diff mbox

Fix PR/59303 -- predicate uninit analysis enhancement

Message ID CAAkRFZ+d_pEjfF8koroSjA3bO=5kyfJCN74mzZbNx5ExVKBR3w@mail.gmail.com
State New
Headers show

Commit Message

Xinliang David Li Dec. 22, 2013, 5:39 a.m. UTC
Hi, the following patch fixes the problem reported in PR/59303. In the
patch, the predication expression normalization is no long done on the
fly during inclusion relationship check, but done unconditionally
after the predicate union set is computed, together with iterative
simplification based on a couple of rules.

bootstrap and regression tested on x86-64/linux with -m32 and -m64.

Also tested with:

make check-gcc RUNTESTFLAGS="dg.exp=uninit*
--target_board=\{-mbranch-cost=0,-mbranch-cost=1,-mbranch-cost=2,-mbranch-cost=3,-mbranch-cost=4,-mbranch-cost=5\}"

No failures were seen.

ok for trunk?


thanks,

David
diff mbox

Patch

Index: tree-ssa-uninit.c
===================================================================
--- tree-ssa-uninit.c	(revision 206165)
+++ tree-ssa-uninit.c	(working copy)
@@ -233,7 +233,7 @@  warn_uninitialized_vars (bool warn_possi
 		continue;
 
 	      if (always_executed)
-		warn_uninit (OPT_Wuninitialized, use, 
+		warn_uninit (OPT_Wuninitialized, use,
 			     gimple_assign_rhs1 (stmt), base,
 			     "%qE is used uninitialized in this function",
 			     stmt);
@@ -249,9 +249,9 @@  warn_uninitialized_vars (bool warn_possi
   return 0;
 }
 
-/* Checks if the operand OPND of PHI is defined by 
-   another phi with one operand defined by this PHI, 
-   but the rest operands are all defined. If yes, 
+/* Checks if the operand OPND of PHI is defined by
+   another phi with one operand defined by this PHI,
+   but the rest operands are all defined. If yes,
    returns true to skip this this operand as being
    redundant. Can be enhanced to be more general.  */
 
@@ -470,30 +470,41 @@  compute_control_dep_chain (basic_block b
   return found_cd_chain;
 }
 
-typedef struct use_pred_info
+/* The type to represent a simple predicate  */
+
+typedef struct use_def_pred_info
 {
-  gimple cond;
+  tree pred_lhs;
+  tree pred_rhs;
+  enum tree_code cond_code;
   bool invert;
-} *use_pred_info_t;
+} pred_info;
+
+/* The type to represent a sequence of predicates grouped
+  with .AND. operation.  */
+
+typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
 
+/* The type to represent a sequence of pred_chains grouped
+  with .OR. operation.  */
 
+typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
 
 /* Converts the chains of control dependence edges into a set of
    predicates. A control dependence chain is represented by a vector
    edges. DEP_CHAINS points to an array of dependence chains.
    NUM_CHAINS is the size of the chain array. One edge in a dependence
-   chain is mapped to predicate expression represented by use_pred_info_t
+   chain is mapped to predicate expression represented by pred_info
    type. One dependence chain is converted to a composite predicate that
-   is the result of AND operation of use_pred_info_t mapped to each edge.
-   A composite predicate is presented by a vector of use_pred_info_t. On
+   is the result of AND operation of pred_info mapped to each edge.
+   A composite predicate is presented by a vector of pred_info. On
    return, *PREDS points to the resulting array of composite predicates.
    *NUM_PREDS is the number of composite predictes.  */
 
 static bool
 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
                                       size_t num_chains,
-                                      vec<use_pred_info_t> **preds,
-                                      size_t *num_preds)
+                                      pred_chain_union *preds)
 {
   bool has_valid_pred = false;
   size_t i, j;
@@ -502,21 +513,20 @@  convert_control_dep_chain_into_preds (ve
 
   /* Now convert the control dep chain into a set
      of predicates.  */
-  typedef vec<use_pred_info_t> vec_use_pred_info_t_heap;
-  *preds = XCNEWVEC (vec_use_pred_info_t_heap, num_chains);
-  *num_preds = num_chains;
+  preds->reserve (num_chains);
 
   for (i = 0; i < num_chains; i++)
     {
       vec<edge> one_cd_chain = dep_chains[i];
 
       has_valid_pred = false;
+      pred_chain t_chain = vNULL;
       for (j = 0; j < one_cd_chain.length (); j++)
         {
           gimple cond_stmt;
           gimple_stmt_iterator gsi;
           basic_block guard_bb;
-          use_pred_info_t one_pred;
+          pred_info one_pred;
           edge e;
 
           e = one_cd_chain[j];
@@ -558,15 +568,18 @@  convert_control_dep_chain_into_preds (ve
               has_valid_pred = false;
               break;
             }
-          one_pred = XNEW (struct use_pred_info);
-          one_pred->cond = cond_stmt;
-          one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
-          (*preds)[i].safe_push (one_pred);
+          one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
+          one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
+          one_pred.cond_code = gimple_cond_code (cond_stmt);
+          one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
+          t_chain.safe_push (one_pred);
 	  has_valid_pred = true;
         }
 
       if (!has_valid_pred)
         break;
+      else
+        preds->safe_push (t_chain);
     }
   return has_valid_pred;
 }
@@ -577,8 +590,7 @@  convert_control_dep_chain_into_preds (ve
    the phi whose result is used in USE_BB.  */
 
 static bool
-find_predicates (vec<use_pred_info_t> **preds,
-                 size_t *num_preds,
+find_predicates (pred_chain_union *preds,
                  basic_block phi_bb,
                  basic_block use_bb)
 {
@@ -610,8 +622,7 @@  find_predicates (vec<use_pred_info_t> **
   has_valid_pred
       = convert_control_dep_chain_into_preds (dep_chains,
                                               num_chains,
-                                              preds,
-                                              num_preds);
+                                              preds);
   /* Free individual chain  */
   cur_chain.release ();
   for (i = 0; i < num_chains; i++)
@@ -680,8 +691,7 @@  collect_phi_def_edges (gimple phi, basic
    composite predicates pointed to by PREDS.  */
 
 static bool
-find_def_preds (vec<use_pred_info_t> **preds,
-                size_t *num_preds, gimple phi)
+find_def_preds (pred_chain_union *preds, gimple phi)
 {
   size_t num_chains = 0, i, n;
   vec<edge> *dep_chains = 0;
@@ -739,8 +749,7 @@  find_def_preds (vec<use_pred_info_t> **p
   has_valid_pred
       = convert_control_dep_chain_into_preds (dep_chains,
                                               num_chains,
-                                              preds,
-                                              num_preds);
+                                              preds);
   for (i = 0; i < num_chains; i++)
     dep_chains[i].release ();
   free (dep_chains);
@@ -750,15 +759,15 @@  find_def_preds (vec<use_pred_info_t> **p
 /* Dumps the predicates (PREDS) for USESTMT.  */
 
 static void
-dump_predicates (gimple usestmt, size_t num_preds,
-                 vec<use_pred_info_t> *preds,
+dump_predicates (gimple usestmt, pred_chain_union preds,
                  const char* msg)
 {
   size_t i, j;
-  vec<use_pred_info_t> one_pred_chain;
+  pred_chain one_pred_chain = vNULL;
   fprintf (dump_file, msg);
   print_gimple_stmt (dump_file, usestmt, 0, 0);
-  fprintf (dump_file, "is guarded by :\n");
+  fprintf (dump_file, "is guarded by :\n\n");
+  size_t num_preds = preds.length ();
   /* do some dumping here:  */
   for (i = 0; i < num_preds; i++)
     {
@@ -769,37 +778,39 @@  dump_predicates (gimple usestmt, size_t
 
       for (j = 0; j < np; j++)
         {
-          use_pred_info_t one_pred
-              = one_pred_chain[j];
-          if (one_pred->invert)
+          pred_info one_pred = one_pred_chain[j];
+          if (one_pred.invert)
             fprintf (dump_file, " (.NOT.) ");
-          print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
+          print_generic_expr (dump_file, one_pred.pred_lhs, 0);
+          fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
+          print_generic_expr (dump_file, one_pred.pred_rhs, 0);
           if (j < np - 1)
-            fprintf (dump_file, "(.AND.)\n");
+            fprintf (dump_file, " (.AND.) ");
+          else
+            fprintf (dump_file, "\n");
         }
       if (i < num_preds - 1)
         fprintf (dump_file, "(.OR.)\n");
+      else
+        fprintf (dump_file, "\n\n");
     }
 }
 
 /* Destroys the predicate set *PREDS.  */
 
 static void
-destroy_predicate_vecs (size_t n,
-                        vec<use_pred_info_t> * preds)
+destroy_predicate_vecs (pred_chain_union preds)
 {
-  size_t i, j;
+  size_t i;
+
+  size_t n = preds.length ();
   for (i = 0; i < n; i++)
-    {
-      for (j = 0; j < preds[i].length (); j++)
-        free (preds[i][j]);
-      preds[i].release ();
-    }
-  free (preds);
+    preds[i].release ();
+  preds.release ();
 }
 
 
-/* Computes the 'normalized' conditional code with operand 
+/* Computes the 'normalized' conditional code with operand
    swapping and condition inversion.  */
 
 static enum tree_code
@@ -890,8 +901,8 @@  is_value_included_in (tree val, tree bou
    NUM_PRED_CHAIN is the size of array PREDS.  */
 
 static bool
-find_matching_predicate_in_rest_chains (use_pred_info_t pred,
-                                        vec<use_pred_info_t> *preds,
+find_matching_predicate_in_rest_chains (pred_info pred,
+                                        pred_chain_union preds,
                                         size_t num_pred_chains)
 {
   size_t i, j, n;
@@ -903,20 +914,20 @@  find_matching_predicate_in_rest_chains (
   for (i = 1; i < num_pred_chains; i++)
     {
       bool found = false;
-      vec<use_pred_info_t> one_chain = preds[i];
+      pred_chain one_chain = preds[i];
       n = one_chain.length ();
       for (j = 0; j < n; j++)
         {
-          use_pred_info_t pred2
-              = one_chain[j];
+          pred_info pred2 = one_chain[j];
           /* can relax the condition comparison to not
              use address comparison. However, the most common
              case is that multiple control dependent paths share
              a common path prefix, so address comparison should
              be ok.  */
 
-          if (pred2->cond == pred->cond
-              && pred2->invert == pred->invert)
+          if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
+              && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
+              && pred2.invert == pred.invert)
             {
               found = true;
               break;
@@ -1145,8 +1156,7 @@  prune_uninit_phi_opnds_in_unrealizable_p
 
 static bool
 use_pred_not_overlap_with_undef_path_pred (
-    size_t num_preds,
-    vec<use_pred_info_t> *preds,
+    pred_chain_union preds,
     gimple phi, unsigned uninit_opnds,
     struct pointer_set_t *visited_phis)
 {
@@ -1156,9 +1166,10 @@  use_pred_not_overlap_with_undef_path_pre
   enum tree_code cmp_code;
   bool swap_cond = false;
   bool invert = false;
-  vec<use_pred_info_t> the_pred_chain;
+  pred_chain the_pred_chain = vNULL;
   bitmap visited_flag_phis = NULL;
   bool all_pruned = false;
+  size_t num_preds = preds.length ();
 
   gcc_assert (num_preds > 0);
   /* Find within the common prefix of multiple predicate chains
@@ -1168,17 +1179,14 @@  use_pred_not_overlap_with_undef_path_pre
   n = the_pred_chain.length ();
   for (i = 0; i < n; i++)
     {
-      gimple cond;
       tree cond_lhs, cond_rhs, flag = 0;
 
-      use_pred_info_t the_pred
-          = the_pred_chain[i];
+      pred_info the_pred = the_pred_chain[i];
 
-      cond = the_pred->cond;
-      invert = the_pred->invert;
-      cond_lhs = gimple_cond_lhs (cond);
-      cond_rhs = gimple_cond_rhs (cond);
-      cmp_code = gimple_cond_code (cond);
+      invert = the_pred.invert;
+      cond_lhs = the_pred.pred_lhs;
+      cond_rhs = the_pred.pred_rhs;
+      cmp_code = the_pred.cond_code;
 
       if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
           && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
@@ -1235,668 +1243,847 @@  use_pred_not_overlap_with_undef_path_pre
   return all_pruned;
 }
 
-/* Returns true if TC is AND or OR */
+/* The helper function returns true if two predicates X1 and X2
+   are equivalent. It assumes the expressions have already
+   properly re-associated.  */
 
 static inline bool
-is_and_or_or (enum tree_code tc, tree typ)
+pred_equal_p (pred_info x1, pred_info x2)
 {
-  return (tc == BIT_IOR_EXPR
-          || (tc == BIT_AND_EXPR
-              && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
+  enum tree_code c1, c2;
+  if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
+      || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
+    return false;
+
+  c1 = x1.cond_code;
+  if (x1.invert != x2.invert)
+    c2 = invert_tree_comparison (x2.cond_code, false);
+  else
+    c2 = x2.cond_code;
+
+  return c1 == c2;
 }
 
-typedef struct norm_cond
+/* Returns true if the predication is testing !=.  */
+
+static inline bool
+is_neq_relop_p (pred_info pred)
 {
-  vec<gimple> conds;
-  enum tree_code cond_code;
-  bool invert;
-} *norm_cond_t;
 
+  return (pred.cond_code == NE_EXPR && !pred.invert) 
+          || (pred.cond_code == EQ_EXPR && pred.invert);
+}
 
-/* Normalizes gimple condition COND. The normalization follows
-   UD chains to form larger condition expression trees. NORM_COND
-   holds the normalized result. COND_CODE is the logical opcode
-   (AND or OR) of the normalized tree.  */
+/* Returns true if pred is of the form X != 0.  */
 
-static void
-normalize_cond_1 (gimple cond,
-                  norm_cond_t norm_cond,
-                  enum tree_code cond_code)
-{
-  enum gimple_code gc;
-  enum tree_code cur_cond_code;
-  tree rhs1, rhs2;
+static inline bool 
+is_neq_zero_form_p (pred_info pred)
+{
+  if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
+      || TREE_CODE (pred.pred_lhs) != SSA_NAME)
+    return false;
+  return true;
+}
 
-  gc = gimple_code (cond);
-  if (gc != GIMPLE_ASSIGN)
-    {
-      norm_cond->conds.safe_push (cond);
-      return;
-    }
+/* The helper function returns true if two predicates X1
+   is equivalent to X2 != 0.  */
 
-  cur_cond_code = gimple_assign_rhs_code (cond);
-  rhs1 = gimple_assign_rhs1 (cond);
-  rhs2 = gimple_assign_rhs2 (cond);
-  if (cur_cond_code == NE_EXPR)
-    {
-      if (integer_zerop (rhs2)
-          && (TREE_CODE (rhs1) == SSA_NAME))
-        normalize_cond_1 (
-            SSA_NAME_DEF_STMT (rhs1),
-            norm_cond, cond_code);
-      else if (integer_zerop (rhs1)
-               && (TREE_CODE (rhs2) == SSA_NAME))
-        normalize_cond_1 (
-            SSA_NAME_DEF_STMT (rhs2),
-            norm_cond, cond_code);
-      else
-        norm_cond->conds.safe_push (cond);
+static inline bool
+pred_expr_equal_p (pred_info x1, tree x2)
+{
+  if (!is_neq_zero_form_p (x1))
+    return false;
 
-      return;
-    }
+  return operand_equal_p (x1.pred_lhs, x2, 0);
+}
 
-  if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
-      && (cond_code == cur_cond_code || cond_code == ERROR_MARK)
-      && (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
-    {
-      normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
-                        norm_cond, cur_cond_code);
-      normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
-                        norm_cond, cur_cond_code);
-      norm_cond->cond_code = cur_cond_code;
-    }
-  else
-    norm_cond->conds.safe_push (cond);
+/* Returns true of the domain of single predicate expression
+   EXPR1 is a subset of that of EXPR2. Returns false if it
+   can not be proved.  */
+
+static bool
+is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
+{
+  enum tree_code code1, code2;
+
+  if (pred_equal_p (expr1, expr2))
+    return true;
+
+  if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
+      || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
+    return false;
+
+  if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
+    return false;
+
+  code1 = expr1.cond_code;
+  if (expr1.invert)
+    code1 = invert_tree_comparison (code1, false);
+  code2 = expr2.cond_code;
+  if (expr2.invert)
+    code2 = invert_tree_comparison (code2, false);
+
+  if (code1 != code2 && code2 != NE_EXPR)
+    return false;
+
+  if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
+    return true;
+
+  return false;
 }
 
-/* See normalize_cond_1 for details. INVERT is a flag to indicate
-   if COND needs to be inverted or not.  */
+/* Returns true if the domain of PRED1 is a subset
+   of that of PRED2. Returns false if it can not be proved so.  */
 
-static void
-normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
+static bool
+is_pred_chain_subset_of (pred_chain pred1,
+                         pred_chain pred2)
 {
-  enum tree_code cond_code;
+  size_t np1, np2, i1, i2;
 
-  norm_cond->cond_code = ERROR_MARK;
-  norm_cond->invert = false;
-  norm_cond->conds.create (0);
-  gcc_assert (gimple_code (cond) == GIMPLE_COND);
-  cond_code = gimple_cond_code (cond);
-  if (invert)
-    cond_code = invert_tree_comparison (cond_code, false);
+  np1 = pred1.length ();
+  np2 = pred2.length ();
 
-  if (cond_code == NE_EXPR)
+  for (i2 = 0; i2 < np2; i2++)
     {
-      if (integer_zerop (gimple_cond_rhs (cond))
-          && (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
-        normalize_cond_1 (
-            SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
-            norm_cond, ERROR_MARK);
-      else if (integer_zerop (gimple_cond_lhs (cond))
-               && (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
-        normalize_cond_1 (
-            SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
-            norm_cond, ERROR_MARK);
-      else
+      bool found = false;
+      pred_info info2 = pred2[i2];
+      for (i1 = 0; i1 < np1; i1++)
         {
-          norm_cond->conds.safe_push (cond);
-          norm_cond->invert = invert;
+          pred_info info1 = pred1[i1];
+          if (is_pred_expr_subset_of (info1, info2))
+            {
+              found = true;
+              break;
+            }
         }
+      if (!found)
+        return false;
     }
-  else
+  return true;
+}
+
+/* Returns true if the domain defined by
+   one pred chain ONE_PRED is a subset of the domain
+   of *PREDS. It returns false if ONE_PRED's domain is
+   not a subset of any of the sub-domains of PREDS (
+   corresponding to each individual chains in it), even
+   though it may be still be a subset of whole domain
+   of PREDS which is the union (ORed) of all its subdomains.
+   In other words, the result is conservative.  */
+
+static bool
+is_included_in (pred_chain one_pred, pred_chain_union preds)
+{
+  size_t i;
+  size_t n = preds.length ();
+
+  for (i = 0; i < n; i++)
     {
-      norm_cond->conds.safe_push (cond);
-      norm_cond->invert = invert;
+      if (is_pred_chain_subset_of (one_pred, preds[i]))
+        return true;
     }
 
-  gcc_assert (norm_cond->conds.length () == 1
-              || is_and_or_or (norm_cond->cond_code, NULL));
+  return false;
 }
 
-/* Returns true if the domain for condition COND1 is a subset of
-   COND2. REVERSE is a flag. when it is true the function checks
-   if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
-   to indicate if COND1 and COND2 need to be inverted or not.  */
+/* compares two predicate sets PREDS1 and PREDS2 and returns
+   true if the domain defined by PREDS1 is a superset
+   of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
+   PREDS2 respectively. The implementation chooses not to build
+   generic trees (and relying on the folding capability of the
+   compiler), but instead performs brute force comparison of
+   individual predicate chains (won't be a compile time problem
+   as the chains are pretty short). When the function returns
+   false, it does not necessarily mean *PREDS1 is not a superset
+   of *PREDS2, but mean it may not be so since the analysis can
+   not prove it. In such cases, false warnings may still be
+   emitted.  */
 
 static bool
-is_gcond_subset_of (gimple cond1, bool invert1,
-                    gimple cond2, bool invert2,
-                    bool reverse)
+is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
 {
-  enum gimple_code gc1, gc2;
-  enum tree_code cond1_code, cond2_code;
-  gimple tmp;
-  tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
+  size_t i, n2;
+  pred_chain one_pred_chain = vNULL;
 
-  /* Take the short cut.  */
-  if (cond1 == cond2)
-    return true;
+  n2 = preds2.length ();
 
-  if (reverse)
+  for (i = 0; i < n2; i++)
     {
-      tmp = cond1;
-      cond1 = cond2;
-      cond2 = tmp;
+      one_pred_chain = preds2[i];
+      if (!is_included_in (one_pred_chain, preds1))
+        return false;
     }
 
-  gc1 = gimple_code (cond1);
-  gc2 = gimple_code (cond2);
+  return true;
+}
 
-  if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
-      || (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
-    return cond1 == cond2;
+/* Returns true if TC is AND or OR */
 
-  cond1_code = ((gc1 == GIMPLE_ASSIGN)
-                ? gimple_assign_rhs_code (cond1)
-                : gimple_cond_code (cond1));
+static inline bool
+is_and_or_or_p (enum tree_code tc, tree typ)
+{
+  return (tc == BIT_IOR_EXPR
+          || (tc == BIT_AND_EXPR
+              && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
+}
 
-  cond2_code = ((gc2 == GIMPLE_ASSIGN)
-                ? gimple_assign_rhs_code (cond2)
-                : gimple_cond_code (cond2));
+/* Returns true if X1 is the negate of X2.  */
 
-  if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
-      || TREE_CODE_CLASS (cond2_code) != tcc_comparison)
+static inline bool
+pred_neg_p (pred_info x1, pred_info x2)
+{
+  enum tree_code c1, c2;
+  if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
+      || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
     return false;
+      
+  c1 = x1.cond_code;
+  if (x1.invert == x2.invert)
+    c2 = invert_tree_comparison (x2.cond_code, false);
+  else
+    c2 = x2.cond_code;
 
-  if (invert1)
-    cond1_code = invert_tree_comparison (cond1_code, false);
-  if (invert2)
-    cond2_code = invert_tree_comparison (cond2_code, false);
+  return c1 == c2;
+}
 
-  cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
-               ? gimple_assign_rhs1 (cond1)
-               : gimple_cond_lhs (cond1));
-  cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
-               ? gimple_assign_rhs2 (cond1)
-               : gimple_cond_rhs (cond1));
-  cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
-               ? gimple_assign_rhs1 (cond2)
-               : gimple_cond_lhs (cond2));
-  cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
-               ? gimple_assign_rhs2 (cond2)
-               : gimple_cond_rhs (cond2));
+/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
+   2) (X AND Y) OR (!X AND Y) is equivalent to Y;
+   3) X OR (!X AND Y) is equivalent to (X OR Y);
+   4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
+      (x != 0 AND y != 0)
+   5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
+      (X AND Y) OR Z 
 
-  /* Assuming const operands have been swapped to the
-     rhs at this point of the analysis.  */
+   PREDS is the predicate chains, and N is the number of chains.  */
 
-  if (cond1_lhs != cond2_lhs)
-    return false;
+/* Helper function to implement rule 1 above.  ONE_CHAIN is
+   the AND predication to be simplified.  */
 
-  if (!is_gimple_constant (cond1_rhs)
-      || TREE_CODE (cond1_rhs) != INTEGER_CST)
-    return (cond1_rhs == cond2_rhs);
+static void
+simplify_pred (pred_chain *one_chain)
+{
+  size_t i, j, n;
+  bool simplified = false;
+  pred_chain s_chain = vNULL;
 
-  if (!is_gimple_constant (cond2_rhs)
-      || TREE_CODE (cond2_rhs) != INTEGER_CST)
-    return (cond1_rhs == cond2_rhs);
+  n = one_chain->length ();
 
-  if (cond1_code == EQ_EXPR)
-    return is_value_included_in (cond1_rhs,
-                                 cond2_rhs, cond2_code);
-  if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
-    return ((cond2_code == cond1_code)
-            && tree_int_cst_equal (cond1_rhs, cond2_rhs));
+  for (i = 0; i < n; i++)
+    {
+      pred_info *a_pred = &(*one_chain)[i];
 
-  if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
-       && (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
-      || ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
-          && (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
-    return false;
+      if (!a_pred->pred_lhs)
+        continue;
+      if (!is_neq_zero_form_p (*a_pred))
+        continue;
 
-  if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
-      && cond1_code != LE_EXPR && cond1_code != LT_EXPR)
-    return false;
+      gimple def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
+      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+        continue;
+      if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
+        {
+          for (j = 0; j < n; j++)
+            {
+              pred_info *b_pred = &(*one_chain)[j];
 
-  if (cond1_code == GT_EXPR)
-    {
-      cond1_code = GE_EXPR;
-      cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
-                               cond1_rhs,
-                               fold_convert (TREE_TYPE (cond1_rhs),
-                                             integer_one_node));
-    }
-  else if (cond1_code == LT_EXPR)
-    {
-      cond1_code = LE_EXPR;
-      cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
-                               cond1_rhs,
-                               fold_convert (TREE_TYPE (cond1_rhs),
-                                             integer_one_node));
+              if (!b_pred->pred_lhs)
+                continue;
+              if (!is_neq_zero_form_p (*b_pred))
+                continue;
+
+              if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
+                  || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
+                 {
+                   /* Mark a_pred for removal.  */
+                   a_pred->pred_lhs = NULL;
+                   a_pred->pred_rhs = NULL;
+                   simplified = true;
+                   break;
+                 }
+            }
+        }
     }
 
-  if (!cond1_rhs)
-    return false;
+  if (!simplified)
+     return;
 
-  gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
+  for (i = 0; i < n; i++)
+    {
+      pred_info *a_pred = &(*one_chain)[i];
+      if (!a_pred->pred_lhs)
+        continue;
+      s_chain.safe_push (*a_pred);
+    }
 
-  if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
-      cond2_code == LE_EXPR || cond2_code == LT_EXPR)
-    return is_value_included_in (cond1_rhs,
-                                 cond2_rhs, cond2_code);
-  else if (cond2_code == NE_EXPR)
-    return
-        (is_value_included_in (cond1_rhs,
-                               cond2_rhs, cond2_code)
-         && !is_value_included_in (cond2_rhs,
-                                   cond1_rhs, cond1_code));
-  return false;
+   one_chain->release ();
+   *one_chain = s_chain;
 }
 
-/* Returns true if the domain of the condition expression 
-   in COND is a subset of any of the sub-conditions
-   of the normalized condtion NORM_COND.  INVERT is a flag
-   to indicate of the COND needs to be inverted.
-   REVERSE is a flag. When it is true, the check is reversed --
-   it returns true if COND is a superset of any of the subconditions
-   of NORM_COND.  */
+/* The helper function implements the rule 2 for the
+   OR predicate PREDS.
+
+   2) (X AND Y) OR (!X AND Y) is equivalent to Y.  */
 
 static bool
-is_subset_of_any (gimple cond, bool invert,
-                  norm_cond_t norm_cond, bool reverse)
+simplify_preds_2 (pred_chain_union *preds)
 {
-  size_t i;
-  size_t len = norm_cond->conds.length ();
+  size_t i, j, n;
+  bool simplified = false;
+  pred_chain_union s_preds = vNULL;
 
-  for (i = 0; i < len; i++)
+  /* (X AND Y) OR (!X AND Y) is equivalent to Y.  
+     (X AND Y) OR (X AND !Y) is equivalent to X.  */
+
+  n = preds->length ();
+  for (i = 0; i < n; i++)
     {
-      if (is_gcond_subset_of (cond, invert,
-                              norm_cond->conds[i],
-                              false, reverse))
-        return true;
-    }
-  return false;
-}
+      pred_info x, y;
+      pred_chain *a_chain = &(*preds)[i];
 
-/* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
-   expressions (formed by following UD chains not control
-   dependence chains). The function returns true of domain
-   of and expression NORM_COND1 is a subset of NORM_COND2's.
-   The implementation is conservative, and it returns false if
-   it the inclusion relationship may not hold.  */
+      if (a_chain->length () != 2)
+        continue;
 
-static bool
-is_or_set_subset_of (norm_cond_t norm_cond1,
-                     norm_cond_t norm_cond2)
-{
-  size_t i;
-  size_t len = norm_cond1->conds.length ();
+      x = (*a_chain)[0];
+      y = (*a_chain)[1];
+
+      for (j = 0; j < n; j++)
+        {
+          pred_chain *b_chain;
+          pred_info x2, y2;
+
+          if (j == i)
+            continue;
+
+          b_chain = &(*preds)[j];
+          if (b_chain->length () != 2)
+            continue;
+
+          x2 = (*b_chain)[0];
+          y2 = (*b_chain)[1];
 
-  for (i = 0; i < len; i++)
+          if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
+            {
+              /* Kill a_chain.  */
+              a_chain->release ();
+              b_chain->release ();
+              b_chain->safe_push (x);
+              simplified = true;
+              break;
+            }
+          if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
+            {
+              /* Kill a_chain.  */
+              a_chain->release ();
+              b_chain->release ();
+              b_chain->safe_push (y);
+              simplified = true;
+              break;
+            }
+        }
+    }
+  /* Now clean up the chain.  */
+  if (simplified)
     {
-      if (!is_subset_of_any (norm_cond1->conds[i],
-                             false, norm_cond2, false))
-        return false;
+      for (i = 0; i < n; i++)
+        {
+          if ((*preds)[i].is_empty ())
+            continue;
+          s_preds.safe_push ((*preds)[i]);
+        }
+      preds->release ();
+      (*preds) = s_preds;
+      s_preds = vNULL;
     }
-  return true;
+
+  return simplified;
 }
 
-/* NORM_COND1 and NORM_COND2 are normalized logical AND
-   expressions (formed by following UD chains not control
-   dependence chains). The function returns true of domain
-   of and expression NORM_COND1 is a subset of NORM_COND2's.  */
+/* The helper function implements the rule 2 for the
+   OR predicate PREDS.
+
+   3) x OR (!x AND y) is equivalent to x OR y.  */
 
 static bool
-is_and_set_subset_of (norm_cond_t norm_cond1,
-                      norm_cond_t norm_cond2)
+simplify_preds_3 (pred_chain_union *preds)
 {
-  size_t i;
-  size_t len = norm_cond2->conds.length ();
+  size_t i, j, n;
+  bool simplified = false;
+
+  /* Now iteratively simplify X OR (!X AND Z ..)
+       into X OR (Z ...).  */
+
+  n = preds->length ();
+  if (n < 2)
+    return false;
 
-  for (i = 0; i < len; i++)
+  for (i = 0; i < n; i++)
     {
-      if (!is_subset_of_any (norm_cond2->conds[i],
-                             false, norm_cond1, true))
-        return false;
+      pred_info x;
+      pred_chain *a_chain = &(*preds)[i];
+
+      if (a_chain->length () != 1)
+        continue;
+
+      x = (*a_chain)[0];
+
+      for (j = 0; j < n; j++)
+        {
+          pred_chain *b_chain;
+          pred_info x2;
+          size_t k;
+
+          if (j == i)
+            continue;
+
+          b_chain = &(*preds)[j];
+          if (b_chain->length () < 2)
+            continue;
+
+          for (k = 0; k < b_chain->length (); k++)
+            {
+              x2 = (*b_chain)[k];
+              if (pred_neg_p (x, x2))
+                {
+                  b_chain->unordered_remove (k);
+                  simplified = true;
+                  break;
+                }
+            }
+        }
     }
-  return true;
+  return simplified;
 }
 
-/* Returns true of the domain if NORM_COND1 is a subset 
-   of that of NORM_COND2. Returns false if it can not be 
-   proved to be so.  */
+/* The helper function implements the rule 4 for the
+   OR predicate PREDS.
+
+   2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
+       (x != 0 ANd y != 0).   */
 
 static bool
-is_norm_cond_subset_of (norm_cond_t norm_cond1,
-                        norm_cond_t norm_cond2)
+simplify_preds_4 (pred_chain_union *preds)
 {
-  size_t i;
-  enum tree_code code1, code2;
-
-  code1 = norm_cond1->cond_code;
-  code2 = norm_cond2->cond_code;
+  size_t i, j, n;
+  bool simplified = false;
+  pred_chain_union s_preds = vNULL;
+  gimple def_stmt;
 
-  if (code1 == BIT_AND_EXPR)
+  n = preds->length ();
+  for (i = 0; i < n; i++)
     {
-      /* Both conditions are AND expressions.  */
-      if (code2 == BIT_AND_EXPR)
-        return is_and_set_subset_of (norm_cond1, norm_cond2);
-      /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
-         expression. In this case, returns true if any subexpression
-         of NORM_COND1 is a subset of any subexpression of NORM_COND2.  */
-      else if (code2 == BIT_IOR_EXPR)
-        {
-          size_t len1;
-          len1 = norm_cond1->conds.length ();
-          for (i = 0; i < len1; i++)
+      pred_info z;
+      pred_chain *a_chain = &(*preds)[i];
+
+      if (a_chain->length () != 1)
+        continue;
+
+      z = (*a_chain)[0];
+
+      if (!is_neq_zero_form_p (z))
+        continue;
+
+      def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
+      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+        continue;
+
+      if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
+        continue;
+
+      for (j = 0; j < n; j++)
+        {
+          pred_chain *b_chain;
+          pred_info x2, y2;
+
+          if (j == i)
+            continue;
+
+          b_chain = &(*preds)[j];
+          if (b_chain->length () != 2)
+            continue;
+
+          x2 = (*b_chain)[0];
+          y2 = (*b_chain)[1];
+          if (!is_neq_zero_form_p (x2)
+              || !is_neq_zero_form_p (y2))
+            continue;
+
+          if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
+               && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
+              || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
+                  && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
             {
-              gimple cond1 = norm_cond1->conds[i];
-              if (is_subset_of_any (cond1, false, norm_cond2, false))
-                return true;
+              /* Kill a_chain.  */
+              a_chain->release ();
+              simplified = true;
+              break;
             }
-          return false;
         }
-      else
+    }
+  /* Now clean up the chain.  */
+  if (simplified)
+    {
+      for (i = 0; i < n; i++)
         {
-          gcc_assert (code2 == ERROR_MARK);
-          gcc_assert (norm_cond2->conds.length () == 1);
-          return is_subset_of_any (norm_cond2->conds[0],
-                                   norm_cond2->invert, norm_cond1, true);
+          if ((*preds)[i].is_empty ())
+            continue;
+          s_preds.safe_push ((*preds)[i]);
         }
+      preds->release ();
+      (*preds) = s_preds;
+      s_preds = vNULL;
     }
-  /* NORM_COND1 is an OR expression  */
-  else if (code1 == BIT_IOR_EXPR)
-    {
-      if (code2 != code1)
-        return false;
 
-      return is_or_set_subset_of (norm_cond1, norm_cond2);
+  return simplified;
+}
+
+
+/* This function simplifies predicates in PREDS.  */
+
+static void
+simplify_preds (pred_chain_union *preds, gimple use_or_def, bool is_use)
+{
+  size_t i, n;
+  bool changed = false;
+
+  if (dump_file && dump_flags & TDF_DETAILS)
+    {
+      fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
+      dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
     }
-  else
+
+  for (i = 0; i < preds->length (); i++)
+    simplify_pred (&(*preds)[i]);
+
+  n = preds->length ();
+  if (n < 2)
+    return;
+
+  do
     {
-      gcc_assert (code1 == ERROR_MARK);
-      gcc_assert (norm_cond1->conds.length () == 1);
-      /* Conservatively returns false if NORM_COND1 is non-decomposible
-         and NORM_COND2 is an AND expression.  */
-      if (code2 == BIT_AND_EXPR)
-        return false;
+      changed = false;
+      if (simplify_preds_2 (preds))
+        changed = true;
 
-      if (code2 == BIT_IOR_EXPR)
-        return is_subset_of_any (norm_cond1->conds[0],
-                                 norm_cond1->invert, norm_cond2, false);
-
-      gcc_assert (code2 == ERROR_MARK);
-      gcc_assert (norm_cond2->conds.length () == 1);
-      return is_gcond_subset_of (norm_cond1->conds[0],
-                                 norm_cond1->invert,
-                                 norm_cond2->conds[0],
-                                 norm_cond2->invert, false);
-    }
+      /* Now iteratively simplify X OR (!X AND Z ..)
+       into X OR (Z ...).  */
+      if (simplify_preds_3 (preds))
+        changed = true;
+
+      if (simplify_preds_4 (preds))
+        changed = true;
+
+    } while (changed);
+
+  return;
 }
 
-/* Returns true of the domain of single predicate expression
-   EXPR1 is a subset of that of EXPR2. Returns false if it
-   can not be proved.  */
+/* This is a helper function which attempts to normalize predicate chains
+  by following UD chains. It basically builds up a big tree of either IOR
+  operations or AND operations, and convert the IOR tree into a 
+  pred_chain_union or BIT_AND tree into a pred_chain.
+  Example:
 
-static bool
-is_pred_expr_subset_of (use_pred_info_t expr1,
-                        use_pred_info_t expr2)
+  _3 = _2 RELOP1 _1;
+  _6 = _5 RELOP2 _4;
+  _9 = _8 RELOP3 _7;
+  _10 = _3 | _6;
+  _12 = _9 | _0;
+  _t = _10 | _12;
+
+ then _t != 0 will be normalized into a pred_chain_union
+
+   (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
+
+ Similarly given,
+
+  _3 = _2 RELOP1 _1;
+  _6 = _5 RELOP2 _4;
+  _9 = _8 RELOP3 _7;
+  _10 = _3 & _6;
+  _12 = _9 & _0;
+
+ then _t != 0 will be normalized into a pred_chain:
+   (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
+   
+  */
+
+/* This is a helper function that stores a PRED into NORM_PREDS.  */
+
+inline static void
+push_pred (pred_chain_union *norm_preds, pred_info pred)
 {
-  gimple cond1, cond2;
-  enum tree_code code1, code2;
-  struct norm_cond norm_cond1, norm_cond2;
-  bool is_subset = false;
+  pred_chain pred_chain = vNULL;
+  pred_chain.safe_push (pred);
+  norm_preds->safe_push (pred_chain);
+}
 
-  cond1 = expr1->cond;
-  cond2 = expr2->cond;
-  code1 = gimple_cond_code (cond1);
-  code2 = gimple_cond_code (cond2);
+/* A helper function that creates a predicate of the form
+   OP != 0 and push it WORK_LIST.  */
 
-  if (expr1->invert)
-    code1 = invert_tree_comparison (code1, false);
-  if (expr2->invert)
-    code2 = invert_tree_comparison (code2, false);
+inline static void
+push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list)
+{
+  pred_info arg_pred;
+  arg_pred.pred_lhs = op;
+  arg_pred.pred_rhs = integer_zero_node;
+  arg_pred.cond_code = NE_EXPR;
+  arg_pred.invert = false;
+  work_list->safe_push (arg_pred);
+}
 
-  /* Fast path -- match exactly  */
-  if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
-      && (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
-      && (code1 == code2))
-    return true;
+/* A helper that generates a pred_info from a gimple assignment
+   CMP_ASSIGN with comparison rhs.  */
 
-  /* Normalize conditions. To keep NE_EXPR, do not invert
-     with both need inversion.  */
-  normalize_cond (cond1, &norm_cond1, (expr1->invert));
-  normalize_cond (cond2, &norm_cond2, (expr2->invert));
-
-  is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
-
-  /* Free memory  */
-  norm_cond1.conds.release ();
-  norm_cond2.conds.release ();
-  return is_subset ;
+static pred_info
+get_pred_info_from_cmp (gimple cmp_assign)
+{
+  pred_info n_pred;
+  n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
+  n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
+  n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
+  n_pred.invert = false;
+  return n_pred;
 }
 
-/* Returns true if the domain of PRED1 is a subset
-   of that of PRED2. Returns false if it can not be proved so.  */
+/* Returns true if the PHI is a degenerated phi with
+   all args with the same value (relop). In that case, *PRED
+   will be updated to that value.  */
 
 static bool
-is_pred_chain_subset_of (vec<use_pred_info_t> pred1,
-                         vec<use_pred_info_t> pred2)
+is_degenerated_phi (gimple phi, pred_info *pred_p)
 {
-  size_t np1, np2, i1, i2;
+  int i, n;
+  tree op0;
+  gimple def0;
+  pred_info pred0;
 
-  np1 = pred1.length ();
-  np2 = pred2.length ();
+  n = gimple_phi_num_args (phi);
+  op0 = gimple_phi_arg_def (phi, 0);
 
-  for (i2 = 0; i2 < np2; i2++)
+  if (TREE_CODE (op0) != SSA_NAME)
+    return false;
+
+  def0 = SSA_NAME_DEF_STMT (op0);
+  if (gimple_code (def0) != GIMPLE_ASSIGN)
+    return false;
+  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
+      != tcc_comparison)
+    return false;
+  pred0 = get_pred_info_from_cmp (def0);
+
+  for (i = 1; i < n; ++i)
     {
-      bool found = false;
-      use_pred_info_t info2
-          = pred2[i2];
-      for (i1 = 0; i1 < np1; i1++)
+      gimple def;
+      pred_info pred;
+      tree op = gimple_phi_arg_def (phi, i);
+
+      if (TREE_CODE (op) != SSA_NAME)
+        return false;
+
+      def = SSA_NAME_DEF_STMT (op);
+      if (gimple_code (def) != GIMPLE_ASSIGN)
+        return false;
+      if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
+          != tcc_comparison)
+        return false;
+      pred = get_pred_info_from_cmp (def);
+      if (!pred_equal_p (pred, pred0))
+        return false;
+    }
+
+  *pred_p = pred0;
+  return true;
+}
+
+/* Normalize one predicate PRED  
+   1) if PRED can no longer be normlized, put it into NORM_PREDS.
+   2) otherwise if PRED is of the form x != 0, follow x's definition
+      and put normalized predicates into WORK_LIST.  */
+ 
+static void
+normalize_one_pred_1 (pred_chain_union *norm_preds, 
+                      pred_chain *norm_chain,
+                      pred_info pred,
+                      enum tree_code and_or_code,
+                      vec<pred_info, va_heap, vl_ptr> *work_list)
+{
+  if (!is_neq_zero_form_p (pred))
+    {
+      if (and_or_code == BIT_IOR_EXPR)
+        push_pred (norm_preds, pred);
+      else
+        norm_chain->safe_push (pred);
+      return;
+    }
+
+  gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
+ 
+  if (gimple_code (def_stmt) == GIMPLE_PHI
+      && is_degenerated_phi (def_stmt, &pred))
+    work_list->safe_push (pred);
+  else if (gimple_code (def_stmt) == GIMPLE_PHI
+           && and_or_code == BIT_IOR_EXPR)
+    {
+      int i, n;
+      n = gimple_phi_num_args (def_stmt);
+
+      /* If we see non zero constant, we should punt. The predicate
+       * should be one guarding the phi edge.  */
+      for (i = 0; i < n; ++i)
         {
-          use_pred_info_t info1
-              = pred1[i1];
-          if (is_pred_expr_subset_of (info1, info2))
+          tree op = gimple_phi_arg_def (def_stmt, i);
+          if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
             {
-              found = true;
-              break;
+              push_pred (norm_preds, pred);
+              return;
             }
         }
-      if (!found)
-        return false;
-    }
-  return true;
+
+      for (i = 0; i < n; ++i)
+        {
+          tree op = gimple_phi_arg_def (def_stmt, i);
+          if (integer_zerop (op))
+            continue;
+
+          push_to_worklist (op, work_list);
+        }
+     }
+   else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+     {
+       if (and_or_code == BIT_IOR_EXPR)
+         push_pred (norm_preds, pred);
+       else
+         norm_chain->safe_push (pred);
+     }
+   else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
+     {
+        push_to_worklist (gimple_assign_rhs1 (def_stmt),
+                          work_list);
+        push_to_worklist (gimple_assign_rhs2 (def_stmt),
+                          work_list);
+     }
+   else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
+            == tcc_comparison)
+     {
+       pred_info n_pred = get_pred_info_from_cmp (def_stmt);
+       if (and_or_code == BIT_IOR_EXPR)
+         push_pred (norm_preds, n_pred);
+       else
+         norm_chain->safe_push (n_pred);
+     }
+   else
+     {
+       if (and_or_code == BIT_IOR_EXPR)
+         push_pred (norm_preds, pred);
+       else
+         norm_chain->safe_push (pred);
+     }
 }
 
-/* Returns true if the domain defined by
-   one pred chain ONE_PRED is a subset of the domain
-   of *PREDS. It returns false if ONE_PRED's domain is
-   not a subset of any of the sub-domains of PREDS (
-   corresponding to each individual chains in it), even
-   though it may be still be a subset of whole domain
-   of PREDS which is the union (ORed) of all its subdomains.
-   In other words, the result is conservative.  */
+/* Normalize PRED and store the normalized predicates into NORM_PREDS.  */
 
-static bool
-is_included_in (vec<use_pred_info_t> one_pred,
-                vec<use_pred_info_t> *preds,
-                size_t n)
+static void
+normalize_one_pred (pred_chain_union *norm_preds,
+                    pred_info pred)
 {
-  size_t i;
+  vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
+  enum tree_code and_or_code = ERROR_MARK;
+  pred_chain norm_chain = vNULL;
 
-  for (i = 0; i < n; i++)
+  if (!is_neq_zero_form_p (pred))
     {
-      if (is_pred_chain_subset_of (one_pred, preds[i]))
-        return true;
+      push_pred (norm_preds, pred);
+      return;
     }
 
-  return false;
-}
+  gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
+  if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
+    and_or_code = gimple_assign_rhs_code (def_stmt);
+  if (and_or_code != BIT_IOR_EXPR
+      && and_or_code != BIT_AND_EXPR)
+    {
+      if (TREE_CODE_CLASS (and_or_code)
+          == tcc_comparison)
+        {
+          pred_info n_pred = get_pred_info_from_cmp (def_stmt);
+          push_pred (norm_preds, n_pred);
+        } 
+       else
+          push_pred (norm_preds, pred);
+      return;
+    }
 
-/* compares two predicate sets PREDS1 and PREDS2 and returns
-   true if the domain defined by PREDS1 is a superset
-   of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
-   PREDS2 respectively. The implementation chooses not to build
-   generic trees (and relying on the folding capability of the
-   compiler), but instead performs brute force comparison of
-   individual predicate chains (won't be a compile time problem
-   as the chains are pretty short). When the function returns
-   false, it does not necessarily mean *PREDS1 is not a superset
-   of *PREDS2, but mean it may not be so since the analysis can
-   not prove it. In such cases, false warnings may still be
-   emitted.  */
+  work_list.safe_push (pred);
+  while (!work_list.is_empty ())
+    {
+      pred_info a_pred = work_list.pop ();
+      normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
+                            and_or_code, &work_list);
+    }
+  if (and_or_code == BIT_AND_EXPR)
+    norm_preds->safe_push (norm_chain);
 
-static bool
-is_superset_of (vec<use_pred_info_t> *preds1,
-                size_t n1,
-                vec<use_pred_info_t> *preds2,
-                size_t n2)
+  work_list.release ();
+}
+
+static void
+normalize_one_pred_chain (pred_chain_union *norm_preds,
+                          pred_chain one_chain)
 {
+  vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
+  pred_chain norm_chain = vNULL;
   size_t i;
-  vec<use_pred_info_t> one_pred_chain;
 
-  for (i = 0; i < n2; i++)
+  for (i = 0; i < one_chain.length (); i++)
+    work_list.safe_push (one_chain[i]);
+
+  while (!work_list.is_empty ())
     {
-      one_pred_chain = preds2[i];
-      if (!is_included_in (one_pred_chain, preds1, n1))
-        return false;
+      pred_info a_pred = work_list.pop ();
+      normalize_one_pred_1 (0, &norm_chain, a_pred,
+                            BIT_AND_EXPR, &work_list);
     }
 
-  return true;
+  norm_preds->safe_push (norm_chain);
+  work_list.release ();
 }
 
-/* Comparison function used by qsort. It is used to
-   sort predicate chains to allow predicate
-   simplification.  */
-
-static int
-pred_chain_length_cmp (const void *p1, const void *p2)
-{
-  use_pred_info_t i1, i2;
-  vec<use_pred_info_t>  const *chain1
-      = (vec<use_pred_info_t>  const *)p1;
-  vec<use_pred_info_t>  const *chain2
-      = (vec<use_pred_info_t>  const *)p2;
-
-  if (chain1->length () != chain2->length ())
-    return (chain1->length () - chain2->length ());
-
-  i1 = (*chain1)[0];
-  i2 = (*chain2)[0];
-
-  /* Allow predicates with similar prefix come together.  */
-  if (!i1->invert && i2->invert)
-    return -1;
-  else if (i1->invert && !i2->invert)
-    return 1;
-
-  return gimple_uid (i1->cond) - gimple_uid (i2->cond);
-}
-
-/* x OR (!x AND y) is equivalent to x OR y.
-   This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
-   into x1 OR x2 OR x3.  PREDS is the predicate chains, and N is
-   the number of chains. Returns true if normalization happens.  */
-
-static bool
-normalize_preds (vec<use_pred_info_t> *preds, size_t *n)
-{
-  size_t i, j, ll;
-  vec<use_pred_info_t> pred_chain;
-  vec<use_pred_info_t> x = vNULL;
-  use_pred_info_t xj = 0, nxj = 0;
-
-  if (*n < 2)
-    return false;
-
-  /* First sort the chains in ascending order of lengths.  */
-  qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
-  pred_chain = preds[0];
-  ll = pred_chain.length ();
-  if (ll != 1)
-   {
-     if (ll == 2)
-       {
-         use_pred_info_t xx, yy, xx2, nyy;
-         vec<use_pred_info_t> pred_chain2 = preds[1];
-         if (pred_chain2.length () != 2)
-           return false;
-
-         /* See if simplification x AND y OR x AND !y is possible.  */
-         xx = pred_chain[0];
-         yy = pred_chain[1];
-         xx2 = pred_chain2[0];
-         nyy = pred_chain2[1];
-         if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
-             || gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
-             || gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
-             || (xx->invert != xx2->invert))
-           return false;
-         if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
-             || gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
-             || gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
-             || (yy->invert == nyy->invert))
-           return false;
-
-         /* Now merge the first two chains.  */
-         free (yy);
-         free (nyy);
-         free (xx2);
-         pred_chain.release ();
-         pred_chain2.release ();
-         pred_chain.safe_push (xx);
-         preds[0] = pred_chain;
-         for (i = 1; i < *n - 1; i++)
-           preds[i] = preds[i + 1];
-
-         preds[*n - 1].create (0);
-         *n = *n - 1;
-       }
-     else
-       return false;
-   }
-
-  x.safe_push (pred_chain[0]);
-
-  /* The loop extracts x1, x2, x3, etc from chains
-     x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ...  */
-  for (i = 1; i < *n; i++)
-    {
-      pred_chain = preds[i];
-      if (pred_chain.length () != i + 1)
-        return false;
-
-      for (j = 0; j < i; j++)
-        {
-          xj = x[j];
-          nxj = pred_chain[j];
+/* Normalize predicate chains PREDS and returns the normalized one.  */
 
-          /* Check if nxj is !xj  */
-          if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
-              || gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
-              || gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
-              || (xj->invert == nxj->invert))
-            return false;
-        }
+static pred_chain_union
+normalize_preds (pred_chain_union preds, gimple use_or_def, bool is_use)
+{
+  pred_chain_union norm_preds = vNULL;
+  size_t n = preds.length ();
+  size_t i;
 
-      x.safe_push (pred_chain[i]);
+  if (dump_file && dump_flags & TDF_DETAILS)
+    {
+      fprintf (dump_file, "[BEFORE NORMALIZATION --");
+      dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
     }
 
-  /* Now normalize the pred chains using the extraced x1, x2, x3 etc.  */
-  for (j = 0; j < *n; j++)
+  for (i = 0; i < n; i++)
     {
-      use_pred_info_t t;
-      xj = x[j];
-
-      t = XNEW (struct use_pred_info);
-      *t = *xj;
-
-      x[j] = t;
+      if (preds[i].length () != 1)
+        normalize_one_pred_chain (&norm_preds, preds[i]);
+      else
+        {
+          normalize_one_pred (&norm_preds, preds[i][0]);
+          preds[i].release ();
+        }
     }
 
-  for (i = 0; i < *n; i++)
+  if (dump_file)
     {
-      pred_chain = preds[i];
-      for (j = 0; j < pred_chain.length (); j++)
-        free (pred_chain[j]);
-      pred_chain.release ();
-      /* A new chain.  */
-      pred_chain.safe_push (x[i]);
-      preds[i] = pred_chain;
+      fprintf (dump_file, "[AFTER NORMALIZATION -- ");
+      dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
     }
-  return true;
-}
 
+  preds.release ();
+  return norm_preds;
+}
 
 
 /* Computes the predicates that guard the use and checks
@@ -1920,9 +2107,8 @@  is_use_properly_guarded (gimple use_stmt
                          struct pointer_set_t *visited_phis)
 {
   basic_block phi_bb;
-  vec<use_pred_info_t> *preds = 0;
-  vec<use_pred_info_t> *def_preds = 0;
-  size_t num_preds = 0, num_def_preds = 0;
+  pred_chain_union preds = vNULL;
+  pred_chain_union def_preds = vNULL;
   bool has_valid_preds = false;
   bool is_properly_guarded = false;
 
@@ -1934,49 +2120,45 @@  is_use_properly_guarded (gimple use_stmt
   if (is_non_loop_exit_postdominating (use_bb, phi_bb))
     return false;
 
-  has_valid_preds = find_predicates (&preds, &num_preds,
-                                     phi_bb, use_bb);
+  has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
 
   if (!has_valid_preds)
     {
-      destroy_predicate_vecs (num_preds, preds);
+      destroy_predicate_vecs (preds);
       return false;
     }
 
-  if (dump_file)
-    dump_predicates (use_stmt, num_preds, preds,
-                     "\nUse in stmt ");
+  /* Try to prune the dead incoming phi edges. */
+  is_properly_guarded
+    = use_pred_not_overlap_with_undef_path_pred (
+        preds, phi, uninit_opnds, visited_phis);
 
-  has_valid_preds = find_def_preds (&def_preds,
-                                    &num_def_preds, phi);
-
-  if (has_valid_preds)
+  if (is_properly_guarded)
     {
-      bool normed;
-      if (dump_file)
-        dump_predicates (phi, num_def_preds, def_preds,
-                         "Operand defs of phi ");
+      destroy_predicate_vecs (preds);
+      return true;
+    }
 
-      normed = normalize_preds (def_preds, &num_def_preds);
-      if (normed && dump_file)
-        {
-          fprintf (dump_file, "\nNormalized to\n");
-          dump_predicates (phi, num_def_preds, def_preds,
-                           "Operand defs of phi ");
-        }
-      is_properly_guarded =
-          is_superset_of (def_preds, num_def_preds,
-                          preds, num_preds);
+  has_valid_preds = find_def_preds (&def_preds, phi);
+
+  if (!has_valid_preds)
+    {
+      destroy_predicate_vecs (preds);
+      destroy_predicate_vecs (def_preds);
+      return false;
     }
 
-  /* further prune the dead incoming phi edges. */
-  if (!is_properly_guarded)
-    is_properly_guarded
-        = use_pred_not_overlap_with_undef_path_pred (
-            num_preds, preds, phi, uninit_opnds, visited_phis);
+  simplify_preds (&preds, use_stmt, true);
+  preds = normalize_preds (preds, use_stmt, true);
+
+  simplify_preds (&def_preds, phi, false);
+  def_preds = normalize_preds (def_preds, phi, false);
 
-  destroy_predicate_vecs (num_preds, preds);
-  destroy_predicate_vecs (num_def_preds, def_preds);
+  is_properly_guarded =
+      is_superset_of (def_preds, preds);
+
+  destroy_predicate_vecs (preds);
+  destroy_predicate_vecs (def_preds);
   return is_properly_guarded;
 }
 
@@ -2019,7 +2201,7 @@  find_uninit_use (gimple phi, unsigned un
 	use_bb = gimple_bb (use_stmt);
 
       if (is_use_properly_guarded (use_stmt,
-                                   use_bb, 
+                                   use_bb,
                                    phi,
                                    uninit_opnds,
                                    visited_phis))
@@ -2280,5 +2462,3 @@  make_pass_early_warn_uninitialized (gcc:
 {
   return new pass_early_warn_uninitialized (ctxt);
 }
-
-
Index: ChangeLog
===================================================================
--- ChangeLog	(revision 206165)
+++ ChangeLog	(working copy)
@@ -1,3 +1,46 @@ 
+2013-12-21  Xinliang David Li  <davidxl@google.com>
+
+	PR tree-optimization/59303
+	* tree-ssa-uninit.c (is_use_properly_guarded):
+	Main cleanup.
+	(dump_predicates): Better output format.
+	(pred_equal_p): New function.
+	(is_neq_relop_p): Ditto.
+	(is_neq_zero_form_p): Ditto.
+	(pred_expr_equal_p): Ditto.
+	(pred_neg_p): Ditto.
+	(simplify_pred): Ditto.
+	(simplify_preds_2): Ditto.
+	(simplify_preds_3): Ditto.
+	(simplify_preds_4): Ditto.
+	(simplify_preds): Ditto.
+	(push_pred): Ditto.
+	(push_to_worklist): Ditto.
+	(get_pred_info_from_cmp): Ditto.
+	(is_degenerated_phi): Ditto.
+	(normalize_one_pred_1): Ditto.
+	(normalize_one_pred): Ditto.
+	(normalize_one_pred_chain): Ditto.
+	(normalize_preds): Ditto.
+	(normalize_cond_1): Remove function.
+	(normalize_cond): Ditto.
+	(is_gcond_subset_of): Ditto.
+	(is_subset_of_any): Ditto.
+	(is_or_set_subset_of): Ditto.
+	(is_and_set_subset_of): Ditto.
+	(is_norm_cond_subset_of): Ditto.
+	(pred_chain_length_cmp): Ditto.
+	(convert_control_dep_chain_into_preds): Type change.
+	(find_predicates): Ditto.
+	(find_def_preds): Ditto.
+	(destroy_predicates_vecs): Ditto.
+	(find_matching_predicates_in_rest_chains): Ditto.
+	(use_pred_not_overlap_with_undef_path_pred): Ditto.
+	(is_pred_expr_subset): Ditto.
+	(is_pred_chain_subset_of): Ditto.
+	(is_included_in): Ditto.
+	(is_superset_of): Ditto.
+
 2013-12-20  Sharad Singhai  <singhai@google.com>
 
 	* Makefile.in: Add optinfo.texi.