@@ -349,7 +349,7 @@ aarch64*-*-*)
c_target_objs="aarch64-c.o"
cxx_target_objs="aarch64-c.o"
d_target_objs="aarch64-d.o"
- extra_objs="aarch64-builtins.o aarch-common.o aarch64-sve-builtins.o aarch64-sve-builtins-shapes.o aarch64-sve-builtins-base.o aarch64-sve-builtins-sve2.o aarch64-sve-builtins-sme.o cortex-a57-fma-steering.o aarch64-speculation.o falkor-tag-collision-avoidance.o aarch-bti-insert.o aarch64-cc-fusion.o aarch64-early-ra.o"
+ extra_objs="aarch64-builtins.o aarch-common.o aarch64-sve-builtins.o aarch64-sve-builtins-shapes.o aarch64-sve-builtins-base.o aarch64-sve-builtins-sve2.o aarch64-sve-builtins-sme.o cortex-a57-fma-steering.o aarch64-speculation.o falkor-tag-collision-avoidance.o aarch-bti-insert.o aarch64-cc-fusion.o aarch64-early-ra.o aarch64-ldp-fusion.o"
target_gtfiles="\$(srcdir)/config/aarch64/aarch64-builtins.cc \$(srcdir)/config/aarch64/aarch64-sve-builtins.h \$(srcdir)/config/aarch64/aarch64-sve-builtins.cc"
target_has_targetm_common=yes
;;
new file mode 100644
@@ -0,0 +1,2704 @@
+// LoadPair fusion optimization pass for AArch64.
+// Copyright (C) 2023 Free Software Foundation, Inc.
+//
+// This file is part of GCC.
+//
+// GCC is free software; you can redistribute it and/or modify it
+// under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// GCC is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with GCC; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+#define INCLUDE_ALGORITHM
+#define INCLUDE_FUNCTIONAL
+#define INCLUDE_LIST
+#define INCLUDE_TYPE_TRAITS
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "df.h"
+#include "rtl-iter.h"
+#include "rtl-ssa.h"
+#include "cfgcleanup.h"
+#include "tree-pass.h"
+#include "ordered-hash-map.h"
+#include "tree-dfa.h"
+#include "fold-const.h"
+#include "tree-hash-traits.h"
+#include "print-tree.h"
+#include "insn-attr.h"
+
+using namespace rtl_ssa;
+
+static constexpr HOST_WIDE_INT LDP_IMM_BITS = 7;
+static constexpr HOST_WIDE_INT LDP_IMM_SIGN_BIT = (1 << (LDP_IMM_BITS - 1));
+static constexpr HOST_WIDE_INT LDP_MAX_IMM = LDP_IMM_SIGN_BIT - 1;
+static constexpr HOST_WIDE_INT LDP_MIN_IMM = -LDP_MAX_IMM - 1;
+
+// We pack these fields (load_p, fpsimd_p, and size) into an integer
+// (LFS) which we use as part of the key into the main hash tables.
+//
+// The idea is that we group candidates together only if they agree on
+// the fields below. Candidates that disagree on any of these
+// properties shouldn't be merged together.
+struct lfs_fields
+{
+ bool load_p;
+ bool fpsimd_p;
+ unsigned size;
+};
+
+using insn_list_t = std::list<insn_info *>;
+using insn_iter_t = insn_list_t::iterator;
+
+// Information about the accesses at a given offset from a particular
+// base. Stored in an access_group, see below.
+struct access_record
+{
+ poly_int64 offset;
+ std::list<insn_info *> cand_insns;
+ std::list<access_record>::iterator place;
+
+ access_record (poly_int64 off) : offset (off) {}
+};
+
+// A group of accesses where adjacent accesses could be ldp/stp
+// candidates. The splay tree supports efficient insertion,
+// while the list supports efficient iteration.
+struct access_group
+{
+ splay_tree<access_record *> tree;
+ std::list<access_record> list;
+
+ template<typename Alloc>
+ inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn);
+};
+
+// Information about a potential base candidate, used in try_fuse_pair.
+// There may be zero, one, or two viable RTL bases for a given pair.
+struct base_cand
+{
+ // DEF is the def of the base register to be used by the pair.
+ def_info *def;
+
+ // FROM_INSN is -1 if the base candidate is already shared by both
+ // candidate insns. Otherwise it holds the index of the insn from
+ // which the base originated.
+ //
+ // In the case that the base is shared, either DEF is already used
+ // by both candidate accesses, or both accesses see different versions
+ // of the same regno, in which case DEF is the def consumed by the
+ // first candidate access.
+ int from_insn;
+
+ // To form a pair, we do so by moving the first access down and the second
+ // access up. To determine where to form the pair, and whether or not
+ // it is safe to form the pair, we track instructions which cannot be
+ // re-ordered past due to either dataflow or alias hazards.
+ //
+ // Since we allow changing the base used by an access, the choice of
+ // base can change which instructions act as re-ordering hazards for
+ // this pair (due to different dataflow). We store the initial
+ // dataflow hazards for this choice of base candidate in HAZARDS.
+ //
+ // These hazards act as re-ordering barriers to each candidate insn
+ // respectively, in program order.
+ //
+ // Later on, when we take alias analysis into account, we narrow
+ // HAZARDS accordingly.
+ insn_info *hazards[2];
+
+ base_cand (def_info *def, int insn)
+ : def (def), from_insn (insn), hazards {nullptr, nullptr} {}
+
+ base_cand (def_info *def) : base_cand (def, -1) {}
+
+ // Test if this base candidate is viable according to HAZARDS.
+ bool viable () const
+ {
+ return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]);
+ }
+};
+
+// Information about an alternate base. For a def_info D, it may
+// instead be expressed as D = BASE + OFFSET.
+struct alt_base
+{
+ def_info *base;
+ poly_int64 offset;
+};
+
+// State used by the pass for a given basic block.
+struct ldp_bb_info
+{
+ using def_hash = nofree_ptr_hash<def_info>;
+ using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>;
+ using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>;
+
+ // Map of <tree base, LFS> -> access_group.
+ ordered_hash_map<expr_key_t, access_group> expr_map;
+
+ // Map of <RTL-SSA def_info *, LFS> -> access_group.
+ ordered_hash_map<def_key_t, access_group> def_map;
+
+ // Given the def_info for an RTL base register, express it as an offset from
+ // some canonical base instead.
+ //
+ // Canonicalizing bases in this way allows us to identify adjacent accesses
+ // even if they see different base register defs.
+ hash_map<def_hash, alt_base> canon_base_map;
+
+ static const size_t obstack_alignment = sizeof (void *);
+ bb_info *m_bb;
+
+ ldp_bb_info (bb_info *bb) : m_bb (bb), m_emitted_tombstone (false)
+ {
+ obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE,
+ obstack_alignment, obstack_chunk_alloc,
+ obstack_chunk_free);
+ }
+ ~ldp_bb_info ()
+ {
+ obstack_free (&m_obstack, nullptr);
+
+ if (m_emitted_tombstone)
+ {
+ bitmap_release (&m_tombstone_bitmap);
+ bitmap_obstack_release (&m_bitmap_obstack);
+ }
+ }
+
+ inline void track_access (insn_info *, bool load, rtx mem);
+ inline void transform ();
+ inline void cleanup_tombstones ();
+
+private:
+ obstack m_obstack;
+
+ // State for keeping track of tombstone insns emitted for this BB.
+ bitmap_obstack m_bitmap_obstack;
+ bitmap_head m_tombstone_bitmap;
+ bool m_emitted_tombstone;
+
+ inline splay_tree_node<access_record *> *node_alloc (access_record *);
+
+ template<typename Map>
+ inline void traverse_base_map (Map &map);
+ inline void transform_for_base (int load_size, access_group &group);
+
+ inline void merge_pairs (insn_list_t &, insn_list_t &,
+ bool load_p, unsigned access_size);
+
+ inline bool try_fuse_pair (bool load_p, unsigned access_size,
+ insn_info *i1, insn_info *i2);
+
+ inline bool fuse_pair (bool load_p, unsigned access_size,
+ int writeback,
+ insn_info *i1, insn_info *i2,
+ base_cand &base,
+ const insn_range_info &move_range);
+
+ inline void track_tombstone (int uid);
+
+ inline bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs);
+};
+
+splay_tree_node<access_record *> *
+ldp_bb_info::node_alloc (access_record *access)
+{
+ using T = splay_tree_node<access_record *>;
+ void *addr = obstack_alloc (&m_obstack, sizeof (T));
+ return new (addr) T (access);
+}
+
+// Given a mem MEM, if the address has side effects, return a MEM that accesses
+// the same address but without the side effects. Otherwise, return
+// MEM unchanged.
+static rtx
+drop_writeback (rtx mem)
+{
+ rtx addr = XEXP (mem, 0);
+
+ if (!side_effects_p (addr))
+ return mem;
+
+ switch (GET_CODE (addr))
+ {
+ case PRE_MODIFY:
+ addr = XEXP (addr, 1);
+ break;
+ case POST_MODIFY:
+ case POST_INC:
+ case POST_DEC:
+ addr = XEXP (addr, 0);
+ break;
+ case PRE_INC:
+ case PRE_DEC:
+ {
+ poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem));
+ if (GET_CODE (addr) == PRE_DEC)
+ adjustment *= -1;
+ addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment);
+ break;
+ }
+ default:
+ gcc_unreachable ();
+ }
+
+ return change_address (mem, GET_MODE (mem), addr);
+}
+
+// Convenience wrapper around strip_offset that can also look through
+// RTX_AUTOINC addresses. The interface is like strip_offset except we take a
+// MEM so that we know the mode of the access.
+static rtx
+ldp_strip_offset (rtx mem, poly_int64 *offset)
+{
+ rtx addr = XEXP (mem, 0);
+
+ switch (GET_CODE (addr))
+ {
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ addr = strip_offset (XEXP (addr, 1), offset);
+ gcc_checking_assert (REG_P (addr));
+ gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr));
+ break;
+ case PRE_INC:
+ case POST_INC:
+ addr = XEXP (addr, 0);
+ *offset = GET_MODE_SIZE (GET_MODE (mem));
+ gcc_checking_assert (REG_P (addr));
+ break;
+ case PRE_DEC:
+ case POST_DEC:
+ addr = XEXP (addr, 0);
+ *offset = -GET_MODE_SIZE (GET_MODE (mem));
+ gcc_checking_assert (REG_P (addr));
+ break;
+
+ default:
+ addr = strip_offset (addr, offset);
+ }
+
+ return addr;
+}
+
+// Return true if X is a PRE_{INC,DEC,MODIFY} rtx.
+static bool
+any_pre_modify_p (rtx x)
+{
+ const auto code = GET_CODE (x);
+ return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY;
+}
+
+// Return true if X is a POST_{INC,DEC,MODIFY} rtx.
+static bool
+any_post_modify_p (rtx x)
+{
+ const auto code = GET_CODE (x);
+ return code == POST_INC || code == POST_DEC || code == POST_MODIFY;
+}
+
+// Return true if we should consider forming ldp/stp insns from memory
+// accesses with operand mode MODE at this stage in compilation.
+static bool
+ldp_operand_mode_ok_p (machine_mode mode)
+{
+ const bool allow_qregs
+ = !(aarch64_tune_params.extra_tuning_flags
+ & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS);
+
+ if (!aarch64_ldpstp_operand_mode_p (mode))
+ return false;
+
+ const auto size = GET_MODE_SIZE (mode).to_constant ();
+ if (size == 16 && !allow_qregs)
+ return false;
+
+ // We don't pair up TImode accesses before RA because TImode is
+ // special in that it can be allocated to a pair of GPRs or a single
+ // FPR, and the RA is best placed to make that decision.
+ return reload_completed || mode != TImode;
+}
+
+// Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these
+// into an integer for use as a hash table key.
+static int
+encode_lfs (lfs_fields fields)
+{
+ int size_log2 = exact_log2 (fields.size);
+ gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4);
+ return ((int)fields.load_p << 3)
+ | ((int)fields.fpsimd_p << 2)
+ | (size_log2 - 2);
+}
+
+// Inverse of encode_lfs.
+static lfs_fields
+decode_lfs (int lfs)
+{
+ bool load_p = (lfs & (1 << 3));
+ bool fpsimd_p = (lfs & (1 << 2));
+ unsigned size = 1U << ((lfs & 3) + 2);
+ return { load_p, fpsimd_p, size };
+}
+
+// Track the access INSN at offset OFFSET in this access group.
+// ALLOC_NODE is used to allocate splay tree nodes.
+template<typename Alloc>
+void
+access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn)
+{
+ auto insert_before = [&](std::list<access_record>::iterator after)
+ {
+ auto it = list.emplace (after, offset);
+ it->cand_insns.push_back (insn);
+ it->place = it;
+ return &*it;
+ };
+
+ if (!list.size ())
+ {
+ auto access = insert_before (list.end ());
+ tree.insert_max_node (alloc_node (access));
+ return;
+ }
+
+ auto compare = [&](splay_tree_node<access_record *> *node)
+ {
+ return compare_sizes_for_sort (offset, node->value ()->offset);
+ };
+ auto result = tree.lookup (compare);
+ splay_tree_node<access_record *> *node = tree.root ();
+ if (result == 0)
+ node->value ()->cand_insns.push_back (insn);
+ else
+ {
+ auto it = node->value ()->place;
+ auto after = (result > 0) ? std::next (it) : it;
+ auto access = insert_before (after);
+ tree.insert_child (node, result > 0, alloc_node (access));
+ }
+}
+
+// Given a candidate access INSN (with mem MEM), see if it has a suitable
+// MEM_EXPR base (i.e. a tree decl) relative to which we can track the access.
+// LFS is used as part of the key to the hash table, see track_access.
+bool
+ldp_bb_info::track_via_mem_expr (insn_info *insn, rtx mem, lfs_fields lfs)
+{
+ if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem))
+ return false;
+
+ poly_int64 offset;
+ tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem),
+ &offset);
+ if (!base_expr || !DECL_P (base_expr))
+ return false;
+
+ offset += MEM_OFFSET (mem);
+
+ const machine_mode mem_mode = GET_MODE (mem);
+ const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
+
+ // Punt on misaligned offsets. LDP/STP instructions require offsets to be a
+ // multiple of the access size, and we believe that misaligned offsets on
+ // MEM_EXPR bases are likely to lead to misaligned offsets w.r.t. RTL bases.
+ if (!multiple_p (offset, mem_size))
+ return false;
+
+ const auto key = std::make_pair (base_expr, encode_lfs (lfs));
+ access_group &group = expr_map.get_or_insert (key, NULL);
+ auto alloc = [&](access_record *access) { return node_alloc (access); };
+ group.track (alloc, offset, insn);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "[bb %u] tracking insn %d via ",
+ m_bb->index (), insn->uid ());
+ print_node_brief (dump_file, "mem expr", base_expr, 0);
+ fprintf (dump_file, " [L=%d FP=%d, %smode, off=",
+ lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]);
+ print_dec (offset, dump_file);
+ fprintf (dump_file, "]\n");
+ }
+
+ return true;
+}
+
+// Main function to begin pair discovery. Given a memory access INSN,
+// determine whether it could be a candidate for fusing into an ldp/stp,
+// and if so, track it in the appropriate data structure for this basic
+// block. LOAD_P is true if the access is a load, and MEM is the mem
+// rtx that occurs in INSN.
+void
+ldp_bb_info::track_access (insn_info *insn, bool load_p, rtx mem)
+{
+ // We can't combine volatile MEMs, so punt on these.
+ if (MEM_VOLATILE_P (mem))
+ return;
+
+ // Ignore writeback accesses if the param says to do so.
+ if (!aarch64_ldp_writeback
+ && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
+ return;
+
+ const machine_mode mem_mode = GET_MODE (mem);
+ if (!ldp_operand_mode_ok_p (mem_mode))
+ return;
+
+ // Note ldp_operand_mode_ok_p already rejected VL modes.
+ const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
+
+ rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p);
+
+ // We want to segregate FP/SIMD accesses from GPR accesses.
+ //
+ // Before RA, we use the modes, noting that stores of constant zero
+ // operands use GPRs (even in non-integer modes). After RA, we use
+ // the hard register numbers.
+ const bool fpsimd_op_p
+ = reload_completed
+ ? (REG_P (reg_op) && FP_REGNUM_P (REGNO (reg_op)))
+ : (GET_MODE_CLASS (mem_mode) != MODE_INT
+ && (load_p || !aarch64_const_zero_rtx_p (reg_op)));
+
+ const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size };
+
+ if (track_via_mem_expr (insn, mem, lfs))
+ return;
+
+ poly_int64 mem_off;
+ rtx addr = XEXP (mem, 0);
+ const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
+ rtx base = ldp_strip_offset (mem, &mem_off);
+ if (!REG_P (base))
+ return;
+
+ // Need to calculate two (possibly different) offsets:
+ // - Offset at which the access occurs.
+ // - Offset of the new base def.
+ poly_int64 access_off;
+ if (autoinc_p && any_post_modify_p (addr))
+ access_off = 0;
+ else
+ access_off = mem_off;
+
+ poly_int64 new_def_off = mem_off;
+
+ // Punt on accesses relative to eliminable regs. Since we don't know the
+ // elimination offset pre-RA, we should postpone forming pairs on such
+ // accesses until after RA.
+ //
+ // As it stands, addresses with offsets in range for LDR but not
+ // in range for LDP/STP are currently reloaded inefficiently,
+ // ending up with a separate base register for each pair.
+ //
+ // In theory LRA should make use of
+ // targetm.legitimize_address_displacement to promote sharing of
+ // bases among multiple (nearby) address reloads, but the current
+ // LRA code returns early from process_address_1 for operands that
+ // satisfy "m", even if they don't satisfy the real (relaxed) address
+ // constraint; this early return means we never get to the code
+ // that calls targetm.legitimize_address_displacement.
+ //
+ // So for now, it's better to punt when we can't be sure that the
+ // offset is in range for LDP/STP. Out-of-range cases can then be
+ // handled after RA by the out-of-range LDP/STP peepholes. Eventually, it
+ // would be nice to handle known out-of-range opportunities in the
+ // pass itself (for stack accesses, this would be in the post-RA pass).
+ if (!reload_completed
+ && (REGNO (base) == FRAME_POINTER_REGNUM
+ || REGNO (base) == ARG_POINTER_REGNUM))
+ return;
+
+ // Now need to find def of base register.
+ use_info *base_use = find_access (insn->uses (), REGNO (base));
+ gcc_assert (base_use);
+ def_info *base_def = base_use->def ();
+ if (!base_def)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "base register (regno %d) of insn %d is undefined",
+ REGNO (base), insn->uid ());
+ return;
+ }
+
+ alt_base *canon_base = canon_base_map.get (base_def);
+ if (canon_base)
+ {
+ // Express this as the combined offset from the canonical base.
+ base_def = canon_base->base;
+ new_def_off += canon_base->offset;
+ access_off += canon_base->offset;
+ }
+
+ if (autoinc_p)
+ {
+ auto def = find_access (insn->defs (), REGNO (base));
+ gcc_assert (def);
+
+ // Record that DEF = BASE_DEF + MEM_OFF.
+ if (dump_file)
+ {
+ pretty_printer pp;
+ pp_access (&pp, def, 0);
+ pp_string (&pp, " = ");
+ pp_access (&pp, base_def, 0);
+ fprintf (dump_file, "[bb %u] recording %s + ",
+ m_bb->index (), pp_formatted_text (&pp));
+ print_dec (new_def_off, dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ alt_base base_rec { base_def, new_def_off };
+ if (canon_base_map.put (def, base_rec))
+ gcc_unreachable (); // Base defs should be unique.
+ }
+
+ // Punt on misaligned offsets. LDP/STP require offsets to be a multiple of
+ // the access size.
+ if (!multiple_p (mem_off, mem_size))
+ return;
+
+ const auto key = std::make_pair (base_def, encode_lfs (lfs));
+ access_group &group = def_map.get_or_insert (key, NULL);
+ auto alloc = [&](access_record *access) { return node_alloc (access); };
+ group.track (alloc, access_off, insn);
+
+ if (dump_file)
+ {
+ pretty_printer pp;
+ pp_access (&pp, base_def, 0);
+
+ fprintf (dump_file, "[bb %u] tracking insn %d via %s",
+ m_bb->index (), insn->uid (), pp_formatted_text (&pp));
+ fprintf (dump_file,
+ " [L=%d, WB=%d, FP=%d, %smode, off=",
+ lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]);
+ print_dec (access_off, dump_file);
+ fprintf (dump_file, "]\n");
+ }
+}
+
+// Dummy predicate that never ignores any insns.
+static bool no_ignore (insn_info *) { return false; }
+
+// Return the latest dataflow hazard before INSN.
+//
+// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
+// dataflow purposes. This is needed when considering changing the RTL base of
+// an access discovered through a MEM_EXPR base.
+//
+// If IGNORE_INSN is non-NULL, we should further ignore any hazards arising
+// from that insn.
+//
+// N.B. we ignore any defs/uses of memory here as we deal with that separately,
+// making use of alias disambiguation.
+static insn_info *
+latest_hazard_before (insn_info *insn, rtx *ignore,
+ insn_info *ignore_insn = nullptr)
+{
+ insn_info *result = nullptr;
+
+ // Return true if we registered the hazard.
+ auto hazard = [&](insn_info *h) -> bool
+ {
+ gcc_checking_assert (*h < *insn);
+ if (h == ignore_insn)
+ return false;
+
+ if (!result || *h > *result)
+ result = h;
+
+ return true;
+ };
+
+ rtx pat = PATTERN (insn->rtl ());
+ auto ignore_use = [&](use_info *u)
+ {
+ if (u->is_mem ())
+ return true;
+
+ return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
+ };
+
+ // Find defs of uses in INSN (RaW).
+ for (auto use : insn->uses ())
+ if (!ignore_use (use) && use->def ())
+ hazard (use->def ()->insn ());
+
+ // Find previous defs (WaW) or previous uses (WaR) of defs in INSN.
+ for (auto def : insn->defs ())
+ {
+ if (def->is_mem ())
+ continue;
+
+ if (def->prev_def ())
+ {
+ hazard (def->prev_def ()->insn ()); // WaW
+
+ auto set = dyn_cast<set_info *> (def->prev_def ());
+ if (set && set->has_nondebug_insn_uses ())
+ for (auto use : set->reverse_nondebug_insn_uses ())
+ if (use->insn () != insn && hazard (use->insn ())) // WaR
+ break;
+ }
+
+ if (!HARD_REGISTER_NUM_P (def->regno ()))
+ continue;
+
+ // Also need to check backwards for call clobbers (WaW).
+ for (auto call_group : def->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (def->resource ()))
+ continue;
+
+ auto clobber_insn = prev_call_clobbers_ignoring (*call_group,
+ def->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+
+ }
+
+ return result;
+}
+
+// Return the first dataflow hazard after INSN.
+//
+// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
+// dataflow purposes. This is needed when considering changing the RTL base of
+// an access discovered through a MEM_EXPR base.
+//
+// N.B. we ignore any defs/uses of memory here as we deal with that separately,
+// making use of alias disambiguation.
+static insn_info *
+first_hazard_after (insn_info *insn, rtx *ignore)
+{
+ insn_info *result = nullptr;
+ auto hazard = [insn, &result](insn_info *h)
+ {
+ gcc_checking_assert (*h > *insn);
+ if (!result || *h < *result)
+ result = h;
+ };
+
+ rtx pat = PATTERN (insn->rtl ());
+ auto ignore_use = [&](use_info *u)
+ {
+ if (u->is_mem ())
+ return true;
+
+ return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
+ };
+
+ for (auto def : insn->defs ())
+ {
+ if (def->is_mem ())
+ continue;
+
+ if (def->next_def ())
+ hazard (def->next_def ()->insn ()); // WaW
+
+ auto set = dyn_cast<set_info *> (def);
+ if (set && set->has_nondebug_insn_uses ())
+ hazard (set->first_nondebug_insn_use ()->insn ()); // RaW
+
+ if (!HARD_REGISTER_NUM_P (def->regno ()))
+ continue;
+
+ // Also check for call clobbers of this def (WaW).
+ for (auto call_group : def->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (def->resource ()))
+ continue;
+
+ auto clobber_insn = next_call_clobbers_ignoring (*call_group,
+ def->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+ }
+
+ // Find any subsequent defs of uses in INSN (WaR).
+ for (auto use : insn->uses ())
+ {
+ if (ignore_use (use))
+ continue;
+
+ if (use->def ())
+ {
+ auto def = use->def ()->next_def ();
+ if (def && def->insn () == insn)
+ def = def->next_def ();
+
+ if (def)
+ hazard (def->insn ());
+ }
+
+ if (!HARD_REGISTER_NUM_P (use->regno ()))
+ continue;
+
+ // Also need to handle call clobbers of our uses (again WaR).
+ //
+ // See restrict_movement_for_uses_ignoring for why we don't
+ // need to check backwards for call clobbers.
+ for (auto call_group : use->ebb ()->call_clobbers ())
+ {
+ if (!call_group->clobbers (use->resource ()))
+ continue;
+
+ auto clobber_insn = next_call_clobbers_ignoring (*call_group,
+ use->insn (),
+ no_ignore);
+ if (clobber_insn)
+ hazard (clobber_insn);
+ }
+ }
+
+ return result;
+}
+
+// Return true iff R1 and R2 overlap.
+static bool
+ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2)
+{
+ // If either range is empty, then their intersection is empty.
+ if (!r1 || !r2)
+ return false;
+
+ // When do they not overlap? When one range finishes before the other
+ // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first).
+ // Inverting this, we get the below.
+ return *r1.last >= *r2.first && *r2.last >= *r1.first;
+}
+
+// Get the range of insns that def feeds.
+static insn_range_info get_def_range (def_info *def)
+{
+ insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn ();
+ return { def->insn (), last };
+}
+
+// Given a def (of memory), return the downwards range within which we
+// can safely move this def.
+static insn_range_info
+def_downwards_move_range (def_info *def)
+{
+ auto range = get_def_range (def);
+
+ auto set = dyn_cast<set_info *> (def);
+ if (!set || !set->has_any_uses ())
+ return range;
+
+ auto use = set->first_nondebug_insn_use ();
+ if (use)
+ range = move_earlier_than (range, use->insn ());
+
+ return range;
+}
+
+// Given a def (of memory), return the upwards range within which we can
+// safely move this def.
+static insn_range_info
+def_upwards_move_range (def_info *def)
+{
+ def_info *prev = def->prev_def ();
+ insn_range_info range { prev->insn (), def->insn () };
+
+ auto set = dyn_cast<set_info *> (prev);
+ if (!set || !set->has_any_uses ())
+ return range;
+
+ auto use = set->last_nondebug_insn_use ();
+ if (use)
+ range = move_later_than (range, use->insn ());
+
+ return range;
+}
+
+// Given candidate store insns FIRST and SECOND, see if we can re-purpose one
+// of them (together with its def of memory) for the stp insn. If so, return
+// that insn. Otherwise, return null.
+static insn_info *
+decide_stp_strategy (insn_info *first,
+ insn_info *second,
+ const insn_range_info &move_range)
+{
+ def_info * const defs[2] = {
+ memory_access (first->defs ()),
+ memory_access (second->defs ())
+ };
+
+ if (move_range.includes (first)
+ || ranges_overlap_p (move_range, def_downwards_move_range (defs[0])))
+ return first;
+
+ if (move_range.includes (second)
+ || ranges_overlap_p (move_range, def_upwards_move_range (defs[1])))
+ return second;
+
+ return nullptr;
+}
+
+// Generate the RTL pattern for a "tombstone"; used temporarily during this pass
+// to replace stores that are marked for deletion where we can't immediately
+// delete the store (since there are uses of mem hanging off the store).
+//
+// These are deleted at the end of the pass and uses re-parented appropriately
+// at this point.
+static rtx
+gen_tombstone (void)
+{
+ return gen_rtx_CLOBBER (VOIDmode,
+ gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)));
+}
+
+// Given a pair mode MODE, return a canonical mode to be used for a single
+// operand of such a pair. Currently we only use this when promoting a
+// non-writeback pair into a writeback pair, as it isn't otherwise clear
+// which mode to use when storing a modeless CONST_INT.
+static machine_mode
+aarch64_operand_mode_for_pair_mode (machine_mode mode)
+{
+ switch (mode)
+ {
+ case E_V2x4QImode:
+ return SImode;
+ case E_V2x8QImode:
+ return DImode;
+ case E_V2x16QImode:
+ return V16QImode;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+// Go through the reg notes rooted at NOTE, dropping those that we should drop,
+// and preserving those that we want to keep by prepending them to (and
+// returning) RESULT. EH_REGION is used to make sure we have at most one
+// REG_EH_REGION note in the resulting list.
+static rtx
+filter_notes (rtx note, rtx result, bool *eh_region)
+{
+ for (; note; note = XEXP (note, 1))
+ {
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_DEAD:
+ // REG_DEAD notes aren't required to be maintained.
+ case REG_EQUAL:
+ case REG_EQUIV:
+ case REG_UNUSED:
+ case REG_NOALIAS:
+ // These can all be dropped. For REG_EQU{AL,IV} they cannot apply to
+ // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see
+ // rtl-ssa/changes.cc:update_notes.
+ //
+ // Similarly, REG_NOALIAS cannot apply to a parallel.
+ case REG_INC:
+ // When we form the pair insn, the reg update is implemented
+ // as just another SET in the parallel, so isn't really an
+ // auto-increment in the RTL sense, hence we drop the note.
+ break;
+ case REG_EH_REGION:
+ gcc_assert (!*eh_region);
+ *eh_region = true;
+ result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result);
+ break;
+ case REG_CFA_DEF_CFA:
+ case REG_CFA_OFFSET:
+ case REG_CFA_RESTORE:
+ result = alloc_reg_note (REG_NOTE_KIND (note),
+ copy_rtx (XEXP (note, 0)),
+ result);
+ break;
+ default:
+ // Unexpected REG_NOTE kind.
+ gcc_unreachable ();
+ }
+ }
+
+ return result;
+}
+
+// Return the notes that should be attached to a combination of I1 and I2, where
+// *I1 < *I2.
+static rtx
+combine_reg_notes (insn_info *i1, insn_info *i2)
+{
+ bool found_eh_region = false;
+ rtx result = NULL_RTX;
+ result = filter_notes (REG_NOTES (i2->rtl ()), result, &found_eh_region);
+ return filter_notes (REG_NOTES (i1->rtl ()), result, &found_eh_region);
+}
+
+// Given two memory accesses in PATS, at least one of which is of a
+// writeback form, extract two non-writeback memory accesses addressed
+// relative to the initial value of the base register, and output these
+// in PATS. Return an rtx that represents the overall change to the
+// base register.
+static rtx
+extract_writebacks (bool load_p, rtx pats[2], int changed)
+{
+ rtx base_reg = NULL_RTX;
+ poly_int64 current_offset = 0;
+
+ poly_int64 offsets[2];
+
+ for (int i = 0; i < 2; i++)
+ {
+ rtx mem = XEXP (pats[i], load_p);
+ rtx reg = XEXP (pats[i], !load_p);
+
+ rtx addr = XEXP (mem, 0);
+ const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
+
+ poly_int64 offset;
+ rtx this_base = ldp_strip_offset (mem, &offset);
+ gcc_assert (REG_P (this_base));
+ if (base_reg)
+ gcc_assert (rtx_equal_p (base_reg, this_base));
+ else
+ base_reg = this_base;
+
+ // If we changed base for the current insn, then we already
+ // derived the correct mem for this insn from the effective
+ // address of the other access.
+ if (i == changed)
+ {
+ gcc_checking_assert (!autoinc_p);
+ offsets[i] = offset;
+ continue;
+ }
+
+ if (autoinc_p && any_pre_modify_p (addr))
+ current_offset += offset;
+
+ poly_int64 this_off = current_offset;
+ if (!autoinc_p)
+ this_off += offset;
+
+ offsets[i] = this_off;
+ rtx new_mem = change_address (mem, GET_MODE (mem),
+ plus_constant (GET_MODE (base_reg),
+ base_reg, this_off));
+ pats[i] = load_p
+ ? gen_rtx_SET (reg, new_mem)
+ : gen_rtx_SET (new_mem, reg);
+
+ if (autoinc_p && any_post_modify_p (addr))
+ current_offset += offset;
+ }
+
+ if (known_eq (current_offset, 0))
+ return NULL_RTX;
+
+ return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg),
+ base_reg, current_offset));
+}
+
+// INSNS contains either {nullptr, pair insn} (when promoting an existing
+// non-writeback pair) or contains the candidate insns used to form the pair
+// (when fusing a new pair).
+//
+// PAIR_RANGE specifies where we want to form the final pair.
+// INITIAL_OFFSET gives the current base offset for the pair.
+// Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback.
+// ACCESS_SIZE gives the access size for a single arm of the pair.
+// BASE_DEF gives the initial def of the base register consumed by the pair.
+//
+// Given the above, this function looks for a trailing destructive update of the
+// base register. If there is one, we choose the first such update after
+// PAIR_DST that is still in the same BB as our pair. We return the new def in
+// *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT.
+static insn_info *
+find_trailing_add (insn_info *insns[2],
+ const insn_range_info &pair_range,
+ int initial_writeback,
+ rtx *writeback_effect,
+ def_info **add_def,
+ def_info *base_def,
+ poly_int64 initial_offset,
+ unsigned access_size)
+{
+ insn_info *pair_dst = pair_range.singleton ();
+ gcc_assert (pair_dst);
+
+ def_info *def = base_def->next_def ();
+
+ // In the case that either of the initial pair insns had writeback,
+ // then there will be intervening defs of the base register.
+ // Skip over these.
+ for (int i = 0; i < 2; i++)
+ if (initial_writeback & (1 << i))
+ {
+ gcc_assert (def->insn () == insns[i]);
+ def = def->next_def ();
+ }
+
+ if (!def || def->bb () != pair_dst->bb ())
+ return nullptr;
+
+ // DEF should now be the first def of the base register after PAIR_DST.
+ insn_info *cand = def->insn ();
+ gcc_assert (*cand > *pair_dst);
+
+ const auto base_regno = base_def->regno ();
+
+ // If CAND doesn't also use our base register,
+ // it can't destructively update it.
+ if (!find_access (cand->uses (), base_regno))
+ return nullptr;
+
+ auto rti = cand->rtl ();
+
+ if (!INSN_P (rti))
+ return nullptr;
+
+ auto pat = PATTERN (rti);
+ if (GET_CODE (pat) != SET)
+ return nullptr;
+
+ auto dest = XEXP (pat, 0);
+ if (!REG_P (dest) || REGNO (dest) != base_regno)
+ return nullptr;
+
+ poly_int64 offset;
+ rtx rhs_base = strip_offset (XEXP (pat, 1), &offset);
+ if (!REG_P (rhs_base)
+ || REGNO (rhs_base) != base_regno
+ || !offset.is_constant ())
+ return nullptr;
+
+ // If the initial base offset is zero, we can handle any add offset
+ // (post-inc). Otherwise, we require the offsets to match (pre-inc).
+ if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset))
+ return nullptr;
+
+ auto off_hwi = offset.to_constant ();
+
+ if (off_hwi % access_size != 0)
+ return nullptr;
+
+ off_hwi /= access_size;
+
+ if (off_hwi < LDP_MIN_IMM || off_hwi > LDP_MAX_IMM)
+ return nullptr;
+
+ auto dump_prefix = [&]()
+ {
+ if (!insns[0])
+ fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ());
+ else
+ fprintf (dump_file, " (%d,%d)",
+ insns[0]->uid (), insns[1]->uid ());
+ };
+
+ insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1]);
+ if (!hazard || *hazard <= *pair_dst)
+ {
+ if (dump_file)
+ {
+ dump_prefix ();
+ fprintf (dump_file,
+ "folding in trailing add (%d) to use writeback form\n",
+ cand->uid ());
+ }
+
+ *add_def = def;
+ *writeback_effect = copy_rtx (pat);
+ return cand;
+ }
+
+ if (dump_file)
+ {
+ dump_prefix ();
+ fprintf (dump_file,
+ "can't fold in trailing add (%d), hazard = %d\n",
+ cand->uid (), hazard->uid ());
+ }
+
+ return nullptr;
+}
+
+// We just emitted a tombstone with uid UID, track it in a bitmap for
+// this BB so we can easily identify it later when cleaning up tombstones.
+void
+ldp_bb_info::track_tombstone (int uid)
+{
+ if (!m_emitted_tombstone)
+ {
+ // Lazily initialize the bitmap for tracking tombstone insns.
+ bitmap_obstack_initialize (&m_bitmap_obstack);
+ bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack);
+ m_emitted_tombstone = true;
+ }
+
+ if (!bitmap_set_bit (&m_tombstone_bitmap, uid))
+ gcc_unreachable (); // Bit should have changed.
+}
+
+// Try and actually fuse the pair given by insns I1 and I2.
+//
+// Here we've done enough analysis to know this is safe, we only
+// reject the pair at this stage if either the tuning policy says to,
+// or recog fails on the final pair insn.
+//
+// LOAD_P is true for loads, ACCESS_SIZE gives the access size of each
+// candidate insn. Bit i of WRITEBACK is set if the ith insn (in program
+// order) uses writeback.
+//
+// BASE gives the chosen base candidate for the pair and MOVE_RANGE is
+// a singleton range which says where to place the pair.
+bool
+ldp_bb_info::fuse_pair (bool load_p,
+ unsigned access_size,
+ int writeback,
+ insn_info *i1, insn_info *i2,
+ base_cand &base,
+ const insn_range_info &move_range)
+{
+ auto attempt = crtl->ssa->new_change_attempt ();
+
+ auto make_change = [&attempt](insn_info *insn)
+ {
+ return crtl->ssa->change_alloc<insn_change> (attempt, insn);
+ };
+ auto make_delete = [&attempt](insn_info *insn)
+ {
+ return crtl->ssa->change_alloc<insn_change> (attempt,
+ insn,
+ insn_change::DELETE);
+ };
+
+ insn_info *first = (*i1 < *i2) ? i1 : i2;
+ insn_info *second = (first == i1) ? i2 : i1;
+
+ insn_info *insns[2] = { first, second };
+
+ auto_vec<insn_change *, 4> changes (4);
+ auto_vec<int, 2> tombstone_uids (2);
+
+ rtx pats[2] = {
+ PATTERN (first->rtl ()),
+ PATTERN (second->rtl ())
+ };
+
+ use_array input_uses[2] = { first->uses (), second->uses () };
+ def_array input_defs[2] = { first->defs (), second->defs () };
+
+ int changed_insn = -1;
+ if (base.from_insn != -1)
+ {
+ // If we're not already using a shared base, we need
+ // to re-write one of the accesses to use the base from
+ // the other insn.
+ gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1);
+ changed_insn = !base.from_insn;
+
+ rtx base_pat = pats[base.from_insn];
+ rtx change_pat = pats[changed_insn];
+ rtx base_mem = XEXP (base_pat, load_p);
+ rtx change_mem = XEXP (change_pat, load_p);
+
+ const bool lower_base_p = (insns[base.from_insn] == i1);
+ HOST_WIDE_INT adjust_amt = access_size;
+ if (!lower_base_p)
+ adjust_amt *= -1;
+
+ rtx change_reg = XEXP (change_pat, !load_p);
+ machine_mode mode_for_mem = GET_MODE (change_mem);
+ rtx effective_base = drop_writeback (base_mem);
+ rtx new_mem = adjust_address_nv (effective_base,
+ mode_for_mem,
+ adjust_amt);
+ rtx new_set = load_p
+ ? gen_rtx_SET (change_reg, new_mem)
+ : gen_rtx_SET (new_mem, change_reg);
+
+ pats[changed_insn] = new_set;
+
+ auto keep_use = [&](use_info *u)
+ {
+ return refers_to_regno_p (u->regno (), u->regno () + 1,
+ change_pat, &XEXP (change_pat, load_p));
+ };
+
+ // Drop any uses that only occur in the old address.
+ input_uses[changed_insn] = filter_accesses (attempt,
+ input_uses[changed_insn],
+ keep_use);
+ }
+
+ rtx writeback_effect = NULL_RTX;
+ if (writeback)
+ writeback_effect = extract_writebacks (load_p, pats, changed_insn);
+
+ const auto base_regno = base.def->regno ();
+
+ if (base.from_insn == -1 && (writeback & 1))
+ {
+ // If the first of the candidate insns had a writeback form, we'll need to
+ // drop the use of the updated base register from the second insn's uses.
+ //
+ // N.B. we needn't worry about the base register occurring as a store
+ // operand, as we checked that there was no non-address true dependence
+ // between the insns in try_fuse_pair.
+ gcc_checking_assert (find_access (input_uses[1], base_regno));
+ input_uses[1] = check_remove_regno_access (attempt,
+ input_uses[1],
+ base_regno);
+ }
+
+ // Go through and drop uses that only occur in register notes,
+ // as we won't be preserving those.
+ for (int i = 0; i < 2; i++)
+ {
+ auto rti = insns[i]->rtl ();
+ if (!REG_NOTES (rti))
+ continue;
+
+ input_uses[i] = remove_note_accesses (attempt, input_uses[i]);
+ }
+
+ // Edge case: if the first insn is a writeback load and the
+ // second insn is a non-writeback load which transfers into the base
+ // register, then we should drop the writeback altogether as the
+ // update of the base register from the second load should prevail.
+ //
+ // For example:
+ // ldr x2, [x1], #8
+ // ldr x1, [x1]
+ // -->
+ // ldp x2, x1, [x1]
+ if (writeback == 1
+ && load_p
+ && find_access (input_defs[1], base_regno))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ " ldp: i%d has wb but subsequent i%d has non-wb "
+ "update of base (r%d), dropping wb\n",
+ insns[0]->uid (), insns[1]->uid (), base_regno);
+ gcc_assert (writeback_effect);
+ writeback_effect = NULL_RTX;
+ }
+
+ // So far the patterns have been in instruction order,
+ // now we want them in offset order.
+ if (i1 != first)
+ std::swap (pats[0], pats[1]);
+
+ poly_int64 offsets[2];
+ for (int i = 0; i < 2; i++)
+ {
+ rtx mem = XEXP (pats[i], load_p);
+ gcc_checking_assert (MEM_P (mem));
+ rtx base = strip_offset (XEXP (mem, 0), offsets + i);
+ gcc_checking_assert (REG_P (base));
+ gcc_checking_assert (base_regno == REGNO (base));
+ }
+
+ // If either of the original insns had writeback, but the resulting pair insn
+ // does not (can happen e.g. in the ldp edge case above, or if the writeback
+ // effects cancel out), then drop the def(s) of the base register as
+ // appropriate.
+ //
+ // Also drop the first def in the case that both of the original insns had
+ // writeback. The second def could well have uses, but the first def should
+ // only be used by the second insn (and we dropped that use above).
+ for (int i = 0; i < 2; i++)
+ if ((!writeback_effect && (writeback & (1 << i)))
+ || (i == 0 && writeback == 3))
+ input_defs[i] = check_remove_regno_access (attempt,
+ input_defs[i],
+ base_regno);
+
+ // If we don't currently have a writeback pair, and we don't have
+ // a load that clobbers the base register, look for a trailing destructive
+ // update of the base register and try and fold it in to make this into a
+ // writeback pair.
+ insn_info *trailing_add = nullptr;
+ if (aarch64_ldp_writeback > 1
+ && !writeback_effect
+ && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1,
+ XEXP (pats[0], 0), nullptr)
+ && !refers_to_regno_p (base_regno, base_regno + 1,
+ XEXP (pats[1], 0), nullptr))))
+ {
+ def_info *add_def;
+ trailing_add = find_trailing_add (insns, move_range, writeback,
+ &writeback_effect,
+ &add_def, base.def, offsets[0],
+ access_size);
+ if (trailing_add)
+ {
+ // The def of the base register from the trailing add should prevail.
+ input_defs[0] = insert_access (attempt, add_def, input_defs[0]);
+ gcc_assert (input_defs[0].is_valid ());
+ }
+ }
+
+ // Now that we know what base mem we're going to use, check if it's OK
+ // with the ldp/stp policy.
+ rtx first_mem = XEXP (pats[0], load_p);
+ if (!aarch64_mem_ok_with_ldpstp_policy_model (first_mem,
+ load_p,
+ GET_MODE (first_mem)))
+ {
+ if (dump_file)
+ fprintf (dump_file, "punting on pair (%d,%d), ldp/stp policy says no\n",
+ i1->uid (), i2->uid ());
+ return false;
+ }
+
+ rtx reg_notes = combine_reg_notes (first, second);
+
+ rtx pair_pat;
+ if (writeback_effect)
+ {
+ auto patvec = gen_rtvec (3, writeback_effect, pats[0], pats[1]);
+ pair_pat = gen_rtx_PARALLEL (VOIDmode, patvec);
+ }
+ else if (load_p)
+ pair_pat = aarch64_gen_load_pair (XEXP (pats[0], 0),
+ XEXP (pats[1], 0),
+ XEXP (pats[0], 1));
+ else
+ pair_pat = aarch64_gen_store_pair (XEXP (pats[0], 0),
+ XEXP (pats[0], 1),
+ XEXP (pats[1], 1));
+
+ insn_change *pair_change = nullptr;
+ auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) {
+ rtx_insn *rti = change->insn ()->rtl ();
+ validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
+ validate_change (rti, ®_NOTES (rti), reg_notes, true);
+ };
+
+ if (load_p)
+ {
+ changes.quick_push (make_delete (first));
+ pair_change = make_change (second);
+ changes.quick_push (pair_change);
+
+ pair_change->move_range = move_range;
+ pair_change->new_defs = merge_access_arrays (attempt,
+ input_defs[0],
+ input_defs[1]);
+ gcc_assert (pair_change->new_defs.is_valid ());
+
+ pair_change->new_uses
+ = merge_access_arrays (attempt,
+ drop_memory_access (input_uses[0]),
+ drop_memory_access (input_uses[1]));
+ gcc_assert (pair_change->new_uses.is_valid ());
+ set_pair_pat (pair_change);
+ }
+ else
+ {
+ insn_info *store_to_change = decide_stp_strategy (first, second,
+ move_range);
+
+ if (store_to_change && dump_file)
+ fprintf (dump_file, " stp: re-purposing store %d\n",
+ store_to_change->uid ());
+
+ insn_change *change;
+ for (int i = 0; i < 2; i++)
+ {
+ change = make_change (insns[i]);
+ if (insns[i] == store_to_change)
+ {
+ set_pair_pat (change);
+ change->new_uses = merge_access_arrays (attempt,
+ input_uses[0],
+ input_uses[1]);
+ auto d1 = drop_memory_access (input_defs[0]);
+ auto d2 = drop_memory_access (input_defs[1]);
+ change->new_defs = merge_access_arrays (attempt, d1, d2);
+ gcc_assert (change->new_defs.is_valid ());
+ def_info *stp_def = memory_access (store_to_change->defs ());
+ change->new_defs = insert_access (attempt,
+ stp_def,
+ change->new_defs);
+ gcc_assert (change->new_defs.is_valid ());
+ change->move_range = move_range;
+ pair_change = change;
+ }
+ else
+ {
+ // Note that we are turning this insn into a tombstone,
+ // we need to keep track of these if we go ahead with the
+ // change.
+ tombstone_uids.quick_push (insns[i]->uid ());
+ rtx_insn *rti = insns[i]->rtl ();
+ validate_change (rti, &PATTERN (rti), gen_tombstone (), true);
+ validate_change (rti, ®_NOTES (rti), NULL_RTX, true);
+ change->new_uses = use_array (nullptr, 0);
+ }
+ gcc_assert (change->new_uses.is_valid ());
+ changes.quick_push (change);
+ }
+
+ if (!store_to_change)
+ {
+ // Tricky case. Cannot re-purpose existing insns for stp.
+ // Need to insert new insn.
+ if (dump_file)
+ fprintf (dump_file,
+ " stp fusion: cannot re-purpose candidate stores\n");
+
+ auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat);
+ change = make_change (new_insn);
+ change->move_range = move_range;
+ change->new_uses = merge_access_arrays (attempt,
+ input_uses[0],
+ input_uses[1]);
+ gcc_assert (change->new_uses.is_valid ());
+
+ auto d1 = drop_memory_access (input_defs[0]);
+ auto d2 = drop_memory_access (input_defs[1]);
+ change->new_defs = merge_access_arrays (attempt, d1, d2);
+ gcc_assert (change->new_defs.is_valid ());
+
+ auto new_set = crtl->ssa->create_set (attempt, new_insn, memory);
+ change->new_defs = insert_access (attempt, new_set,
+ change->new_defs);
+ gcc_assert (change->new_defs.is_valid ());
+ changes.safe_insert (1, change);
+ pair_change = change;
+ }
+ }
+
+ if (trailing_add)
+ changes.quick_push (make_delete (trailing_add));
+
+ auto n_changes = changes.length ();
+ gcc_checking_assert (n_changes >= 2 && n_changes <= 4);
+
+ auto is_changing = insn_is_changing (changes);
+ for (unsigned i = 0; i < n_changes; i++)
+ gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
+
+ // Check the pair pattern is recog'd.
+ if (!rtl_ssa::recog_ignoring (attempt, *pair_change, is_changing))
+ {
+ if (dump_file)
+ fprintf (dump_file, " failed to form pair, recog failed\n");
+
+ // Free any reg notes we allocated.
+ while (reg_notes)
+ {
+ rtx next = XEXP (reg_notes, 1);
+ free_EXPR_LIST_node (reg_notes);
+ reg_notes = next;
+ }
+ cancel_changes (0);
+ return false;
+ }
+
+ gcc_assert (crtl->ssa->verify_insn_changes (changes));
+
+ confirm_change_group ();
+ crtl->ssa->change_insns (changes);
+
+ gcc_checking_assert (tombstone_uids.length () <= 2);
+ for (auto uid : tombstone_uids)
+ track_tombstone (uid);
+
+ return true;
+}
+
+// Return true if STORE_INSN may modify mem rtx MEM. Make sure we keep
+// within our BUDGET for alias analysis.
+static bool
+store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget)
+{
+ if (!budget)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "exceeded budget, assuming store %d aliases with mem ",
+ store_insn->uid ());
+ print_simple_rtl (dump_file, mem);
+ fprintf (dump_file, "\n");
+ }
+
+ return true;
+ }
+
+ budget--;
+ return memory_modified_in_insn_p (mem, store_insn->rtl ());
+}
+
+// Return true if LOAD may be modified by STORE. Make sure we keep
+// within our BUDGET for alias analysis.
+static bool
+load_modified_by_store_p (insn_info *load,
+ insn_info *store,
+ int &budget)
+{
+ gcc_checking_assert (budget >= 0);
+
+ if (!budget)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "exceeded budget, assuming load %d aliases with store %d\n",
+ load->uid (), store->uid ());
+ }
+ return true;
+ }
+
+ // It isn't safe to re-order stores over calls.
+ if (CALL_P (load->rtl ()))
+ return true;
+
+ budget--;
+
+ // Iterate over all MEMs in the load, seeing if any alias with
+ // our store.
+ subrtx_var_iterator::array_type array;
+ rtx pat = PATTERN (load->rtl ());
+ FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
+ if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ()))
+ return true;
+
+ return false;
+}
+
+// Virtual base class for load/store walkers used in alias analysis.
+struct alias_walker
+{
+ virtual bool conflict_p (int &budget) const = 0;
+ virtual insn_info *insn () const = 0;
+ virtual bool valid () const = 0;
+ virtual void advance () = 0;
+};
+
+// Implement some common functionality used by both store_walker
+// and load_walker.
+template<bool reverse>
+class def_walker : public alias_walker
+{
+protected:
+ using def_iter_t = typename std::conditional<reverse,
+ reverse_def_iterator, def_iterator>::type;
+
+ static use_info *start_use_chain (def_iter_t &def_iter)
+ {
+ set_info *set = nullptr;
+ for (; *def_iter; def_iter++)
+ {
+ set = dyn_cast<set_info *> (*def_iter);
+ if (!set)
+ continue;
+
+ use_info *use = reverse
+ ? set->last_nondebug_insn_use ()
+ : set->first_nondebug_insn_use ();
+
+ if (use)
+ return use;
+ }
+
+ return nullptr;
+ }
+
+ def_iter_t def_iter;
+ insn_info *limit;
+ def_walker (def_info *def, insn_info *limit) :
+ def_iter (def), limit (limit) {}
+
+ virtual bool iter_valid () const { return *def_iter; }
+
+public:
+ insn_info *insn () const override { return (*def_iter)->insn (); }
+ void advance () override { def_iter++; }
+ bool valid () const override final
+ {
+ if (!iter_valid ())
+ return false;
+
+ if (reverse)
+ return *(insn ()) > *limit;
+ else
+ return *(insn ()) < *limit;
+ }
+};
+
+// alias_walker that iterates over stores.
+template<bool reverse, typename InsnPredicate>
+class store_walker : public def_walker<reverse>
+{
+ rtx cand_mem;
+ InsnPredicate tombstone_p;
+
+public:
+ store_walker (def_info *mem_def, rtx mem, insn_info *limit_insn,
+ InsnPredicate tombstone_fn) :
+ def_walker<reverse> (mem_def, limit_insn),
+ cand_mem (mem), tombstone_p (tombstone_fn) {}
+
+ bool conflict_p (int &budget) const override final
+ {
+ if (tombstone_p (this->insn ()))
+ return false;
+
+ return store_modifies_mem_p (cand_mem, this->insn (), budget);
+ }
+};
+
+// alias_walker that iterates over loads.
+template<bool reverse>
+class load_walker : public def_walker<reverse>
+{
+ using Base = def_walker<reverse>;
+ using use_iter_t = typename std::conditional<reverse,
+ reverse_use_iterator, nondebug_insn_use_iterator>::type;
+
+ use_iter_t use_iter;
+ insn_info *cand_store;
+
+ bool iter_valid () const override final { return *use_iter; }
+
+public:
+ void advance () override final
+ {
+ use_iter++;
+ if (*use_iter)
+ return;
+ this->def_iter++;
+ use_iter = Base::start_use_chain (this->def_iter);
+ }
+
+ insn_info *insn () const override final
+ {
+ return (*use_iter)->insn ();
+ }
+
+ bool conflict_p (int &budget) const override final
+ {
+ return load_modified_by_store_p (insn (), cand_store, budget);
+ }
+
+ load_walker (def_info *def, insn_info *store, insn_info *limit_insn)
+ : Base (def, limit_insn),
+ use_iter (Base::start_use_chain (this->def_iter)),
+ cand_store (store) {}
+};
+
+// Process our alias_walkers in a round-robin fashion, proceeding until
+// nothing more can be learned from alias analysis.
+//
+// We try to maintain the invariant that if a walker becomes invalid, we
+// set its pointer to null.
+static void
+do_alias_analysis (insn_info *alias_hazards[4],
+ alias_walker *walkers[4],
+ bool load_p)
+{
+ const int n_walkers = 2 + (2 * !load_p);
+ int budget = aarch64_ldp_alias_check_limit;
+
+ auto next_walker = [walkers,n_walkers](int current) -> int {
+ for (int j = 1; j <= n_walkers; j++)
+ {
+ int idx = (current + j) % n_walkers;
+ if (walkers[idx])
+ return idx;
+ }
+ return -1;
+ };
+
+ int i = -1;
+ for (int j = 0; j < n_walkers; j++)
+ {
+ alias_hazards[j] = nullptr;
+ if (!walkers[j])
+ continue;
+
+ if (!walkers[j]->valid ())
+ walkers[j] = nullptr;
+ else if (i == -1)
+ i = j;
+ }
+
+ while (i >= 0)
+ {
+ int insn_i = i % 2;
+ int paired_i = (i & 2) + !insn_i;
+ int pair_fst = (i & 2);
+ int pair_snd = (i & 2) + 1;
+
+ if (walkers[i]->conflict_p (budget))
+ {
+ alias_hazards[i] = walkers[i]->insn ();
+
+ // We got an aliasing conflict for this {load,store} walker,
+ // so we don't need to walk any further.
+ walkers[i] = nullptr;
+
+ // If we have a pair of alias conflicts that prevent
+ // forming the pair, stop. There's no need to do further
+ // analysis.
+ if (alias_hazards[paired_i]
+ && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd]))
+ return;
+
+ if (!load_p)
+ {
+ int other_pair_fst = (pair_fst ? 0 : 2);
+ int other_paired_i = other_pair_fst + !insn_i;
+
+ int x_pair_fst = (i == pair_fst) ? i : other_paired_i;
+ int x_pair_snd = (i == pair_fst) ? other_paired_i : i;
+
+ // Similarly, handle the case where we have a {load,store}
+ // or {store,load} alias hazard pair that prevents forming
+ // the pair.
+ if (alias_hazards[other_paired_i]
+ && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd])
+ return;
+ }
+ }
+
+ if (walkers[i])
+ {
+ walkers[i]->advance ();
+
+ if (!walkers[i]->valid ())
+ walkers[i] = nullptr;
+ }
+
+ i = next_walker (i);
+ }
+}
+
+// Given INSNS (in program order) which are known to be adjacent, look
+// to see if either insn has a suitable RTL (register) base that we can
+// use to form a pair. Push these to BASE_CANDS if we find any. CAND_MEMs
+// gives the relevant mems from the candidate insns, ACCESS_SIZE gives the
+// size of a single candidate access, and REVERSED says whether the accesses
+// are inverted in offset order.
+//
+// Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback
+// addressing.
+static int
+get_viable_bases (insn_info *insns[2],
+ vec<base_cand> &base_cands,
+ rtx cand_mems[2],
+ unsigned access_size,
+ bool reversed)
+{
+ // We discovered this pair through a common base. Need to ensure that
+ // we have a common base register that is live at both locations.
+ def_info *base_defs[2] = {};
+ int writeback = 0;
+ for (int i = 0; i < 2; i++)
+ {
+ const bool is_lower = (i == reversed);
+ poly_int64 poly_off;
+ rtx base = ldp_strip_offset (cand_mems[i], &poly_off);
+ if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC)
+ writeback |= (1 << i);
+
+ if (!REG_P (base) || !poly_off.is_constant ())
+ continue;
+
+ // Punt on accesses relative to eliminable regs. See the comment in
+ // ldp_bb_info::track_access for a detailed explanation of this.
+ if (!reload_completed
+ && (REGNO (base) == FRAME_POINTER_REGNUM
+ || REGNO (base) == ARG_POINTER_REGNUM))
+ continue;
+
+ HOST_WIDE_INT base_off = poly_off.to_constant ();
+
+ // It should be unlikely that we ever punt here, since MEM_EXPR offset
+ // alignment should be a good proxy for register offset alignment.
+ if (base_off % access_size != 0)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "base not viable, offset misaligned (insn %d)\n",
+ insns[i]->uid ());
+ continue;
+ }
+
+ base_off /= access_size;
+
+ if (!is_lower)
+ base_off--;
+
+ if (base_off < LDP_MIN_IMM || base_off > LDP_MAX_IMM)
+ continue;
+
+ use_info *use = find_access (insns[i]->uses (), REGNO (base));
+ gcc_assert (use);
+ base_defs[i] = use->def ();
+ }
+
+ if (!base_defs[0] && !base_defs[1])
+ {
+ if (dump_file)
+ fprintf (dump_file, "no viable base register for pair (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return writeback;
+ }
+
+ for (int i = 0; i < 2; i++)
+ if ((writeback & (1 << i)) && !base_defs[i])
+ {
+ if (dump_file)
+ fprintf (dump_file, "insn %d has writeback but base isn't viable\n",
+ insns[i]->uid ());
+ return writeback;
+ }
+
+ if (writeback == 3
+ && base_defs[0]->regno () != base_defs[1]->regno ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "pair (%d,%d): double writeback with distinct regs (%d,%d): "
+ "punting\n",
+ insns[0]->uid (), insns[1]->uid (),
+ base_defs[0]->regno (), base_defs[1]->regno ());
+ return writeback;
+ }
+
+ if (base_defs[0] && base_defs[1]
+ && base_defs[0]->regno () == base_defs[1]->regno ())
+ {
+ // Easy case: insns already share the same base reg.
+ base_cands.quick_push (base_defs[0]);
+ return writeback;
+ }
+
+ // Otherwise, we know that one of the bases must change.
+ //
+ // Note that if there is writeback we must use the writeback base
+ // (we know now there is exactly one).
+ for (int i = 0; i < 2; i++)
+ if (base_defs[i] && (!writeback || (writeback & (1 << i))))
+ base_cands.quick_push (base_cand { base_defs[i], i });
+
+ return writeback;
+}
+
+// Given two adjacent memory accesses of the same size, I1 and I2, try
+// and see if we can merge them into a ldp or stp.
+//
+// ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true
+// if the accesses are both loads, otherwise they are both stores.
+bool
+ldp_bb_info::try_fuse_pair (bool load_p, unsigned access_size,
+ insn_info *i1, insn_info *i2)
+{
+ if (dump_file)
+ fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n",
+ load_p, i1->uid (), i2->uid ());
+
+ insn_info *insns[2];
+ bool reversed = false;
+ if (*i1 < *i2)
+ {
+ insns[0] = i1;
+ insns[1] = i2;
+ }
+ else
+ {
+ insns[0] = i2;
+ insns[1] = i1;
+ reversed = true;
+ }
+
+ rtx cand_mems[2];
+ rtx reg_ops[2];
+ rtx pats[2];
+ for (int i = 0; i < 2; i++)
+ {
+ pats[i] = PATTERN (insns[i]->rtl ());
+ cand_mems[i] = XEXP (pats[i], load_p);
+ reg_ops[i] = XEXP (pats[i], !load_p);
+ }
+
+ if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1]))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "punting on ldp due to reg conflcits (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ if (cfun->can_throw_non_call_exceptions
+ && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX)
+ && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "can't combine insns with EH side effects (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ auto_vec<base_cand, 2> base_cands (2);
+
+ int writeback = get_viable_bases (insns, base_cands, cand_mems,
+ access_size, reversed);
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file, "no viable base for pair (%d,%d)\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ rtx *ignore = &XEXP (pats[1], load_p);
+ for (auto use : insns[1]->uses ())
+ if (!use->is_mem ()
+ && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore)
+ && use->def () && use->def ()->insn () == insns[0])
+ {
+ // N.B. we allow a true dependence on the base address, as this
+ // happens in the case of auto-inc accesses. Consider a post-increment
+ // load followed by a regular indexed load, for example.
+ if (dump_file)
+ fprintf (dump_file,
+ "%d has non-address true dependence on %d, rejecting pair\n",
+ insns[1]->uid (), insns[0]->uid ());
+ return false;
+ }
+
+ unsigned i = 0;
+ while (i < base_cands.length ())
+ {
+ base_cand &cand = base_cands[i];
+
+ rtx *ignore[2] = {};
+ for (int j = 0; j < 2; j++)
+ if (cand.from_insn == !j)
+ ignore[j] = &XEXP (cand_mems[j], 0);
+
+ insn_info *h = first_hazard_after (insns[0], ignore[0]);
+ if (h && *h <= *insns[1])
+ cand.hazards[0] = h;
+
+ h = latest_hazard_before (insns[1], ignore[1]);
+ if (h && *h >= *insns[0])
+ cand.hazards[1] = h;
+
+ if (!cand.viable ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "pair (%d,%d): rejecting base %d due to dataflow "
+ "hazards (%d,%d)\n",
+ insns[0]->uid (),
+ insns[1]->uid (),
+ cand.def->regno (),
+ cand.hazards[0]->uid (),
+ cand.hazards[1]->uid ());
+
+ base_cands.ordered_remove (i);
+ }
+ else
+ i++;
+ }
+
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "can't form pair (%d,%d) due to dataflow hazards\n",
+ insns[0]->uid (), insns[1]->uid ());
+ return false;
+ }
+
+ insn_info *alias_hazards[4] = {};
+
+ // First def of memory after the first insn, and last def of memory
+ // before the second insn, respectively.
+ def_info *mem_defs[2] = {};
+ if (load_p)
+ {
+ if (!MEM_READONLY_P (cand_mems[0]))
+ {
+ mem_defs[0] = memory_access (insns[0]->uses ())->def ();
+ gcc_checking_assert (mem_defs[0]);
+ mem_defs[0] = mem_defs[0]->next_def ();
+ }
+ if (!MEM_READONLY_P (cand_mems[1]))
+ {
+ mem_defs[1] = memory_access (insns[1]->uses ())->def ();
+ gcc_checking_assert (mem_defs[1]);
+ }
+ }
+ else
+ {
+ mem_defs[0] = memory_access (insns[0]->defs ())->next_def ();
+ mem_defs[1] = memory_access (insns[1]->defs ())->prev_def ();
+ gcc_checking_assert (mem_defs[0]);
+ gcc_checking_assert (mem_defs[1]);
+ }
+
+ auto tombstone_p = [&](insn_info *insn) -> bool {
+ return m_emitted_tombstone
+ && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ());
+ };
+
+ store_walker<false, decltype(tombstone_p)>
+ forward_store_walker (mem_defs[0], cand_mems[0], insns[1], tombstone_p);
+
+ store_walker<true, decltype(tombstone_p)>
+ backward_store_walker (mem_defs[1], cand_mems[1], insns[0], tombstone_p);
+
+ alias_walker *walkers[4] = {};
+ if (mem_defs[0])
+ walkers[0] = &forward_store_walker;
+ if (mem_defs[1])
+ walkers[1] = &backward_store_walker;
+
+ if (load_p && (mem_defs[0] || mem_defs[1]))
+ do_alias_analysis (alias_hazards, walkers, load_p);
+ else
+ {
+ // We want to find any loads hanging off the first store.
+ mem_defs[0] = memory_access (insns[0]->defs ());
+ load_walker<false> forward_load_walker (mem_defs[0], insns[0], insns[1]);
+ load_walker<true> backward_load_walker (mem_defs[1], insns[1], insns[0]);
+ walkers[2] = &forward_load_walker;
+ walkers[3] = &backward_load_walker;
+ do_alias_analysis (alias_hazards, walkers, load_p);
+ // Now consolidate hazards back down.
+ if (alias_hazards[2]
+ && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0])))
+ alias_hazards[0] = alias_hazards[2];
+
+ if (alias_hazards[3]
+ && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1])))
+ alias_hazards[1] = alias_hazards[3];
+ }
+
+ if (alias_hazards[0] && alias_hazards[1]
+ && *alias_hazards[0] <= *alias_hazards[1])
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n",
+ i1->uid (), i2->uid (),
+ alias_hazards[0]->uid (), alias_hazards[1]->uid ());
+ return false;
+ }
+
+ // Now narrow the hazards on each base candidate using
+ // the alias hazards.
+ i = 0;
+ while (i < base_cands.length ())
+ {
+ base_cand &cand = base_cands[i];
+ if (alias_hazards[0] && (!cand.hazards[0]
+ || *alias_hazards[0] < *cand.hazards[0]))
+ cand.hazards[0] = alias_hazards[0];
+ if (alias_hazards[1] && (!cand.hazards[1]
+ || *alias_hazards[1] > *cand.hazards[1]))
+ cand.hazards[1] = alias_hazards[1];
+
+ if (cand.viable ())
+ i++;
+ else
+ {
+ if (dump_file)
+ fprintf (dump_file, "pair (%d,%d): rejecting base %d due to "
+ "alias/dataflow hazards (%d,%d)",
+ insns[0]->uid (), insns[1]->uid (),
+ cand.def->regno (),
+ cand.hazards[0]->uid (),
+ cand.hazards[1]->uid ());
+
+ base_cands.ordered_remove (i);
+ }
+ }
+
+ if (base_cands.is_empty ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "cannot form pair (%d,%d) due to alias/dataflow hazards",
+ insns[0]->uid (), insns[1]->uid ());
+
+ return false;
+ }
+
+ base_cand *base = &base_cands[0];
+ if (base_cands.length () > 1)
+ {
+ // If there are still multiple viable bases, it makes sense
+ // to choose one that allows us to reduce register pressure,
+ // for loads this means moving further down, for stores this
+ // means moving further up.
+ gcc_checking_assert (base_cands.length () == 2);
+ const int hazard_i = !load_p;
+ if (base->hazards[hazard_i])
+ {
+ if (!base_cands[1].hazards[hazard_i])
+ base = &base_cands[1];
+ else if (load_p
+ && *base_cands[1].hazards[hazard_i]
+ > *(base->hazards[hazard_i]))
+ base = &base_cands[1];
+ else if (!load_p
+ && *base_cands[1].hazards[hazard_i]
+ < *(base->hazards[hazard_i]))
+ base = &base_cands[1];
+ }
+ }
+
+ // Otherwise, hazards[0] > hazards[1].
+ // Pair can be formed anywhere in (hazards[1], hazards[0]).
+ insn_range_info range (insns[0], insns[1]);
+ if (base->hazards[1])
+ range.first = base->hazards[1];
+ if (base->hazards[0])
+ range.last = base->hazards[0]->prev_nondebug_insn ();
+
+ // Placement strategy: push loads down and pull stores up, this should
+ // help register pressure by reducing live ranges.
+ if (load_p)
+ range.first = range.last;
+ else
+ range.last = range.first;
+
+ if (dump_file)
+ {
+ auto print_hazard = [](insn_info *i)
+ {
+ if (i)
+ fprintf (dump_file, "%d", i->uid ());
+ else
+ fprintf (dump_file, "-");
+ };
+ auto print_pair = [print_hazard](insn_info **i)
+ {
+ print_hazard (i[0]);
+ fprintf (dump_file, ",");
+ print_hazard (i[1]);
+ };
+
+ fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (",
+ load_p, insns[0]->uid (), insns[1]->uid (),
+ base->def->regno ());
+ print_pair (base->hazards);
+ fprintf (dump_file, "), move_range: (%d,%d)\n",
+ range.first->uid (), range.last->uid ());
+ }
+
+ return fuse_pair (load_p, access_size, writeback,
+ i1, i2, *base, range);
+}
+
+static void
+dump_insn_list (FILE *f, const insn_list_t &l)
+{
+ fprintf (f, "(");
+
+ auto i = l.begin ();
+ auto end = l.end ();
+
+ if (i != end)
+ fprintf (f, "%d", (*i)->uid ());
+ i++;
+
+ for (; i != end; i++)
+ fprintf (f, ", %d", (*i)->uid ());
+
+ fprintf (f, ")");
+}
+
+DEBUG_FUNCTION void
+debug (const insn_list_t &l)
+{
+ dump_insn_list (stderr, l);
+ fprintf (stderr, "\n");
+}
+
+// LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all insns
+// in LEFT_LIST are known to be adjacent to those in RIGHT_LIST.
+//
+// This function traverses the resulting 2D matrix of possible pair candidates
+// and attempts to merge them into pairs.
+//
+// The algorithm is straightforward: if we consider a combined list of
+// candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program order,
+// then we advance through X until we reach a crossing point (where X[i] and
+// X[i+1] come from different source lists).
+//
+// At this point we know X[i] and X[i+1] are adjacent accesses, and we try to
+// fuse them into a pair. If this succeeds, we remove X[i] and X[i+1] from
+// their original lists and continue as above.
+//
+// In the failure case, we advance through the source list containing X[i] and
+// continue as above (proceeding to the next crossing point).
+//
+// The rationale for skipping over groups of consecutive candidates from the
+// same source list is as follows:
+//
+// In the store case, the insns in the group can't be re-ordered over each
+// other as they are guaranteed to store to the same location, so we're
+// guaranteed not to lose opportunities by doing this.
+//
+// In the load case, subsequent loads from the same location are either
+// redundant (in which case they should have been cleaned up by an earlier
+// optimization pass) or there is an intervening aliasing hazard, in which case
+// we can't re-order them anyway, so provided earlier passes have cleaned up
+// redundant loads, we shouldn't miss opportunities by doing this.
+void
+ldp_bb_info::merge_pairs (insn_list_t &left_list,
+ insn_list_t &right_list,
+ bool load_p,
+ unsigned access_size)
+{
+ if (dump_file)
+ {
+ fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p);
+ dump_insn_list (dump_file, left_list);
+ fprintf (dump_file, " x ");
+ dump_insn_list (dump_file, right_list);
+ fprintf (dump_file, "\n");
+ }
+
+ auto iter_l = left_list.begin ();
+ auto iter_r = right_list.begin ();
+
+ while (iter_l != left_list.end () && iter_r != right_list.end ())
+ {
+ auto next_l = std::next (iter_l);
+ auto next_r = std::next (iter_r);
+ if (**iter_l < **iter_r
+ && next_l != left_list.end ()
+ && **next_l < **iter_r)
+ iter_l = next_l;
+ else if (**iter_r < **iter_l
+ && next_r != right_list.end ()
+ && **next_r < **iter_l)
+ iter_r = next_r;
+ else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r))
+ {
+ left_list.erase (iter_l);
+ iter_l = next_l;
+ right_list.erase (iter_r);
+ iter_r = next_r;
+ }
+ else if (**iter_l < **iter_r)
+ iter_l = next_l;
+ else
+ iter_r = next_r;
+ }
+}
+
+// Iterate over the accesses in GROUP, looking for adjacent sets
+// of accesses. If we find two sets of adjacent accesses, call
+// merge_pairs.
+void
+ldp_bb_info::transform_for_base (int encoded_lfs,
+ access_group &group)
+{
+ const auto lfs = decode_lfs (encoded_lfs);
+ const unsigned access_size = lfs.size;
+
+ bool skip_next = true;
+ access_record *prev_access = nullptr;
+
+ for (auto &access : group.list)
+ {
+ if (skip_next)
+ skip_next = false;
+ else if (known_eq (access.offset, prev_access->offset + access_size))
+ {
+ merge_pairs (prev_access->cand_insns,
+ access.cand_insns,
+ lfs.load_p,
+ access_size);
+ skip_next = access.cand_insns.empty ();
+ }
+ prev_access = &access;
+ }
+}
+
+// If we emitted tombstone insns for this BB, iterate through the BB
+// and remove all the tombstone insns, being sure to reparent any uses
+// of mem to previous defs when we do this.
+void
+ldp_bb_info::cleanup_tombstones ()
+{
+ // No need to do anything if we didn't emit a tombstone insn for this BB.
+ if (!m_emitted_tombstone)
+ return;
+
+ insn_info *insn = m_bb->head_insn ();
+ while (insn)
+ {
+ insn_info *next = insn->next_nondebug_insn ();
+ if (!insn->is_real ()
+ || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()))
+ {
+ insn = next;
+ continue;
+ }
+
+ auto def = memory_access (insn->defs ());
+ auto set = dyn_cast<set_info *> (def);
+ if (set && set->has_any_uses ())
+ {
+ def_info *prev_def = def->prev_def ();
+ auto prev_set = dyn_cast<set_info *> (prev_def);
+ if (!prev_set)
+ gcc_unreachable ();
+
+ while (set->first_use ())
+ crtl->ssa->reparent_use (set->first_use (), prev_set);
+ }
+
+ // Now set has no uses, we can delete it.
+ insn_change change (insn, insn_change::DELETE);
+ crtl->ssa->change_insn (change);
+ insn = next;
+ }
+}
+
+template<typename Map>
+void
+ldp_bb_info::traverse_base_map (Map &map)
+{
+ for (auto kv : map)
+ {
+ const auto &key = kv.first;
+ auto &value = kv.second;
+ transform_for_base (key.second, value);
+ }
+}
+
+void
+ldp_bb_info::transform ()
+{
+ traverse_base_map (expr_map);
+ traverse_base_map (def_map);
+}
+
+static void
+ldp_fusion_init ()
+{
+ calculate_dominance_info (CDI_DOMINATORS);
+ df_analyze ();
+ crtl->ssa = new rtl_ssa::function_info (cfun);
+}
+
+static void
+ldp_fusion_destroy ()
+{
+ if (crtl->ssa->perform_pending_updates ())
+ cleanup_cfg (0);
+
+ free_dominance_info (CDI_DOMINATORS);
+
+ delete crtl->ssa;
+ crtl->ssa = nullptr;
+}
+
+// Given a load pair insn in PATTERN, unpack the insn, storing
+// the registers in REGS and returning the mem.
+static rtx
+aarch64_destructure_load_pair (rtx regs[2], rtx pattern)
+{
+ rtx mem = NULL_RTX;
+
+ for (int i = 0; i < 2; i++)
+ {
+ rtx pat = XVECEXP (pattern, 0, i);
+ regs[i] = XEXP (pat, 0);
+ rtx unspec = XEXP (pat, 1);
+ gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
+ rtx this_mem = XVECEXP (unspec, 0, 0);
+ if (mem)
+ gcc_checking_assert (rtx_equal_p (mem, this_mem));
+ else
+ {
+ gcc_checking_assert (MEM_P (this_mem));
+ mem = this_mem;
+ }
+ }
+
+ return mem;
+}
+
+// Given a store pair insn in PATTERN, unpack the insn, storing
+// the register operands in REGS, and returning the mem.
+static rtx
+aarch64_destructure_store_pair (rtx regs[2], rtx pattern)
+{
+ rtx mem = XEXP (pattern, 0);
+ rtx unspec = XEXP (pattern, 1);
+ gcc_checking_assert (GET_CODE (unspec) == UNSPEC);
+ for (int i = 0; i < 2; i++)
+ regs[i] = XVECEXP (unspec, 0, i);
+ return mem;
+}
+
+// Given a pair mem in PAIR_MEM, register operands in REGS, and an rtx
+// representing the effect of writeback on the base register in WB_EFFECT,
+// return an insn representing a writeback variant of this pair.
+// LOAD_P is true iff the pair is a load.
+//
+// This is used when promoting existing non-writeback pairs to writeback
+// variants.
+static rtx
+aarch64_gen_writeback_pair (rtx wb_effect, rtx pair_mem, rtx regs[2],
+ bool load_p)
+{
+ auto op_mode = aarch64_operand_mode_for_pair_mode (GET_MODE (pair_mem));
+
+ machine_mode modes[2];
+ for (int i = 0; i < 2; i++)
+ {
+ machine_mode mode = GET_MODE (regs[i]);
+ if (load_p)
+ gcc_checking_assert (mode != VOIDmode);
+ else if (mode == VOIDmode)
+ mode = op_mode;
+
+ modes[i] = mode;
+ }
+
+ const auto op_size = GET_MODE_SIZE (modes[0]);
+ gcc_checking_assert (known_eq (op_size, GET_MODE_SIZE (modes[1])));
+
+ rtx pats[2];
+ for (int i = 0; i < 2; i++)
+ {
+ rtx mem = adjust_address_nv (pair_mem, modes[i], op_size * i);
+ pats[i] = load_p
+ ? gen_rtx_SET (regs[i], mem)
+ : gen_rtx_SET (mem, regs[i]);
+ }
+
+ return gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (3, wb_effect, pats[0], pats[1]));
+}
+
+// Given an existing pair insn INSN, look for a trailing update of
+// the base register which we can fold in to make this pair use
+// a writeback addressing mode.
+static void
+try_promote_writeback (insn_info *insn)
+{
+ auto rti = insn->rtl ();
+ const auto attr = get_attr_ldpstp (rti);
+ if (attr == LDPSTP_NONE)
+ return;
+
+ bool load_p = (attr == LDPSTP_LDP);
+ gcc_checking_assert (load_p || attr == LDPSTP_STP);
+
+ rtx regs[2];
+ rtx mem = NULL_RTX;
+ if (load_p)
+ mem = aarch64_destructure_load_pair (regs, PATTERN (rti));
+ else
+ mem = aarch64_destructure_store_pair (regs, PATTERN (rti));
+ gcc_checking_assert (MEM_P (mem));
+
+ poly_int64 offset;
+ rtx base = strip_offset (XEXP (mem, 0), &offset);
+ gcc_assert (REG_P (base));
+
+ const auto access_size = GET_MODE_SIZE (GET_MODE (mem)).to_constant () / 2;
+
+ if (find_access (insn->defs (), REGNO (base)))
+ {
+ gcc_assert (load_p);
+ if (dump_file)
+ fprintf (dump_file,
+ "ldp %d clobbers base r%d, can't promote to writeback\n",
+ insn->uid (), REGNO (base));
+ return;
+ }
+
+ auto base_use = find_access (insn->uses (), REGNO (base));
+ gcc_assert (base_use);
+
+ if (!base_use->def ())
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "found pair (i%d, L=%d): but base r%d is upwards exposed\n",
+ insn->uid (), load_p, REGNO (base));
+ return;
+ }
+
+ auto base_def = base_use->def ();
+
+ rtx wb_effect = NULL_RTX;
+ def_info *add_def;
+ const insn_range_info pair_range (insn->prev_nondebug_insn ());
+ insn_info *insns[2] = { nullptr, insn };
+ insn_info *trailing_add = find_trailing_add (insns, pair_range, 0, &wb_effect,
+ &add_def, base_def, offset,
+ access_size);
+ if (!trailing_add)
+ return;
+
+ auto attempt = crtl->ssa->new_change_attempt ();
+
+ insn_change pair_change (insn);
+ insn_change del_change (trailing_add, insn_change::DELETE);
+ insn_change *changes[] = { &pair_change, &del_change };
+
+ rtx pair_pat = aarch64_gen_writeback_pair (wb_effect, mem, regs, load_p);
+ validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
+
+ // The pair must gain the def of the base register from the add.
+ pair_change.new_defs = insert_access (attempt,
+ add_def,
+ pair_change.new_defs);
+ gcc_assert (pair_change.new_defs.is_valid ());
+
+ pair_change.move_range = insn_range_info (insn->prev_nondebug_insn ());
+
+ auto is_changing = insn_is_changing (changes);
+ for (unsigned i = 0; i < ARRAY_SIZE (changes); i++)
+ gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], is_changing));
+
+ gcc_assert (rtl_ssa::recog_ignoring (attempt, pair_change, is_changing));
+ gcc_assert (crtl->ssa->verify_insn_changes (changes));
+ confirm_change_group ();
+ crtl->ssa->change_insns (changes);
+}
+
+// Main function for the pass. Iterate over the insns in BB looking
+// for load/store candidates. If running after RA, also try and promote
+// non-writeback pairs to use writeback addressing. Then try to fuse
+// candidates into pairs.
+void ldp_fusion_bb (bb_info *bb)
+{
+ const bool track_loads
+ = aarch64_tune_params.ldp_policy_model != AARCH64_LDP_STP_POLICY_NEVER;
+ const bool track_stores
+ = aarch64_tune_params.stp_policy_model != AARCH64_LDP_STP_POLICY_NEVER;
+
+ ldp_bb_info bb_state (bb);
+
+ for (auto insn : bb->nondebug_insns ())
+ {
+ rtx_insn *rti = insn->rtl ();
+
+ if (!rti || !INSN_P (rti))
+ continue;
+
+ rtx pat = PATTERN (rti);
+ if (reload_completed
+ && aarch64_ldp_writeback > 1
+ && GET_CODE (pat) == PARALLEL
+ && XVECLEN (pat, 0) == 2)
+ try_promote_writeback (insn);
+
+ if (GET_CODE (pat) != SET)
+ continue;
+
+ if (track_stores && MEM_P (XEXP (pat, 0)))
+ bb_state.track_access (insn, false, XEXP (pat, 0));
+ else if (track_loads && MEM_P (XEXP (pat, 1)))
+ bb_state.track_access (insn, true, XEXP (pat, 1));
+ }
+
+ bb_state.transform ();
+ bb_state.cleanup_tombstones ();
+}
+
+void ldp_fusion ()
+{
+ ldp_fusion_init ();
+
+ for (auto bb : crtl->ssa->bbs ())
+ ldp_fusion_bb (bb);
+
+ ldp_fusion_destroy ();
+}
+
+namespace {
+
+const pass_data pass_data_ldp_fusion =
+{
+ RTL_PASS, /* type */
+ "ldp_fusion", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_df_finish, /* todo_flags_finish */
+};
+
+class pass_ldp_fusion : public rtl_opt_pass
+{
+public:
+ pass_ldp_fusion (gcc::context *ctx)
+ : rtl_opt_pass (pass_data_ldp_fusion, ctx)
+ {}
+
+ opt_pass *clone () override { return new pass_ldp_fusion (m_ctxt); }
+
+ bool gate (function *) final override
+ {
+ if (!optimize || optimize_debug)
+ return false;
+
+ // If the tuning policy says never to form ldps or stps, don't run
+ // the pass.
+ if ((aarch64_tune_params.ldp_policy_model
+ == AARCH64_LDP_STP_POLICY_NEVER)
+ && (aarch64_tune_params.stp_policy_model
+ == AARCH64_LDP_STP_POLICY_NEVER))
+ return false;
+
+ if (reload_completed)
+ return flag_aarch64_late_ldp_fusion;
+ else
+ return flag_aarch64_early_ldp_fusion;
+ }
+
+ unsigned execute (function *) final override
+ {
+ ldp_fusion ();
+ return 0;
+ }
+};
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_ldp_fusion (gcc::context *ctx)
+{
+ return new pass_ldp_fusion (ctx);
+}
@@ -25,3 +25,5 @@ INSERT_PASS_BEFORE (pass_late_thread_prologue_and_epilogue, 1, pass_switch_pstat
INSERT_PASS_AFTER (pass_machine_reorg, 1, pass_tag_collision_avoidance);
INSERT_PASS_BEFORE (pass_shorten_branches, 1, pass_insert_bti);
INSERT_PASS_AFTER (pass_if_after_combine, 1, pass_cc_fusion);
+INSERT_PASS_BEFORE (pass_early_remat, 1, pass_ldp_fusion);
+INSERT_PASS_BEFORE (pass_peephole2, 1, pass_ldp_fusion);
@@ -1078,6 +1078,7 @@ rtl_opt_pass *make_pass_tag_collision_avoidance (gcc::context *);
rtl_opt_pass *make_pass_insert_bti (gcc::context *ctxt);
rtl_opt_pass *make_pass_cc_fusion (gcc::context *ctxt);
rtl_opt_pass *make_pass_switch_pstate_sm (gcc::context *ctxt);
+rtl_opt_pass *make_pass_ldp_fusion (gcc::context *);
poly_uint64 aarch64_regmode_natural_size (machine_mode);
@@ -289,6 +289,16 @@ mtrack-speculation
Target Var(aarch64_track_speculation)
Generate code to track when the CPU might be speculating incorrectly.
+mearly-ldp-fusion
+Target Var(flag_aarch64_early_ldp_fusion) Optimization Init(1)
+Enable the copy of the AArch64 load/store pair fusion pass that runs before
+register allocation.
+
+mlate-ldp-fusion
+Target Var(flag_aarch64_late_ldp_fusion) Optimization Init(1)
+Enable the copy of the AArch64 load/store pair fusion pass that runs after
+register allocation.
+
mstack-protector-guard=
Target RejectNegative Joined Enum(stack_protector_guard) Var(aarch64_stack_protector_guard) Init(SSP_GLOBAL)
Use given stack-protector guard.
@@ -378,3 +388,16 @@ Enum(aarch64_ldp_stp_policy) String(never) Value(AARCH64_LDP_STP_POLICY_NEVER)
EnumValue
Enum(aarch64_ldp_stp_policy) String(aligned) Value(AARCH64_LDP_STP_POLICY_ALIGNED)
+
+-param=aarch64-ldp-alias-check-limit=
+Target Joined UInteger Var(aarch64_ldp_alias_check_limit) Init(8) IntegerRange(0, 65536) Param
+Limit on number of alias checks performed when attempting to form an ldp/stp.
+
+-param=aarch64-ldp-writeback=
+Target Joined UInteger Var(aarch64_ldp_writeback) Init(2) IntegerRange(0,2) Param
+Param to control which writeback opportunities we try to handle in the
+load/store pair fusion pass. A value of zero disables writeback
+handling. One means we try to form pairs involving one or more existing
+individual writeback accesses where possible. A value of two means we
+also try to opportunistically form writeback opportunities by folding in
+trailing destructive updates of the base register used by a pair.
@@ -200,6 +200,13 @@ aarch64-early-ra.o: $(srcdir)/config/aarch64/aarch64-early-ra.cc \
$(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
$(srcdir)/config/aarch64/aarch64-early-ra.cc
+aarch64-ldp-fusion.o: $(srcdir)/config/aarch64/aarch64-ldp-fusion.cc \
+ $(CONFIG_H) $(SYSTEM_H) $(CORETYPES_H) $(BACKEND_H) $(RTL_H) $(DF_H) \
+ $(RTL_SSA_H) cfgcleanup.h tree-pass.h ordered-hash-map.h tree-dfa.h \
+ fold-const.h tree-hash-traits.h print-tree.h
+ $(COMPILER) -c $(ALL_COMPILERFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+ $(srcdir)/config/aarch64/aarch64-ldp-fusion.cc
+
comma=,
MULTILIB_OPTIONS = $(subst $(comma),/, $(patsubst %, mabi=%, $(subst $(comma),$(comma)mabi=,$(TM_MULTILIB_CONFIG))))
MULTILIB_DIRNAMES = $(subst $(comma), ,$(TM_MULTILIB_CONFIG))
@@ -803,7 +803,7 @@ Objective-C and Objective-C++ Dialects}.
-moverride=@var{string} -mverbose-cost-dump
-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg}
-mstack-protector-guard-offset=@var{offset} -mtrack-speculation
--moutline-atomics }
+-moutline-atomics -mearly-ldp-fusion -mlate-ldp-fusion}
@emph{Adapteva Epiphany Options}
@gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs
@@ -16818,6 +16818,20 @@ With @option{--param=aarch64-stp-policy=never}, do not emit stp.
With @option{--param=aarch64-stp-policy=aligned}, emit stp only if the
source pointer is aligned to at least double the alignment of the type.
+@item aarch64-ldp-alias-check-limit
+Limit on the number of alias checks performed by the AArch64 load/store pair
+fusion pass when attempting to form an ldp/stp. Higher values make the pass
+more aggressive at re-ordering loads over stores, at the expense of increased
+compile time.
+
+@item aarch64-ldp-writeback
+Param to control which writeback opportunities we try to handle in the AArch64
+load/store pair fusion pass. A value of zero disables writeback handling. One
+means we try to form pairs involving one or more existing individual writeback
+accesses where possible. A value of two means we also try to opportunistically
+form writeback opportunities by folding in trailing destructive updates of the
+base register used by a pair.
+
@item aarch64-loop-vect-issue-rate-niters
The tuning for some AArch64 CPUs tries to take both latencies and issue
rates into account when deciding whether a loop should be vectorized
@@ -21251,6 +21265,16 @@ disables the pass.
@option{-mearly-ra=all} is the default for @option{-O2} and above, and for
@option{-Os}. @option{-mearly-ra=none} is the default otherwise.
+@opindex mearly-ldp-fusion
+@item -mearly-ldp-fusion
+Enable the copy of the AArch64 load/store pair fusion pass that runs before
+register allocation. Enabled by default at @samp{-O} and above.
+
+@opindex mlate-ldp-fusion
+@item -mlate-ldp-fusion
+Enable the copy of the AArch64 load/store pair fusion pass that runs after
+register allocation. Enabled by default at @samp{-O} and above.
+
@opindex msve-vector-bits
@item -msve-vector-bits=@var{bits}
Specify the number of bits in an SVE vector register. This option only has