a tombstone insn for this BB.
+ if (!m_emitted_tombstone)
+ return;
+
+ for (auto insn : iterate_safely (m_bb->nondebug_insns ()))
+ {
+ if (!insn->is_real ()
+ || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()))
+ continue;
+
+ auto set = as_a<set_info *> (memory_access (insn->defs ()));
+ if (set->has_any_uses ())
+ {
+ auto prev_set = as_a<set_info *> (set->prev_def ());
+ while (set->first_use ())
+ crtl->ssa->reparent_use (set->first_use (), prev_set);
+ }
+
+ // Now set has no uses, we can delete it.
+ insn_change change (insn, insn_change::DELETE);
+ crtl->ssa->change_insn (change);
+ }
+}
+
+template<typename Map>
+void
+pair_fusion_bb_info::traverse_base_map (Map &map)
+{
+ for (auto kv : map)
+ {
+ const auto &key = kv.first;
+ auto &value = kv.second;
+ transform_for_base (key.second, value);
+ }
+}
+
+void
+pair_fusion_bb_info::transform ()
+{
+ traverse_base_map (expr_map);
+ traverse_base_map (def_map);
+}
+
+// the base register which we can fold in to make this pair use
+// a writeback addressing mode.
+void
+pair_fusion::try_promote_writeback (insn_info *insn, bool load_p)
+{
+ rtx regs[2];
+
+ rtx mem = destructure_pair (regs, PATTERN (insn->rtl ()), load_p);
+ gcc_checking_assert (MEM_P (mem));
+
+ poly_int64 offset;
+ rtx base = strip_offset (XEXP (mem, 0), &offset);
+ gcc_assert (REG_P (base));
+
+ const auto access_size = GET_MODE_SIZE (GET_MODE (mem)).to_constant () / 2;
+
+ if (find_access (insn->defs (), REGNO (base)))
+ {
+ gcc_assert (load_p);
+ if (dump_file)
+ fprintf (dump_file,
+ "ldp %d clobbers base r%d, can't promote to writeback\n",
+ insn->uid (), REGNO (base));
+ return;
+ }
+
+ auto base_use = find_access (insn->uses (), REGNO (base));
+ gcc_assert (base_use);
+
+ if (!base_use->def ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "found pair (i%d, L=%d): but base r%d is upwards exposed\n",
+ insn->uid (), load_p, REGNO (base));
+ return;
+ }
+
+ auto base_def = base_use->def ();
+
+ rtx wb_effect = NULL_RTX;
+ def_info *add_def;
+ const insn_range_info pair_range (insn);
+ insn_info *insns[2] = { nullptr, insn };
+ insn_info *trailing_add
+ = find_trailing_add (insns, pair_range, 0, &wb_effect,
+ &add_def, base_def, offset,
+ access_size);
+ if (!trailing_add)
+ return;
+
+ auto attempt = crtl->ssa->new_change_attempt ();
+
+ insn_change pair_change (insn);
+ insn_change del_change (trailing_add, insn_change::DELETE);
+ insn_change *changes[] = { &pair_change, &del_change };
+
+ rtx pair_pat = gen_promote_writeback_pair (wb_effect, mem, regs, load_p);
+ validate_unshare_change (insn->rtl (), &PATTERN (insn->rtl ()), pair_pat,
+ true);
+
+ // The pair must gain the def of the base register from the add.
+ pair_change.new_defs = insert_access (attempt,
+ add_def,
+ pair_change.new_defs);
+ gcc_assert (pair_change.new_defs.is_valid ());
+
+ auto is_changing = insn_is_changing (changes);
+ for (unsigned i = 0; i < ARRAY_SIZE (changes); i++)
+ gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
+
+ if (!rtl_ssa::recog_ignoring (attempt, pair_change, is_changing))
+ {
+ if (dump_file)
+ fprintf (dump_file, "i%d: recog failed on wb pair, bailing out\n",
+ insn->uid ());
+ cancel_changes (0);
+ return;
+ }
+
+ gcc_assert (crtl->ssa->verify_insn_changes (changes));
+
+ if (MAY_HAVE_DEBUG_INSNS)
+ fixup_debug_uses_trailing_add (attempt, insn, trailing_add, wb_effect);
+
+ confirm_change_group ();
+ crtl->ssa->change_insns (changes);
+}
+
+// Main function for the pass. Iterate over the insns in BB looking
+// for load/store candidates. If running after RA, also try and promote
+// non-writeback pairs to use writeback addressing. Then try to fuse
+// candidates into pairs.
+void pair_fusion::process_block (bb_info *bb)
+{
+ const bool track_loads = track_loads_p ();
+ const bool track_stores = track_stores_p ();
+
+ pair_fusion_bb_info bb_state (bb, this);
+
+ for (auto insn : bb->nondebug_insns ())
+ {
+ rtx_insn *rti = insn->rtl ();
+
+ if (!rti || !INSN_P (rti))
+ continue;
+
+ rtx pat = PATTERN (rti);
+ bool load_p;
+ if (reload_completed
+ && should_handle_writeback (writeback::ALL)
+ && pair_mem_insn_p (rti, load_p))
+ try_promote_writeback (insn, load_p);
+
+ if (GET_CODE (pat) != SET)
+ continue;
+
+ if (track_stores && MEM_P (XEXP (pat, 0)))
+ bb_state.track_access (insn, false, XEXP (pat, 0));
+ else if (track_loads && MEM_P (XEXP (pat, 1)))
+ bb_state.track_access (insn, true, XEXP (pat, 1));
+ }
+
+ bb_state.transform ();
+ bb_state.cleanup_tombstones ();
+}
new file mode 100644
@@ -0,0 +1,201 @@
+// Pair Mem fusion generic header file.
+// Copyright (C) 2024 Free Software Foundation, Inc.
+//
+// This file is part of GCC.
+//
+// GCC is free software; you can redistribute it and/or modify it
+// under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// GCC is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with GCC; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+#define INCLUDE_ALGORITHM
+#define INCLUDE_FUNCTIONAL
+#define INCLUDE_LIST
+#define INCLUDE_TYPE_TRAITS
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "df.h"
+#include "rtl-iter.h"
+#include "rtl-ssa.h"
+
+using namespace rtl_ssa;
+
+// Information about a potential base candidate, used in try_fuse_pair.
+// There may be zero, one, or two viable RTL bases for a given pair.
+struct base_cand
+{
+ // DEF is the def of the base register to be used by the pair.
+ def_info *def;
+
+ // FROM_INSN is -1 if the base candidate is already shared by both
+ // candidate insns. Otherwise it holds the index of the insn from
+ // which the base originated.
+ //
+ // In the case that the base is shared, either DEF is already used
+ // by both candidate accesses, or both accesses see different versions
+ // of the same regno, in which case DEF is the def consumed by the
+ // first candidate access.
+ int from_insn;
+
+ // To form a pair, we do so by moving the first access down and the second
+ // access up. To determine where to form the pair, and whether or not
+ // it is safe to form the pair, we track instructions which cannot be
+ // re-ordered past due to either dataflow or alias hazards.
+ //
+ // Since we allow changing the base used by an access, the choice of
+ // base can change which instructions act as re-ordering hazards for
+ // this pair (due to different dataflow). We store the initial
+ // dataflow hazards for this choice of base candidate in HAZARDS.
+ //
+ // These hazards act as re-ordering barriers to each candidate insn
+ // respectively, in program order.
+ //
+ // Later on, when we take alias analysis into account, we narrow
+ // HAZARDS accordingly.
+ insn_info *hazards[2];
+
+ base_cand (def_info *def, int insn)
+ : def (def), from_insn (insn), hazards {nullptr, nullptr} {}
+
+ base_cand (def_info *def) : base_cand (def, -1) {}
+
+ // Test if this base candidate is viable according to HAZARDS.
+ bool viable () const
+ {
+ return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]);
+ }
+};
+
+struct alias_walker;
+
+// When querying should_handle_writeback, this enum is used to
+// qualify which opportunities we are asking about.
+enum class writeback {
+ // Only those writeback opportunities that arise from existing
+ // auto-increment accesses.
+ EXISTING,
+
+ // All writeback opportunities, including those that involve folding
+ // base register updates into a non-writeback pair.
+ ALL
+};
+
+// This class can be overriden by targets to give a pass that fuses
+// adjacent loads and stores into load/store pair instructions.
+//
+// The target can override the various virtual functions to customize
+// the behaviour of the pass as appropriate for the target.
+struct pair_fusion {
+ pair_fusion ();
+
+ // Given:
+ // - an rtx REG_OP, the non-memory operand in a load/store insn,
+ // - a machine_mode MEM_MODE, the mode of the MEM in that insn, and
+ // - a boolean LOAD_P (true iff the insn is a load), then:
+ // return true if the access should be considered an FP/SIMD access.
+ // Such accesses are segregated from GPR accesses, since we only want
+ // to form pairs for accesses that use the same register file.
+ virtual bool fpsimd_op_p (rtx, machine_mode, bool)
+ {
+ return false;
+ }
+
+ // Return true if we should consider forming pairs from memory
+ // accesses with operand mode MODE at this stage in compilation.
+ virtual bool pair_operand_mode_ok_p (machine_mode mode) = 0;
+
+ // Return true iff REG_OP is a suitable register operand for a paired
+ // memory access, where LOAD_P is true if we're asking about loads and
+ // false for stores. MODE gives the mode of the operand.
+ virtual bool pair_reg_operand_ok_p (bool load_p, rtx reg_op,
+ machine_mode mode) = 0;
+
+ // Return alias check limit.
+ // This is needed to avoid unbounded quadratic behaviour when
+ // performing alias analysis.
+ virtual int pair_mem_alias_check_limit () = 0;
+
+ // Return true if we should try to handle writeback opportunities.
+ // WHICH determines the kinds of writeback opportunities the caller
+ // is asking about.
+ virtual bool should_handle_writeback (enum writeback which) = 0;
+
+ // Given BASE_MEM, the mem from the lower candidate access for a pair,
+ // and LOAD_P (true if the access is a load), check if we should proceed
+ // to form the pair given the target's code generation policy on
+ // paired accesses.
+ virtual bool pair_mem_ok_with_policy (rtx base_mem, bool load_p) = 0;
+
+ // Generate the pattern for a paired access. PATS gives the patterns
+ // for the individual memory accesses (which by this point must share a
+ // common base register). If WRITEBACK is non-NULL, then this rtx
+ // describes the update to the base register that should be performed by
+ // the resulting insn. LOAD_P is true iff the accesses are loads.
+ virtual rtx gen_pair (rtx *pats, rtx writeback, bool load_p) = 0;
+
+ // Return true if INSN is a paired memory access. If so, set LOAD_P to
+ // true iff INSN is a load pair.
+ virtual bool pair_mem_insn_p (rtx_insn *insn, bool &load_p) = 0;
+
+ // Return true if we should track loads.
+ virtual bool track_loads_p ()
+ {
+ return true;
+ }
+
+ // Return true if we should track stores.
+ virtual bool track_stores_p ()
+ {
+ return true;
+ }
+
+ // Return true if OFFSET is in range for a paired memory access.
+ virtual bool pair_mem_in_range_p (HOST_WIDE_INT offset) = 0;
+
+ // Given a load/store pair insn in PATTERN, unpack the insn, storing
+ // the register operands in REGS, and returning the mem. LOAD_P is
+ // true for loads and false for stores.
+ virtual rtx destructure_pair (rtx regs[2], rtx pattern, bool load_p) = 0;
+
+ // Given a pair mem in MEM, register operands in REGS, and an rtx
+ // representing the effect of writeback on the base register in WB_EFFECT,
+ // return an insn representing a writeback variant of this pair.
+ // LOAD_P is true iff the pair is a load.
+ // This is used when promoting existing non-writeback pairs to writeback
+ // variants.
+ virtual rtx gen_promote_writeback_pair (rtx wb_effect, rtx mem,
+ rtx regs[2], bool load_p) = 0;
+
+ inline void process_block (bb_info *bb);
+ inline insn_info *find_trailing_add (insn_info *insns[2],
+ const insn_range_info &pair_range,
+ int initial_writeback,
+ rtx *writeback_effect,
+ def_info **add_def,
+ def_info *base_def,
+ poly_int64 initial_offset,
+ unsigned access_size);
+ inline int get_viable_bases (insn_info *insns[2],
+ vec<base_cand> &base_cands,
+ rtx cand_mems[2],
+ unsigned access_size,
+ bool reversed);
+ inline void do_alias_analysis (insn_info *alias_hazards[4],
+ alias_walker *walkers[4],
+ bool load_p);
+ inline void try_promote_writeback (insn_info *insn, bool load_p);
+ void run ();
+ ~pair_fusion ();
+};