new file mode 100644
@@ -0,0 +1,4138 @@
+/* Subroutines used for code generation for RISC-V.
+ Copyright (C) 2011-2017 Free Software Foundation, Inc.
+ Contributed by Andrew Waterman (andrew@sifive.com).
+ Based on MIPS target for GNU compiler.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-attr.h"
+#include "recog.h"
+#include "output.h"
+#include "hash-set.h"
+#include "machmode.h"
+#include "vec.h"
+#include "double-int.h"
+#include "input.h"
+#include "alias.h"
+#include "symtab.h"
+#include "wide-int.h"
+#include "inchash.h"
+#include "tree.h"
+#include "fold-const.h"
+#include "varasm.h"
+#include "stringpool.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "function.h"
+#include "hashtab.h"
+#include "flags.h"
+#include "statistics.h"
+#include "real.h"
+#include "fixed-value.h"
+#include "expmed.h"
+#include "dojump.h"
+#include "explow.h"
+#include "memmodel.h"
+#include "emit-rtl.h"
+#include "stmt.h"
+#include "expr.h"
+#include "insn-codes.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "reload.h"
+#include "tm_p.h"
+#include "ggc.h"
+#include "gstab.h"
+#include "hash-table.h"
+#include "debug.h"
+#include "target.h"
+#include "target-def.h"
+#include "common/common-target.h"
+#include "langhooks.h"
+#include "dominance.h"
+#include "cfg.h"
+#include "cfgrtl.h"
+#include "cfganal.h"
+#include "lcm.h"
+#include "cfgbuild.h"
+#include "cfgcleanup.h"
+#include "predict.h"
+#include "basic-block.h"
+#include "bitmap.h"
+#include "regset.h"
+#include "df.h"
+#include "sched-int.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "diagnostic.h"
+#include "target-globals.h"
+#include "opts.h"
+#include "tree-pass.h"
+#include "context.h"
+#include "hash-map.h"
+#include "plugin-api.h"
+#include "ipa-ref.h"
+#include "cgraph.h"
+#include "builtins.h"
+#include "rtl-iter.h"
+
+/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
+#define UNSPEC_ADDRESS_P(X) \
+ (GET_CODE (X) == UNSPEC \
+ && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
+ && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
+
+/* Extract the symbol or label from UNSPEC wrapper X. */
+#define UNSPEC_ADDRESS(X) \
+ XVECEXP (X, 0, 0)
+
+/* Extract the symbol type from UNSPEC wrapper X. */
+#define UNSPEC_ADDRESS_TYPE(X) \
+ ((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
+
+/* True if bit BIT is set in VALUE. */
+#define BITSET_P(VALUE, BIT) (((VALUE) & (1ULL << (BIT))) != 0)
+
+/* Classifies an address.
+
+ ADDRESS_REG
+ A natural register + offset address. The register satisfies
+ riscv_valid_base_register_p and the offset is a const_arith_operand.
+
+ ADDRESS_LO_SUM
+ A LO_SUM rtx. The first operand is a valid base register and
+ the second operand is a symbolic address.
+
+ ADDRESS_CONST_INT
+ A signed 16-bit constant address.
+
+ ADDRESS_SYMBOLIC:
+ A constant symbolic address. */
+enum riscv_address_type {
+ ADDRESS_REG,
+ ADDRESS_LO_SUM,
+ ADDRESS_CONST_INT,
+ ADDRESS_SYMBOLIC
+};
+
+/* Information about a function's frame layout. */
+struct GTY(()) riscv_frame_info {
+ /* The size of the frame in bytes. */
+ HOST_WIDE_INT total_size;
+
+ /* Bit X is set if the function saves or restores GPR X. */
+ unsigned int mask;
+
+ /* Likewise FPR X. */
+ unsigned int fmask;
+
+ /* How much the GPR save/restore routines adjust sp (or 0 if unused). */
+ unsigned save_libcall_adjustment;
+
+ /* Offsets of fixed-point and floating-point save areas from frame bottom */
+ HOST_WIDE_INT gp_sp_offset;
+ HOST_WIDE_INT fp_sp_offset;
+
+ /* Offset of virtual frame pointer from stack pointer/frame bottom */
+ HOST_WIDE_INT frame_pointer_offset;
+
+ /* Offset of hard frame pointer from stack pointer/frame bottom */
+ HOST_WIDE_INT hard_frame_pointer_offset;
+
+ /* The offset of arg_pointer_rtx from the bottom of the frame. */
+ HOST_WIDE_INT arg_pointer_offset;
+};
+
+struct GTY(()) machine_function {
+ /* The number of extra stack bytes taken up by register varargs.
+ This area is allocated by the callee at the very top of the frame. */
+ int varargs_size;
+
+ /* Memoized return value of leaf_function_p. <0 if false, >0 if true. */
+ int is_leaf;
+
+ /* The current frame information, calculated by riscv_compute_frame_info. */
+ struct riscv_frame_info frame;
+};
+
+/* Information about a single argument. */
+struct riscv_arg_info {
+ /* True if the argument is at least partially passed on the stack. */
+ bool stack_p;
+
+ /* The number of integer registers allocated to this argument. */
+ unsigned int num_gprs;
+
+ /* The offset of the first register used, provided num_gprs is nonzero.
+ If passed entirely on the stack, the value is MAX_ARGS_IN_REGISTERS. */
+ unsigned int gpr_offset;
+
+ /* The number of floating-point registers allocated to this argument. */
+ unsigned int num_fprs;
+
+ /* The offset of the first register used, provided num_fprs is nonzero. */
+ unsigned int fpr_offset;
+};
+
+/* Information about an address described by riscv_address_type.
+
+ ADDRESS_CONST_INT
+ No fields are used.
+
+ ADDRESS_REG
+ REG is the base register and OFFSET is the constant offset.
+
+ ADDRESS_LO_SUM
+ REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
+ is the type of symbol it references.
+
+ ADDRESS_SYMBOLIC
+ SYMBOL_TYPE is the type of symbol that the address references. */
+struct riscv_address_info {
+ enum riscv_address_type type;
+ rtx reg;
+ rtx offset;
+ enum riscv_symbol_type symbol_type;
+};
+
+/* One stage in a constant building sequence. These sequences have
+ the form:
+
+ A = VALUE[0]
+ A = A CODE[1] VALUE[1]
+ A = A CODE[2] VALUE[2]
+ ...
+
+ where A is an accumulator, each CODE[i] is a binary rtl operation
+ and each VALUE[i] is a constant integer. CODE[0] is undefined. */
+struct riscv_integer_op {
+ enum rtx_code code;
+ unsigned HOST_WIDE_INT value;
+};
+
+/* The largest number of operations needed to load an integer constant.
+ The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI. */
+#define RISCV_MAX_INTEGER_OPS 8
+
+/* Costs of various operations on the different architectures. */
+
+struct riscv_tune_info
+{
+ unsigned short fp_add[2];
+ unsigned short fp_mul[2];
+ unsigned short fp_div[2];
+ unsigned short int_mul[2];
+ unsigned short int_div[2];
+ unsigned short issue_rate;
+ unsigned short branch_cost;
+ unsigned short memory_cost;
+};
+
+/* Information about one CPU we know about. */
+struct riscv_cpu_info {
+ /* This CPU's canonical name. */
+ const char *name;
+
+ /* Tuning parameters for this CPU. */
+ const struct riscv_tune_info *tune_info;
+};
+
+/* Global variables for machine-dependent things. */
+
+/* Which tuning parameters to use. */
+static const struct riscv_tune_info *tune_info;
+
+/* Index R is the smallest register class that contains register R. */
+const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = {
+ GR_REGS, GR_REGS, GR_REGS, GR_REGS,
+ GR_REGS, GR_REGS, SIBCALL_REGS, SIBCALL_REGS,
+ JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
+ JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
+ JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
+ JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
+ JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
+ SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FRAME_REGS, FRAME_REGS,
+};
+
+/* Costs to use when optimizing for rocket. */
+static const struct riscv_tune_info rocket_tune_info = {
+ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
+ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
+ {COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
+ {COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
+ {COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
+ 1, /* issue_rate */
+ 3, /* branch_cost */
+ 5 /* memory_cost */
+};
+
+/* Costs to use when optimizing for size. */
+static const struct riscv_tune_info optimize_size_tune_info = {
+ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */
+ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */
+ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */
+ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */
+ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */
+ 1, /* issue_rate */
+ 1, /* branch_cost */
+ 2 /* memory_cost */
+};
+
+/* A table describing all the processors GCC knows about. */
+static const struct riscv_cpu_info riscv_cpu_info_table[] = {
+ { "rocket", &rocket_tune_info },
+};
+
+/* Return the riscv_cpu_info entry for the given name string. */
+
+static const struct riscv_cpu_info *
+riscv_parse_cpu (const char *cpu_string)
+{
+ for (unsigned i = 0; i < ARRAY_SIZE (riscv_cpu_info_table); i++)
+ if (strcmp (riscv_cpu_info_table[i].name, cpu_string) == 0)
+ return riscv_cpu_info_table + i;
+
+ error ("unknown cpu %qs for -mtune", cpu_string);
+ return riscv_cpu_info_table;
+}
+
+/* Helper function for riscv_build_integer; arguments are as for
+ riscv_build_integer. */
+
+static int
+riscv_build_integer_1 (struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS],
+ HOST_WIDE_INT value, enum machine_mode mode)
+{
+ HOST_WIDE_INT low_part = CONST_LOW_PART (value);
+ int cost = RISCV_MAX_INTEGER_OPS + 1, alt_cost;
+ struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
+
+ if (SMALL_OPERAND (value) || LUI_OPERAND (value))
+ {
+ /* Simply ADDI or LUI. */
+ codes[0].code = UNKNOWN;
+ codes[0].value = value;
+ return 1;
+ }
+
+ /* End with ADDI. When constructing HImode constants, do not generate any
+ intermediate value that is not itself a valid HImode constant. The
+ XORI case below will handle those remaining HImode constants. */
+ if (low_part != 0 && (mode != HImode || value - low_part <= INT16_MAX))
+ {
+ alt_cost = 1 + riscv_build_integer_1 (alt_codes, value - low_part, mode);
+ if (alt_cost < cost)
+ {
+ alt_codes[alt_cost-1].code = PLUS;
+ alt_codes[alt_cost-1].value = low_part;
+ memcpy (codes, alt_codes, sizeof (alt_codes));
+ cost = alt_cost;
+ }
+ }
+
+ /* End with XORI. */
+ if (cost > 2 && (low_part < 0 || mode == HImode))
+ {
+ alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode);
+ if (alt_cost < cost)
+ {
+ alt_codes[alt_cost-1].code = XOR;
+ alt_codes[alt_cost-1].value = low_part;
+ memcpy (codes, alt_codes, sizeof (alt_codes));
+ cost = alt_cost;
+ }
+ }
+
+ /* Eliminate trailing zeros and end with SLLI. */
+ if (cost > 2 && (value & 1) == 0)
+ {
+ int shift = ctz_hwi (value);
+ unsigned HOST_WIDE_INT x = value;
+ x = sext_hwi (x >> shift, HOST_BITS_PER_WIDE_INT - shift);
+
+ /* Don't eliminate the lower 12 bits if LUI might apply. */
+ if (shift > IMM_BITS && !SMALL_OPERAND (x) && LUI_OPERAND (x << IMM_BITS))
+ shift -= IMM_BITS, x <<= IMM_BITS;
+
+ alt_cost = 1 + riscv_build_integer_1 (alt_codes, x, mode);
+ if (alt_cost < cost)
+ {
+ alt_codes[alt_cost-1].code = ASHIFT;
+ alt_codes[alt_cost-1].value = shift;
+ memcpy (codes, alt_codes, sizeof (alt_codes));
+ cost = alt_cost;
+ }
+ }
+
+ gcc_assert (cost <= RISCV_MAX_INTEGER_OPS);
+ return cost;
+}
+
+/* Fill CODES with a sequence of rtl operations to load VALUE.
+ Return the number of operations needed. */
+
+static int
+riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value,
+ enum machine_mode mode)
+{
+ int cost = riscv_build_integer_1 (codes, value, mode);
+
+ /* Eliminate leading zeros and end with SRLI. */
+ if (value > 0 && cost > 2)
+ {
+ struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
+ int alt_cost, shift = clz_hwi (value);
+ HOST_WIDE_INT shifted_val;
+
+ /* Try filling trailing bits with 1s. */
+ shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1);
+ alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
+ if (alt_cost < cost)
+ {
+ alt_codes[alt_cost-1].code = LSHIFTRT;
+ alt_codes[alt_cost-1].value = shift;
+ memcpy (codes, alt_codes, sizeof (alt_codes));
+ cost = alt_cost;
+ }
+
+ /* Try filling trailing bits with 0s. */
+ shifted_val = value << shift;
+ alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
+ if (alt_cost < cost)
+ {
+ alt_codes[alt_cost-1].code = LSHIFTRT;
+ alt_codes[alt_cost-1].value = shift;
+ memcpy (codes, alt_codes, sizeof (alt_codes));
+ cost = alt_cost;
+ }
+ }
+
+ return cost;
+}
+
+/* Return the cost of constructing VAL in the event that a scratch
+ register is available. */
+
+static int
+riscv_split_integer_cost (HOST_WIDE_INT val)
+{
+ int cost;
+ unsigned HOST_WIDE_INT loval = sext_hwi (val, 32);
+ unsigned HOST_WIDE_INT hival = sext_hwi ((val - loval) >> 32, 32);
+ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
+
+ cost = 2 + riscv_build_integer (codes, loval, VOIDmode);
+ if (loval != hival)
+ cost += riscv_build_integer (codes, hival, VOIDmode);
+
+ return cost;
+}
+
+/* Return the cost of constructing the integer constant VAL. */
+
+static int
+riscv_integer_cost (HOST_WIDE_INT val)
+{
+ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
+ return MIN (riscv_build_integer (codes, val, VOIDmode),
+ riscv_split_integer_cost (val));
+}
+
+/* Try to split a 64b integer into 32b parts, then reassemble. */
+
+static rtx
+riscv_split_integer (HOST_WIDE_INT val, enum machine_mode mode)
+{
+ unsigned HOST_WIDE_INT loval = sext_hwi (val, 32);
+ unsigned HOST_WIDE_INT hival = sext_hwi ((val - loval) >> 32, 32);
+ rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode);
+
+ riscv_move_integer (hi, hi, hival);
+ riscv_move_integer (lo, lo, loval);
+
+ hi = gen_rtx_fmt_ee (ASHIFT, mode, hi, GEN_INT (32));
+ hi = force_reg (mode, hi);
+
+ return gen_rtx_fmt_ee (PLUS, mode, hi, lo);
+}
+
+/* Return true if X is a thread-local symbol. */
+
+static bool
+riscv_tls_symbol_p (const_rtx x)
+{
+ return SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0;
+}
+
+/* Return true if symbol X binds locally. */
+
+static bool
+riscv_symbol_binds_local_p (const_rtx x)
+{
+ if (SYMBOL_REF_P (x))
+ return (SYMBOL_REF_DECL (x)
+ ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
+ : SYMBOL_REF_LOCAL_P (x));
+ else
+ return false;
+}
+
+/* Return the method that should be used to access SYMBOL_REF or
+ LABEL_REF X. */
+
+static enum riscv_symbol_type
+riscv_classify_symbol (const_rtx x)
+{
+ if (riscv_tls_symbol_p (x))
+ return SYMBOL_TLS;
+
+ if (GET_CODE (x) == SYMBOL_REF && flag_pic && !riscv_symbol_binds_local_p (x))
+ return SYMBOL_GOT_DISP;
+
+ return riscv_cmodel == CM_MEDLOW ? SYMBOL_ABSOLUTE : SYMBOL_PCREL;
+}
+
+/* Classify the base of symbolic expression X. */
+
+enum riscv_symbol_type
+riscv_classify_symbolic_expression (rtx x)
+{
+ rtx offset;
+
+ split_const (x, &x, &offset);
+ if (UNSPEC_ADDRESS_P (x))
+ return UNSPEC_ADDRESS_TYPE (x);
+
+ return riscv_classify_symbol (x);
+}
+
+/* Return true if X is a symbolic constant. If it is, store the type of
+ the symbol in *SYMBOL_TYPE. */
+
+bool
+riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type)
+{
+ rtx offset;
+
+ split_const (x, &x, &offset);
+ if (UNSPEC_ADDRESS_P (x))
+ {
+ *symbol_type = UNSPEC_ADDRESS_TYPE (x);
+ x = UNSPEC_ADDRESS (x);
+ }
+ else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
+ *symbol_type = riscv_classify_symbol (x);
+ else
+ return false;
+
+ if (offset == const0_rtx)
+ return true;
+
+ /* Nonzero offsets are only valid for references that don't use the GOT. */
+ switch (*symbol_type)
+ {
+ case SYMBOL_ABSOLUTE:
+ case SYMBOL_PCREL:
+ case SYMBOL_TLS_LE:
+ /* GAS rejects offsets outside the range [-2^31, 2^31-1]. */
+ return sext_hwi (INTVAL (offset), 32) == INTVAL (offset);
+
+ default:
+ return false;
+ }
+}
+
+/* Returns the number of instructions necessary to reference a symbol. */
+
+static int riscv_symbol_insns (enum riscv_symbol_type type)
+{
+ switch (type)
+ {
+ case SYMBOL_TLS: return 0; /* Depends on the TLS model. */
+ case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference. */
+ case SYMBOL_PCREL: return 2; /* AUIPC + the reference. */
+ case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference. */
+ case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference. */
+ default: gcc_unreachable ();
+ }
+}
+
+/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
+
+static bool
+riscv_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
+{
+ return riscv_const_insns (x) > 0;
+}
+
+/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
+
+static bool
+riscv_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
+{
+ enum riscv_symbol_type type;
+ rtx base, offset;
+
+ /* There is no assembler syntax for expressing an address-sized
+ high part. */
+ if (GET_CODE (x) == HIGH)
+ return true;
+
+ split_const (x, &base, &offset);
+ if (riscv_symbolic_constant_p (base, &type))
+ {
+ /* As an optimization, don't spill symbolic constants that are as
+ cheap to rematerialize as to access in the constant pool. */
+ if (SMALL_OPERAND (INTVAL (offset)) && riscv_symbol_insns (type) > 0)
+ return true;
+
+ /* As an optimization, avoid needlessly generate dynamic relocations. */
+ if (flag_pic)
+ return true;
+ }
+
+ /* TLS symbols must be computed by riscv_legitimize_move. */
+ if (tls_referenced_p (x))
+ return true;
+
+ return false;
+}
+
+/* Return true if register REGNO is a valid base register for mode MODE.
+ STRICT_P is true if REG_OK_STRICT is in effect. */
+
+int
+riscv_regno_mode_ok_for_base_p (int regno,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ bool strict_p)
+{
+ if (!HARD_REGISTER_NUM_P (regno))
+ {
+ if (!strict_p)
+ return true;
+ regno = reg_renumber[regno];
+ }
+
+ /* These fake registers will be eliminated to either the stack or
+ hard frame pointer, both of which are usually valid base registers.
+ Reload deals with the cases where the eliminated form isn't valid. */
+ if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
+ return true;
+
+ return GP_REG_P (regno);
+}
+
+/* Return true if X is a valid base register for mode MODE.
+ STRICT_P is true if REG_OK_STRICT is in effect. */
+
+static bool
+riscv_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p)
+{
+ if (!strict_p && GET_CODE (x) == SUBREG)
+ x = SUBREG_REG (x);
+
+ return (REG_P (x)
+ && riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
+}
+
+/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
+ can address a value of mode MODE. */
+
+static bool
+riscv_valid_offset_p (rtx x, enum machine_mode mode)
+{
+ /* Check that X is a signed 12-bit number. */
+ if (!const_arith_operand (x, Pmode))
+ return false;
+
+ /* We may need to split multiword moves, so make sure that every word
+ is accessible. */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
+ return false;
+
+ return true;
+}
+
+/* Should a symbol of type SYMBOL_TYPE should be split in two? */
+
+bool
+riscv_split_symbol_type (enum riscv_symbol_type symbol_type)
+{
+ if (symbol_type == SYMBOL_TLS_LE)
+ return true;
+
+ if (!TARGET_EXPLICIT_RELOCS)
+ return false;
+
+ return symbol_type == SYMBOL_ABSOLUTE || symbol_type == SYMBOL_PCREL;
+}
+
+/* Return true if a LO_SUM can address a value of mode MODE when the
+ LO_SUM symbol has type SYM_TYPE. */
+
+static bool
+riscv_valid_lo_sum_p (enum riscv_symbol_type sym_type, enum machine_mode mode)
+{
+ /* Check that symbols of type SYMBOL_TYPE can be used to access values
+ of mode MODE. */
+ if (riscv_symbol_insns (sym_type) == 0)
+ return false;
+
+ /* Check that there is a known low-part relocation. */
+ if (!riscv_split_symbol_type (sym_type))
+ return false;
+
+ /* We may need to split multiword moves, so make sure that each word
+ can be accessed without inducing a carry. */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
+ return false;
+
+ return true;
+}
+
+/* Return true if X is a valid address for machine mode MODE. If it is,
+ fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
+ effect. */
+
+static bool
+riscv_classify_address (struct riscv_address_info *info, rtx x,
+ enum machine_mode mode, bool strict_p)
+{
+ switch (GET_CODE (x))
+ {
+ case REG:
+ case SUBREG:
+ info->type = ADDRESS_REG;
+ info->reg = x;
+ info->offset = const0_rtx;
+ return riscv_valid_base_register_p (info->reg, mode, strict_p);
+
+ case PLUS:
+ info->type = ADDRESS_REG;
+ info->reg = XEXP (x, 0);
+ info->offset = XEXP (x, 1);
+ return (riscv_valid_base_register_p (info->reg, mode, strict_p)
+ && riscv_valid_offset_p (info->offset, mode));
+
+ case LO_SUM:
+ info->type = ADDRESS_LO_SUM;
+ info->reg = XEXP (x, 0);
+ info->offset = XEXP (x, 1);
+ /* We have to trust the creator of the LO_SUM to do something vaguely
+ sane. Target-independent code that creates a LO_SUM should also
+ create and verify the matching HIGH. Target-independent code that
+ adds an offset to a LO_SUM must prove that the offset will not
+ induce a carry. Failure to do either of these things would be
+ a bug, and we are not required to check for it here. The RISC-V
+ backend itself should only create LO_SUMs for valid symbolic
+ constants, with the high part being either a HIGH or a copy
+ of _gp. */
+ info->symbol_type
+ = riscv_classify_symbolic_expression (info->offset);
+ return (riscv_valid_base_register_p (info->reg, mode, strict_p)
+ && riscv_valid_lo_sum_p (info->symbol_type, mode));
+
+ case CONST_INT:
+ /* Small-integer addresses don't occur very often, but they
+ are legitimate if x0 is a valid base register. */
+ info->type = ADDRESS_CONST_INT;
+ return SMALL_OPERAND (INTVAL (x));
+
+ default:
+ return false;
+ }
+}
+
+/* Implement TARGET_LEGITIMATE_ADDRESS_P. */
+
+static bool
+riscv_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
+{
+ struct riscv_address_info addr;
+
+ return riscv_classify_address (&addr, x, mode, strict_p);
+}
+
+/* Return the number of instructions needed to load or store a value
+ of mode MODE at address X. Return 0 if X isn't valid for MODE.
+ Assume that multiword moves may need to be split into word moves
+ if MIGHT_SPLIT_P, otherwise assume that a single load or store is
+ enough. */
+
+int
+riscv_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
+{
+ struct riscv_address_info addr;
+ int n = 1;
+
+ if (!riscv_classify_address (&addr, x, mode, false))
+ return 0;
+
+ /* BLKmode is used for single unaligned loads and stores and should
+ not count as a multiword mode. */
+ if (mode != BLKmode && might_split_p)
+ n += (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ if (addr.type == ADDRESS_LO_SUM)
+ n += riscv_symbol_insns (addr.symbol_type) - 1;
+
+ return n;
+}
+
+/* Return the number of instructions needed to load constant X.
+ Return 0 if X isn't a valid constant. */
+
+int
+riscv_const_insns (rtx x)
+{
+ enum riscv_symbol_type symbol_type;
+ rtx offset;
+
+ switch (GET_CODE (x))
+ {
+ case HIGH:
+ if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type)
+ || !riscv_split_symbol_type (symbol_type))
+ return 0;
+
+ /* This is simply an LUI. */
+ return 1;
+
+ case CONST_INT:
+ {
+ int cost = riscv_integer_cost (INTVAL (x));
+ /* Force complicated constants to memory. */
+ return cost < 4 ? cost : 0;
+ }
+
+ case CONST_DOUBLE:
+ case CONST_VECTOR:
+ /* We can use x0 to load floating-point zero. */
+ return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
+
+ case CONST:
+ /* See if we can refer to X directly. */
+ if (riscv_symbolic_constant_p (x, &symbol_type))
+ return riscv_symbol_insns (symbol_type);
+
+ /* Otherwise try splitting the constant into a base and offset. */
+ split_const (x, &x, &offset);
+ if (offset != 0)
+ {
+ int n = riscv_const_insns (x);
+ if (n != 0)
+ return n + riscv_integer_cost (INTVAL (offset));
+ }
+ return 0;
+
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return riscv_symbol_insns (riscv_classify_symbol (x));
+
+ default:
+ return 0;
+ }
+}
+
+/* X is a doubleword constant that can be handled by splitting it into
+ two words and loading each word separately. Return the number of
+ instructions required to do this. */
+
+int
+riscv_split_const_insns (rtx x)
+{
+ unsigned int low, high;
+
+ low = riscv_const_insns (riscv_subword (x, false));
+ high = riscv_const_insns (riscv_subword (x, true));
+ gcc_assert (low > 0 && high > 0);
+ return low + high;
+}
+
+/* Return the number of instructions needed to implement INSN,
+ given that it loads from or stores to MEM. */
+
+int
+riscv_load_store_insns (rtx mem, rtx_insn *insn)
+{
+ enum machine_mode mode;
+ bool might_split_p;
+ rtx set;
+
+ gcc_assert (MEM_P (mem));
+ mode = GET_MODE (mem);
+
+ /* Try to prove that INSN does not need to be split. */
+ might_split_p = true;
+ if (GET_MODE_BITSIZE (mode) <= 32)
+ might_split_p = false;
+ else if (GET_MODE_BITSIZE (mode) == 64)
+ {
+ set = single_set (insn);
+ if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
+ might_split_p = false;
+ }
+
+ return riscv_address_insns (XEXP (mem, 0), mode, might_split_p);
+}
+
+/* Emit a move from SRC to DEST. Assume that the move expanders can
+ handle all moves if !can_create_pseudo_p (). The distinction is
+ important because, unlike emit_move_insn, the move expanders know
+ how to force Pmode objects into the constant pool even when the
+ constant pool address is not itself legitimate. */
+
+rtx
+riscv_emit_move (rtx dest, rtx src)
+{
+ return (can_create_pseudo_p ()
+ ? emit_move_insn (dest, src)
+ : emit_move_insn_1 (dest, src));
+}
+
+/* Emit an instruction of the form (set TARGET SRC). */
+
+static rtx
+riscv_emit_set (rtx target, rtx src)
+{
+ emit_insn (gen_rtx_SET (target, src));
+ return target;
+}
+
+/* Emit an instruction of the form (set DEST (CODE X Y)). */
+
+static rtx
+riscv_emit_binary (enum rtx_code code, rtx dest, rtx x, rtx y)
+{
+ return riscv_emit_set (dest, gen_rtx_fmt_ee (code, GET_MODE (dest), x, y));
+}
+
+/* Compute (CODE X Y) and store the result in a new register
+ of mode MODE. Return that new register. */
+
+static rtx
+riscv_force_binary (enum machine_mode mode, enum rtx_code code, rtx x, rtx y)
+{
+ return riscv_emit_binary (code, gen_reg_rtx (mode), x, y);
+}
+
+/* Copy VALUE to a register and return that register. If new pseudos
+ are allowed, copy it into a new register, otherwise use DEST. */
+
+static rtx
+riscv_force_temporary (rtx dest, rtx value)
+{
+ if (can_create_pseudo_p ())
+ return force_reg (Pmode, value);
+ else
+ {
+ riscv_emit_move (dest, value);
+ return dest;
+ }
+}
+
+/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
+ then add CONST_INT OFFSET to the result. */
+
+static rtx
+riscv_unspec_address_offset (rtx base, rtx offset,
+ enum riscv_symbol_type symbol_type)
+{
+ base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
+ UNSPEC_ADDRESS_FIRST + symbol_type);
+ if (offset != const0_rtx)
+ base = gen_rtx_PLUS (Pmode, base, offset);
+ return gen_rtx_CONST (Pmode, base);
+}
+
+/* Return an UNSPEC address with underlying address ADDRESS and symbol
+ type SYMBOL_TYPE. */
+
+rtx
+riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type)
+{
+ rtx base, offset;
+
+ split_const (address, &base, &offset);
+ return riscv_unspec_address_offset (base, offset, symbol_type);
+}
+
+/* If OP is an UNSPEC address, return the address to which it refers,
+ otherwise return OP itself. */
+
+static rtx
+riscv_strip_unspec_address (rtx op)
+{
+ rtx base, offset;
+
+ split_const (op, &base, &offset);
+ if (UNSPEC_ADDRESS_P (base))
+ op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
+ return op;
+}
+
+/* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
+ high part to BASE and return the result. Just return BASE otherwise.
+ TEMP is as for riscv_force_temporary.
+
+ The returned expression can be used as the first operand to a LO_SUM. */
+
+static rtx
+riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type)
+{
+ addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type));
+ return riscv_force_temporary (temp, addr);
+}
+
+/* Load an entry from the GOT for a TLS GD access. */
+
+static rtx riscv_got_load_tls_gd (rtx dest, rtx sym)
+{
+ if (Pmode == DImode)
+ return gen_got_load_tls_gddi (dest, sym);
+ else
+ return gen_got_load_tls_gdsi (dest, sym);
+}
+
+/* Load an entry from the GOT for a TLS IE access. */
+
+static rtx riscv_got_load_tls_ie (rtx dest, rtx sym)
+{
+ if (Pmode == DImode)
+ return gen_got_load_tls_iedi (dest, sym);
+ else
+ return gen_got_load_tls_iesi (dest, sym);
+}
+
+/* Add in the thread pointer for a TLS LE access. */
+
+static rtx riscv_tls_add_tp_le (rtx dest, rtx base, rtx sym)
+{
+ rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
+ if (Pmode == DImode)
+ return gen_tls_add_tp_ledi (dest, base, tp, sym);
+ else
+ return gen_tls_add_tp_lesi (dest, base, tp, sym);
+}
+
+/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
+ it appears in a MEM of that mode. Return true if ADDR is a legitimate
+ constant in that context and can be split into high and low parts.
+ If so, and if LOW_OUT is nonnull, emit the high part and store the
+ low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
+
+ TEMP is as for riscv_force_temporary and is used to load the high
+ part into a register.
+
+ When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
+ a legitimize SET_SRC for an .md pattern, otherwise the low part
+ is guaranteed to be a legitimate address for mode MODE. */
+
+bool
+riscv_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *low_out)
+{
+ enum riscv_symbol_type symbol_type;
+
+ if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE)
+ || !riscv_symbolic_constant_p (addr, &symbol_type)
+ || riscv_symbol_insns (symbol_type) == 0
+ || !riscv_split_symbol_type (symbol_type))
+ return false;
+
+ if (low_out)
+ switch (symbol_type)
+ {
+ case SYMBOL_ABSOLUTE:
+ {
+ rtx high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
+ high = riscv_force_temporary (temp, high);
+ *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
+ }
+ break;
+
+ case SYMBOL_PCREL:
+ {
+ static unsigned seqno;
+ char buf[32];
+ rtx label;
+
+ ssize_t bytes = snprintf (buf, sizeof (buf), ".LA%u", seqno);
+ gcc_assert ((size_t) bytes < sizeof (buf));
+
+ label = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
+ SYMBOL_REF_FLAGS (label) |= SYMBOL_FLAG_LOCAL;
+
+ if (temp == NULL)
+ temp = gen_reg_rtx (Pmode);
+
+ if (Pmode == DImode)
+ emit_insn (gen_auipcdi (temp, copy_rtx (addr), GEN_INT (seqno)));
+ else
+ emit_insn (gen_auipcsi (temp, copy_rtx (addr), GEN_INT (seqno)));
+
+ *low_out = gen_rtx_LO_SUM (Pmode, temp, label);
+
+ seqno++;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return true;
+}
+
+/* Return a legitimate address for REG + OFFSET. TEMP is as for
+ riscv_force_temporary; it is only needed when OFFSET is not a
+ SMALL_OPERAND. */
+
+static rtx
+riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
+{
+ if (!SMALL_OPERAND (offset))
+ {
+ rtx high;
+
+ /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
+ The addition inside the macro CONST_HIGH_PART may cause an
+ overflow, so we need to force a sign-extension check. */
+ high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
+ offset = CONST_LOW_PART (offset);
+ high = riscv_force_temporary (temp, high);
+ reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
+ }
+ return plus_constant (Pmode, reg, offset);
+}
+
+/* The __tls_get_attr symbol. */
+static GTY(()) rtx riscv_tls_symbol;
+
+/* Return an instruction sequence that calls __tls_get_addr. SYM is
+ the TLS symbol we are referencing and TYPE is the symbol type to use
+ (either global dynamic or local dynamic). RESULT is an RTX for the
+ return value location. */
+
+static rtx_insn *
+riscv_call_tls_get_addr (rtx sym, rtx result)
+{
+ rtx a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST), func;
+ rtx_insn *insn;
+
+ if (!riscv_tls_symbol)
+ riscv_tls_symbol = init_one_libfunc ("__tls_get_addr");
+ func = gen_rtx_MEM (FUNCTION_MODE, riscv_tls_symbol);
+
+ start_sequence ();
+
+ emit_insn (riscv_got_load_tls_gd (a0, sym));
+ insn = emit_call_insn (gen_call_value (result, func, const0_rtx, NULL));
+ RTL_CONST_CALL_P (insn) = 1;
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
+ insn = get_insns ();
+
+ end_sequence ();
+
+ return insn;
+}
+
+/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
+ its address. The return value will be both a valid address and a valid
+ SET_SRC (either a REG or a LO_SUM). */
+
+static rtx
+riscv_legitimize_tls_address (rtx loc)
+{
+ rtx dest, tp, tmp;
+ enum tls_model model = SYMBOL_REF_TLS_MODEL (loc);
+
+ /* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */
+ if (!flag_pic)
+ model = TLS_MODEL_LOCAL_EXEC;
+
+ switch (model)
+ {
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ /* Rely on section anchors for the optimization that LDM TLS
+ provides. The anchor's address is loaded with GD TLS. */
+ case TLS_MODEL_GLOBAL_DYNAMIC:
+ tmp = gen_rtx_REG (Pmode, GP_RETURN);
+ dest = gen_reg_rtx (Pmode);
+ emit_libcall_block (riscv_call_tls_get_addr (loc, tmp), dest, tmp, loc);
+ break;
+
+ case TLS_MODEL_INITIAL_EXEC:
+ /* la.tls.ie; tp-relative add */
+ tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
+ tmp = gen_reg_rtx (Pmode);
+ emit_insn (riscv_got_load_tls_ie (tmp, loc));
+ dest = gen_reg_rtx (Pmode);
+ emit_insn (gen_add3_insn (dest, tmp, tp));
+ break;
+
+ case TLS_MODEL_LOCAL_EXEC:
+ tmp = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE);
+ dest = gen_reg_rtx (Pmode);
+ emit_insn (riscv_tls_add_tp_le (dest, tmp, loc));
+ dest = gen_rtx_LO_SUM (Pmode, dest,
+ riscv_unspec_address (loc, SYMBOL_TLS_LE));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return dest;
+}
+
+/* If X is not a valid address for mode MODE, force it into a register. */
+
+static rtx
+riscv_force_address (rtx x, enum machine_mode mode)
+{
+ if (!riscv_legitimate_address_p (mode, x, false))
+ x = force_reg (Pmode, x);
+ return x;
+}
+
+/* This function is used to implement LEGITIMIZE_ADDRESS. If X can
+ be legitimized in a way that the generic machinery might not expect,
+ return a new address, otherwise return NULL. MODE is the mode of
+ the memory being accessed. */
+
+static rtx
+riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ rtx addr;
+
+ if (riscv_tls_symbol_p (x))
+ return riscv_legitimize_tls_address (x);
+
+ /* See if the address can split into a high part and a LO_SUM. */
+ if (riscv_split_symbol (NULL, x, mode, &addr))
+ return riscv_force_address (addr, mode);
+
+ /* Handle BASE + OFFSET using riscv_add_offset. */
+ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) != 0)
+ {
+ rtx base = XEXP (x, 0);
+ HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));
+
+ if (!riscv_valid_base_register_p (base, mode, false))
+ base = copy_to_mode_reg (Pmode, base);
+ addr = riscv_add_offset (NULL, base, offset);
+ return riscv_force_address (addr, mode);
+ }
+
+ return x;
+}
+
+/* Load VALUE into DEST. TEMP is as for riscv_force_temporary. */
+
+void
+riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value)
+{
+ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
+ enum machine_mode mode;
+ int i, num_ops;
+ rtx x;
+
+ mode = GET_MODE (dest);
+ num_ops = riscv_build_integer (codes, value, mode);
+
+ if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */
+ && num_ops >= riscv_split_integer_cost (value))
+ x = riscv_split_integer (value, mode);
+ else
+ {
+ /* Apply each binary operation to X. */
+ x = GEN_INT (codes[0].value);
+
+ for (i = 1; i < num_ops; i++)
+ {
+ if (!can_create_pseudo_p ())
+ x = riscv_emit_set (temp, x);
+ else
+ x = force_reg (mode, x);
+
+ x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
+ }
+ }
+
+ riscv_emit_set (dest, x);
+}
+
+/* Subroutine of riscv_legitimize_move. Move constant SRC into register
+ DEST given that SRC satisfies immediate_operand but doesn't satisfy
+ move_operand. */
+
+static void
+riscv_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
+{
+ rtx base, offset;
+
+ /* Split moves of big integers into smaller pieces. */
+ if (splittable_const_int_operand (src, mode))
+ {
+ riscv_move_integer (dest, dest, INTVAL (src));
+ return;
+ }
+
+ /* Split moves of symbolic constants into high/low pairs. */
+ if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
+ {
+ riscv_emit_set (dest, src);
+ return;
+ }
+
+ /* Generate the appropriate access sequences for TLS symbols. */
+ if (riscv_tls_symbol_p (src))
+ {
+ riscv_emit_move (dest, riscv_legitimize_tls_address (src));
+ return;
+ }
+
+ /* If we have (const (plus symbol offset)), and that expression cannot
+ be forced into memory, load the symbol first and add in the offset. Also
+ prefer to do this even if the constant _can_ be forced into memory, as it
+ usually produces better code. */
+ split_const (src, &base, &offset);
+ if (offset != const0_rtx
+ && (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ()))
+ {
+ base = riscv_force_temporary (dest, base);
+ riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset)));
+ return;
+ }
+
+ src = force_const_mem (mode, src);
+
+ /* When using explicit relocs, constant pool references are sometimes
+ not legitimate addresses. */
+ riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
+ riscv_emit_move (dest, src);
+}
+
+/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
+ sequence that is valid. */
+
+bool
+riscv_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
+{
+ if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
+ {
+ riscv_emit_move (dest, force_reg (mode, src));
+ return true;
+ }
+
+ /* We need to deal with constants that would be legitimate
+ immediate_operands but aren't legitimate move_operands. */
+ if (CONSTANT_P (src) && !move_operand (src, mode))
+ {
+ riscv_legitimize_const_move (mode, dest, src);
+ set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
+ return true;
+ }
+
+ return false;
+}
+
+/* Return true if there is an instruction that implements CODE and accepts
+ X as an immediate operand. */
+
+static int
+riscv_immediate_operand_p (int code, HOST_WIDE_INT x)
+{
+ switch (code)
+ {
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ /* All shift counts are truncated to a valid constant. */
+ return true;
+
+ case AND:
+ case IOR:
+ case XOR:
+ case PLUS:
+ case LT:
+ case LTU:
+ /* These instructions take 12-bit signed immediates. */
+ return SMALL_OPERAND (x);
+
+ case LE:
+ /* We add 1 to the immediate and use SLT. */
+ return SMALL_OPERAND (x + 1);
+
+ case LEU:
+ /* Likewise SLTU, but reject the always-true case. */
+ return SMALL_OPERAND (x + 1) && x + 1 != 0;
+
+ case GE:
+ case GEU:
+ /* We can emulate an immediate of 1 by using GT/GTU against x0. */
+ return x == 1;
+
+ default:
+ /* By default assume that x0 can be used for 0. */
+ return x == 0;
+ }
+}
+
+/* Return the cost of binary operation X, given that the instruction
+ sequence for a word-sized or smaller operation takes SIGNLE_INSNS
+ instructions and that the sequence of a double-word operation takes
+ DOUBLE_INSNS instructions. */
+
+static int
+riscv_binary_cost (rtx x, int single_insns, int double_insns)
+{
+ if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
+ return COSTS_N_INSNS (double_insns);
+ return COSTS_N_INSNS (single_insns);
+}
+
+/* Return the cost of sign- or zero-extending OP. */
+
+static int
+riscv_extend_cost (rtx op, bool unsigned_p)
+{
+ if (MEM_P (op))
+ return 0;
+
+ if (unsigned_p && GET_MODE (op) == QImode)
+ /* We can use ANDI. */
+ return COSTS_N_INSNS (1);
+
+ if (!unsigned_p && GET_MODE (op) == SImode)
+ /* We can use SEXT.W. */
+ return COSTS_N_INSNS (1);
+
+ /* We need to use a shift left and a shift right. */
+ return COSTS_N_INSNS (2);
+}
+
+/* Implement TARGET_RTX_COSTS. */
+
+static bool
+riscv_rtx_costs (rtx x, machine_mode mode, int outer_code, int opno ATTRIBUTE_UNUSED,
+ int *total, bool speed)
+{
+ bool float_mode_p = FLOAT_MODE_P (mode);
+ int cost;
+
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ if (riscv_immediate_operand_p (outer_code, INTVAL (x)))
+ {
+ *total = 0;
+ return true;
+ }
+ /* Fall through. */
+
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ case CONST:
+ if ((cost = riscv_const_insns (x)) > 0)
+ {
+ /* If the constant is likely to be stored in a GPR, SETs of
+ single-insn constants are as cheap as register sets; we
+ never want to CSE them. */
+ if (cost == 1 && outer_code == SET)
+ *total = 0;
+ /* When we load a constant more than once, it usually is better
+ to duplicate the last operation in the sequence than to CSE
+ the constant itself. */
+ else if (outer_code == SET || GET_MODE (x) == VOIDmode)
+ *total = COSTS_N_INSNS (1);
+ }
+ else /* The instruction will be fetched from the constant pool. */
+ *total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE));
+ return true;
+
+ case MEM:
+ /* If the address is legitimate, return the number of
+ instructions it needs. */
+ if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0)
+ {
+ *total = COSTS_N_INSNS (cost + tune_info->memory_cost);
+ return true;
+ }
+ /* Otherwise use the default handling. */
+ return false;
+
+ case NOT:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
+ return false;
+
+ case AND:
+ case IOR:
+ case XOR:
+ /* Double-word operations use two single-word operations. */
+ *total = riscv_binary_cost (x, 1, 2);
+ return false;
+
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ *total = riscv_binary_cost (x, 1, CONSTANT_P (XEXP (x, 1)) ? 4 : 9);
+ return false;
+
+ case ABS:
+ *total = COSTS_N_INSNS (float_mode_p ? 1 : 3);
+ return false;
+
+ case LO_SUM:
+ *total = set_src_cost (XEXP (x, 0), mode, speed);
+ return true;
+
+ case LT:
+ case LTU:
+ case LE:
+ case LEU:
+ case GT:
+ case GTU:
+ case GE:
+ case GEU:
+ case EQ:
+ case NE:
+ /* Branch comparisons have VOIDmode, so use the first operand's
+ mode instead. */
+ mode = GET_MODE (XEXP (x, 0));
+ if (float_mode_p)
+ *total = tune_info->fp_add[mode == DFmode];
+ else
+ *total = riscv_binary_cost (x, 1, 3);
+ return false;
+
+ case UNORDERED:
+ case ORDERED:
+ /* (FEQ(A, A) & FEQ(B, B)) compared against 0. */
+ mode = GET_MODE (XEXP (x, 0));
+ *total = tune_info->fp_add[mode == DFmode] + COSTS_N_INSNS (2);
+ return false;
+
+ case UNEQ:
+ case LTGT:
+ /* (FEQ(A, A) & FEQ(B, B)) compared against FEQ(A, B). */
+ mode = GET_MODE (XEXP (x, 0));
+ *total = tune_info->fp_add[mode == DFmode] + COSTS_N_INSNS (3);
+ return false;
+
+ case UNGE:
+ case UNGT:
+ case UNLE:
+ case UNLT:
+ /* FLT or FLE, but guarded by an FFLAGS read and write. */
+ mode = GET_MODE (XEXP (x, 0));
+ *total = tune_info->fp_add[mode == DFmode] + COSTS_N_INSNS (4);
+ return false;
+
+ case MINUS:
+ case PLUS:
+ if (float_mode_p)
+ *total = tune_info->fp_add[mode == DFmode];
+ else
+ *total = riscv_binary_cost (x, 1, 4);
+ return false;
+
+ case NEG:
+ {
+ rtx op = XEXP (x, 0);
+ if (GET_CODE (op) == FMA && !HONOR_SIGNED_ZEROS (mode))
+ {
+ *total = (tune_info->fp_mul[mode == DFmode]
+ + set_src_cost (XEXP (op, 0), mode, speed)
+ + set_src_cost (XEXP (op, 1), mode, speed)
+ + set_src_cost (XEXP (op, 2), mode, speed));
+ return true;
+ }
+ }
+
+ if (float_mode_p)
+ *total = tune_info->fp_add[mode == DFmode];
+ else
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
+ return false;
+
+ case MULT:
+ if (float_mode_p)
+ *total = tune_info->fp_mul[mode == DFmode];
+ else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ *total = 3 * tune_info->int_mul[0] + COSTS_N_INSNS (2);
+ else if (!speed)
+ *total = COSTS_N_INSNS (1);
+ else
+ *total = tune_info->int_mul[mode == DImode];
+ return false;
+
+ case DIV:
+ case SQRT:
+ case MOD:
+ if (float_mode_p)
+ {
+ *total = tune_info->fp_div[mode == DFmode];
+ return false;
+ }
+ /* Fall through. */
+
+ case UDIV:
+ case UMOD:
+ if (speed)
+ *total = tune_info->int_div[mode == DImode];
+ else
+ *total = COSTS_N_INSNS (1);
+ return false;
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ *total = riscv_extend_cost (XEXP (x, 0), GET_CODE (x) == ZERO_EXTEND);
+ return false;
+
+ case FLOAT:
+ case UNSIGNED_FLOAT:
+ case FIX:
+ case FLOAT_EXTEND:
+ case FLOAT_TRUNCATE:
+ *total = tune_info->fp_add[mode == DFmode];
+ return false;
+
+ case FMA:
+ *total = (tune_info->fp_mul[mode == DFmode]
+ + set_src_cost (XEXP (x, 0), mode, speed)
+ + set_src_cost (XEXP (x, 1), mode, speed)
+ + set_src_cost (XEXP (x, 2), mode, speed));
+ return true;
+
+ case UNSPEC:
+ if (XINT (x, 1) == UNSPEC_AUIPC)
+ {
+ /* Make AUIPC cheap to avoid spilling its result to the stack. */
+ *total = 1;
+ return true;
+ }
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Implement TARGET_ADDRESS_COST. */
+
+static int
+riscv_address_cost (rtx addr, enum machine_mode mode,
+ addr_space_t as ATTRIBUTE_UNUSED,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ return riscv_address_insns (addr, mode, false);
+}
+
+/* Return one word of double-word value OP. HIGH_P is true to select the
+ high part or false to select the low part. */
+
+rtx
+riscv_subword (rtx op, bool high_p)
+{
+ unsigned int byte = high_p ? UNITS_PER_WORD : 0;
+ enum machine_mode mode = GET_MODE (op);
+
+ if (mode == VOIDmode)
+ mode = TARGET_64BIT ? TImode : DImode;
+
+ if (MEM_P (op))
+ return adjust_address (op, word_mode, byte);
+
+ if (REG_P (op))
+ gcc_assert (!FP_REG_RTX_P (op));
+
+ return simplify_gen_subreg (word_mode, op, mode, byte);
+}
+
+/* Return true if a 64-bit move from SRC to DEST should be split into two. */
+
+bool
+riscv_split_64bit_move_p (rtx dest, rtx src)
+{
+ if (TARGET_64BIT)
+ return false;
+
+ /* Allow FPR <-> FPR and FPR <-> MEM moves, and permit the special case
+ of zeroing an FPR with FCVT.D.W. */
+ if (TARGET_DOUBLE_FLOAT
+ && ((FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
+ || (FP_REG_RTX_P (dest) && MEM_P (src))
+ || (FP_REG_RTX_P (src) && MEM_P (dest))
+ || (FP_REG_RTX_P (dest) && src == CONST0_RTX (GET_MODE (src)))))
+ return false;
+
+ return true;
+}
+
+/* Split a doubleword move from SRC to DEST. On 32-bit targets,
+ this function handles 64-bit moves for which riscv_split_64bit_move_p
+ holds. For 64-bit targets, this function handles 128-bit moves. */
+
+void
+riscv_split_doubleword_move (rtx dest, rtx src)
+{
+ rtx low_dest;
+
+ /* The operation can be split into two normal moves. Decide in
+ which order to do them. */
+ low_dest = riscv_subword (dest, false);
+ if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src))
+ {
+ riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
+ riscv_emit_move (low_dest, riscv_subword (src, false));
+ }
+ else
+ {
+ riscv_emit_move (low_dest, riscv_subword (src, false));
+ riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
+ }
+}
+
+/* Return the appropriate instructions to move SRC into DEST. Assume
+ that SRC is operand 1 and DEST is operand 0. */
+
+const char *
+riscv_output_move (rtx dest, rtx src)
+{
+ enum rtx_code dest_code, src_code;
+ enum machine_mode mode;
+ bool dbl_p;
+
+ dest_code = GET_CODE (dest);
+ src_code = GET_CODE (src);
+ mode = GET_MODE (dest);
+ dbl_p = (GET_MODE_SIZE (mode) == 8);
+
+ if (dbl_p && riscv_split_64bit_move_p (dest, src))
+ return "#";
+
+ if (dest_code == REG && GP_REG_P (REGNO (dest)))
+ {
+ if (src_code == REG && FP_REG_P (REGNO (src)))
+ return dbl_p ? "fmv.x.d\t%0,%1" : "fmv.x.s\t%0,%1";
+
+ if (src_code == MEM)
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 1: return "lbu\t%0,%1";
+ case 2: return "lhu\t%0,%1";
+ case 4: return "lw\t%0,%1";
+ case 8: return "ld\t%0,%1";
+ }
+
+ if (src_code == CONST_INT)
+ return "li\t%0,%1";
+
+ if (src_code == HIGH)
+ return "lui\t%0,%h1";
+
+ if (symbolic_operand (src, VOIDmode))
+ switch (riscv_classify_symbolic_expression (src))
+ {
+ case SYMBOL_GOT_DISP: return "la\t%0,%1";
+ case SYMBOL_ABSOLUTE: return "lla\t%0,%1";
+ case SYMBOL_PCREL: return "lla\t%0,%1";
+ default: gcc_unreachable ();
+ }
+ }
+ if ((src_code == REG && GP_REG_P (REGNO (src)))
+ || (src == CONST0_RTX (mode)))
+ {
+ if (dest_code == REG)
+ {
+ if (GP_REG_P (REGNO (dest)))
+ return "mv\t%0,%z1";
+
+ if (FP_REG_P (REGNO (dest)))
+ {
+ if (!dbl_p)
+ return "fmv.s.x\t%0,%z1";
+ if (TARGET_64BIT)
+ return "fmv.d.x\t%0,%z1";
+ /* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */
+ gcc_assert (src == CONST0_RTX (mode));
+ return "fcvt.d.w\t%0,x0";
+ }
+ }
+ if (dest_code == MEM)
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 1: return "sb\t%z1,%0";
+ case 2: return "sh\t%z1,%0";
+ case 4: return "sw\t%z1,%0";
+ case 8: return "sd\t%z1,%0";
+ }
+ }
+ if (src_code == REG && FP_REG_P (REGNO (src)))
+ {
+ if (dest_code == REG && FP_REG_P (REGNO (dest)))
+ return dbl_p ? "fmv.d\t%0,%1" : "fmv.s\t%0,%1";
+
+ if (dest_code == MEM)
+ return dbl_p ? "fsd\t%1,%0" : "fsw\t%1,%0";
+ }
+ if (dest_code == REG && FP_REG_P (REGNO (dest)))
+ {
+ if (src_code == MEM)
+ return dbl_p ? "fld\t%0,%1" : "flw\t%0,%1";
+ }
+ gcc_unreachable ();
+}
+
+/* Return true if CMP1 is a suitable second operand for integer ordering
+ test CODE. See also the *sCC patterns in riscv.md. */
+
+static bool
+riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
+{
+ switch (code)
+ {
+ case GT:
+ case GTU:
+ return reg_or_0_operand (cmp1, VOIDmode);
+
+ case GE:
+ case GEU:
+ return cmp1 == const1_rtx;
+
+ case LT:
+ case LTU:
+ return arith_operand (cmp1, VOIDmode);
+
+ case LE:
+ return sle_operand (cmp1, VOIDmode);
+
+ case LEU:
+ return sleu_operand (cmp1, VOIDmode);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if *CMP1 (of mode MODE) is a valid second operand for
+ integer ordering test *CODE, or if an equivalent combination can
+ be formed by adjusting *CODE and *CMP1. When returning true, update
+ *CODE and *CMP1 with the chosen code and operand, otherwise leave
+ them alone. */
+
+static bool
+riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
+ enum machine_mode mode)
+{
+ HOST_WIDE_INT plus_one;
+
+ if (riscv_int_order_operand_ok_p (*code, *cmp1))
+ return true;
+
+ if (CONST_INT_P (*cmp1))
+ switch (*code)
+ {
+ case LE:
+ plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
+ if (INTVAL (*cmp1) < plus_one)
+ {
+ *code = LT;
+ *cmp1 = force_reg (mode, GEN_INT (plus_one));
+ return true;
+ }
+ break;
+
+ case LEU:
+ plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
+ if (plus_one != 0)
+ {
+ *code = LTU;
+ *cmp1 = force_reg (mode, GEN_INT (plus_one));
+ return true;
+ }
+ break;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Compare CMP0 and CMP1 using ordering test CODE and store the result
+ in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
+ is nonnull, it's OK to set TARGET to the inverse of the result and
+ flip *INVERT_PTR instead. */
+
+static void
+riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
+ rtx target, rtx cmp0, rtx cmp1)
+{
+ enum machine_mode mode;
+
+ /* First see if there is a RISCV instruction that can do this operation.
+ If not, try doing the same for the inverse operation. If that also
+ fails, force CMP1 into a register and try again. */
+ mode = GET_MODE (cmp0);
+ if (riscv_canonicalize_int_order_test (&code, &cmp1, mode))
+ riscv_emit_binary (code, target, cmp0, cmp1);
+ else
+ {
+ enum rtx_code inv_code = reverse_condition (code);
+ if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode))
+ {
+ cmp1 = force_reg (mode, cmp1);
+ riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
+ }
+ else if (invert_ptr == 0)
+ {
+ rtx inv_target = riscv_force_binary (GET_MODE (target),
+ inv_code, cmp0, cmp1);
+ riscv_emit_binary (XOR, target, inv_target, const1_rtx);
+ }
+ else
+ {
+ *invert_ptr = !*invert_ptr;
+ riscv_emit_binary (inv_code, target, cmp0, cmp1);
+ }
+ }
+}
+
+/* Return a register that is zero iff CMP0 and CMP1 are equal.
+ The register will have the same mode as CMP0. */
+
+static rtx
+riscv_zero_if_equal (rtx cmp0, rtx cmp1)
+{
+ if (cmp1 == const0_rtx)
+ return cmp0;
+
+ return expand_binop (GET_MODE (cmp0), sub_optab,
+ cmp0, cmp1, 0, 0, OPTAB_DIRECT);
+}
+
+/* Sign- or zero-extend OP0 and OP1 for integer comparisons. */
+
+static void
+riscv_extend_comparands (rtx_code code, rtx *op0, rtx *op1)
+{
+ /* Comparisons consider all XLEN bits, so extend sub-XLEN values. */
+ if (GET_MODE_SIZE (word_mode) > GET_MODE_SIZE (GET_MODE (*op0)))
+ {
+ /* It is more profitable to zero-extend QImode values. */
+ if (unsigned_condition (code) == code && GET_MODE (*op0) == QImode)
+ {
+ *op0 = gen_rtx_ZERO_EXTEND (word_mode, *op0);
+ if (CONST_INT_P (*op1))
+ *op1 = GEN_INT ((uint8_t) INTVAL (*op1));
+ else
+ *op1 = gen_rtx_ZERO_EXTEND (word_mode, *op1);
+ }
+ else
+ {
+ *op0 = gen_rtx_SIGN_EXTEND (word_mode, *op0);
+ if (*op1 != const0_rtx)
+ *op1 = gen_rtx_SIGN_EXTEND (word_mode, *op1);
+ }
+ }
+}
+
+/* Convert a comparison into something that can be used in a branch. On
+ entry, *OP0 and *OP1 are the values being compared and *CODE is the code
+ used to compare them. Update them to describe the final comparison. */
+
+static void
+riscv_emit_int_compare (enum rtx_code *code, rtx *op0, rtx *op1)
+{
+ if (splittable_const_int_operand (*op1, VOIDmode))
+ {
+ HOST_WIDE_INT rhs = INTVAL (*op1);
+
+ if (*code == EQ || *code == NE)
+ {
+ /* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */
+ if (SMALL_OPERAND (-rhs))
+ {
+ *op0 = riscv_force_binary (GET_MODE (*op0), PLUS, *op0,
+ GEN_INT (-rhs));
+ *op1 = const0_rtx;
+ }
+ }
+ else
+ {
+ static const enum rtx_code mag_comparisons[][2] = {
+ {LEU, LTU}, {GTU, GEU}, {LE, LT}, {GT, GE}
+ };
+
+ /* Convert e.g. (OP0 <= 0xFFF) into (OP0 < 0x1000). */
+ for (size_t i = 0; i < ARRAY_SIZE (mag_comparisons); i++)
+ {
+ HOST_WIDE_INT new_rhs;
+ bool increment = *code == mag_comparisons[i][0];
+ bool decrement = *code == mag_comparisons[i][1];
+ if (!increment && !decrement)
+ continue;
+
+ new_rhs = rhs + (increment ? 1 : -1);
+ if (riscv_integer_cost (new_rhs) < riscv_integer_cost (rhs)
+ && (rhs < 0) == (new_rhs < 0))
+ {
+ *op1 = GEN_INT (new_rhs);
+ *code = mag_comparisons[i][increment];
+ }
+ break;
+ }
+ }
+ }
+
+ riscv_extend_comparands (*code, op0, op1);
+
+ *op0 = force_reg (word_mode, *op0);
+ if (*op1 != const0_rtx)
+ *op1 = force_reg (word_mode, *op1);
+}
+
+/* Like riscv_emit_int_compare, but for floating-point comparisons. */
+
+static void
+riscv_emit_float_compare (enum rtx_code *code, rtx *op0, rtx *op1)
+{
+ rtx tmp0, tmp1, cmp_op0 = *op0, cmp_op1 = *op1;
+ enum rtx_code fp_code = *code;
+ *code = NE;
+
+ switch (fp_code)
+ {
+ case UNORDERED:
+ *code = EQ;
+ /* Fall through. */
+
+ case ORDERED:
+ /* a == a && b == b */
+ tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0);
+ tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1);
+ *op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1);
+ *op1 = const0_rtx;
+ break;
+
+ case UNEQ:
+ case LTGT:
+ /* ordered(a, b) > (a == b) */
+ *code = fp_code == LTGT ? GTU : EQ;
+ tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0);
+ tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1);
+ *op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1);
+ *op1 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op1);
+ break;
+
+#define UNORDERED_COMPARISON(CODE, CMP) \
+ case CODE: \
+ *code = EQ; \
+ *op0 = gen_reg_rtx (word_mode); \
+ if (GET_MODE (cmp_op0) == SFmode && TARGET_64BIT) \
+ emit_insn (gen_f##CMP##_quietsfdi4 (*op0, cmp_op0, cmp_op1)); \
+ else if (GET_MODE (cmp_op0) == SFmode) \
+ emit_insn (gen_f##CMP##_quietsfsi4 (*op0, cmp_op0, cmp_op1)); \
+ else if (GET_MODE (cmp_op0) == DFmode && TARGET_64BIT) \
+ emit_insn (gen_f##CMP##_quietdfdi4 (*op0, cmp_op0, cmp_op1)); \
+ else if (GET_MODE (cmp_op0) == DFmode) \
+ emit_insn (gen_f##CMP##_quietdfsi4 (*op0, cmp_op0, cmp_op1)); \
+ else \
+ gcc_unreachable (); \
+ *op1 = const0_rtx; \
+ break;
+
+ case UNLT:
+ std::swap (cmp_op0, cmp_op1);
+ /* Fall through. */
+
+ UNORDERED_COMPARISON(UNGT, le)
+
+ case UNLE:
+ std::swap (cmp_op0, cmp_op1);
+ /* Fall through. */
+
+ UNORDERED_COMPARISON(UNGE, lt)
+#undef UNORDERED_COMPARISON
+
+ case NE:
+ fp_code = EQ;
+ *code = EQ;
+ /* Fall through. */
+
+ case EQ:
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ /* We have instructions for these cases. */
+ *op0 = riscv_force_binary (word_mode, fp_code, cmp_op0, cmp_op1);
+ *op1 = const0_rtx;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* CODE-compare OP0 and OP1. Store the result in TARGET. */
+
+void
+riscv_expand_int_scc (rtx target, enum rtx_code code, rtx op0, rtx op1)
+{
+ riscv_extend_comparands (code, &op0, &op1);
+ op0 = force_reg (word_mode, op0);
+
+ if (code == EQ || code == NE)
+ {
+ rtx zie = riscv_zero_if_equal (op0, op1);
+ riscv_emit_binary (code, target, zie, const0_rtx);
+ }
+ else
+ riscv_emit_int_order_test (code, 0, target, op0, op1);
+}
+
+/* Like riscv_expand_int_scc, but for floating-point comparisons. */
+
+void
+riscv_expand_float_scc (rtx target, enum rtx_code code, rtx op0, rtx op1)
+{
+ riscv_emit_float_compare (&code, &op0, &op1);
+
+ rtx cmp = riscv_force_binary (word_mode, code, op0, op1);
+ riscv_emit_set (target, lowpart_subreg (SImode, cmp, word_mode));
+}
+
+/* Jump to LABEL if (CODE OP0 OP1) holds. */
+
+void
+riscv_expand_conditional_branch (rtx label, rtx_code code, rtx op0, rtx op1)
+{
+ if (FLOAT_MODE_P (GET_MODE (op1)))
+ riscv_emit_float_compare (&code, &op0, &op1);
+ else
+ riscv_emit_int_compare (&code, &op0, &op1);
+
+ rtx condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+ emit_jump_insn (gen_condjump (condition, label));
+}
+
+/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
+ least PARM_BOUNDARY bits of alignment, but will be given anything up
+ to STACK_BOUNDARY bits if the type requires it. */
+
+static unsigned int
+riscv_function_arg_boundary (enum machine_mode mode, const_tree type)
+{
+ unsigned int alignment;
+
+ /* Use natural alignment if the type is not aggregate data. */
+ if (type && !AGGREGATE_TYPE_P (type))
+ alignment = TYPE_ALIGN (TYPE_MAIN_VARIANT (type));
+ else
+ alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
+
+ return MIN (STACK_BOUNDARY, MAX (PARM_BOUNDARY, alignment));
+}
+
+/* If MODE represents an argument that can be passed or returned in
+ floating-point registers, return the number of registers, else 0. */
+
+static unsigned
+riscv_pass_mode_in_fpr_p (enum machine_mode mode)
+{
+ if (GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FP_ARG)
+ {
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ return 1;
+
+ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
+ return 2;
+ }
+
+ return 0;
+}
+
+typedef struct {
+ const_tree type;
+ HOST_WIDE_INT offset;
+} riscv_aggregate_field;
+
+/* Identify subfields of aggregates that are candidates for passing in
+ floating-point registers. */
+
+static int
+riscv_flatten_aggregate_field (const_tree type,
+ riscv_aggregate_field fields[2],
+ int n, HOST_WIDE_INT offset)
+{
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ /* Can't handle incomplete types nor sizes that are not fixed. */
+ if (!COMPLETE_TYPE_P (type)
+ || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ || !tree_fits_uhwi_p (TYPE_SIZE (type)))
+ return -1;
+
+ for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f))
+ if (TREE_CODE (f) == FIELD_DECL)
+ {
+ if (!TYPE_P (TREE_TYPE (f)))
+ return -1;
+
+ HOST_WIDE_INT pos = offset + int_byte_position (f);
+ n = riscv_flatten_aggregate_field (TREE_TYPE (f), fields, n, pos);
+ if (n < 0)
+ return -1;
+ }
+ return n;
+
+ case ARRAY_TYPE:
+ {
+ HOST_WIDE_INT n_elts;
+ riscv_aggregate_field subfields[2];
+ tree index = TYPE_DOMAIN (type);
+ tree elt_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
+ int n_subfields = riscv_flatten_aggregate_field (TREE_TYPE (type),
+ subfields, 0, offset);
+
+ /* Can't handle incomplete types nor sizes that are not fixed. */
+ if (n_subfields <= 0
+ || !COMPLETE_TYPE_P (type)
+ || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ || !index
+ || !TYPE_MAX_VALUE (index)
+ || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
+ || !TYPE_MIN_VALUE (index)
+ || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
+ || !tree_fits_uhwi_p (elt_size))
+ return -1;
+
+ n_elts = 1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
+ - tree_to_uhwi (TYPE_MIN_VALUE (index));
+ gcc_assert (n_elts >= 0);
+
+ for (HOST_WIDE_INT i = 0; i < n_elts; i++)
+ for (int j = 0; j < n_subfields; j++)
+ {
+ if (n >= 2)
+ return -1;
+
+ fields[n] = subfields[j];
+ fields[n++].offset += i * tree_to_uhwi (elt_size);
+ }
+
+ return n;
+ }
+
+ case COMPLEX_TYPE:
+ {
+ /* Complex type need consume 2 field, so n must be 0. */
+ if (n != 0)
+ return -1;
+
+ HOST_WIDE_INT elt_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)));
+
+ if (elt_size <= UNITS_PER_FP_ARG)
+ {
+ fields[0].type = TREE_TYPE (type);
+ fields[0].offset = offset;
+ fields[1].type = TREE_TYPE (type);
+ fields[1].offset = offset + elt_size;
+
+ return 2;
+ }
+
+ return -1;
+ }
+
+ default:
+ if (n < 2
+ && ((SCALAR_FLOAT_TYPE_P (type)
+ && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FP_ARG)
+ || (INTEGRAL_TYPE_P (type)
+ && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD)))
+ {
+ fields[n].type = type;
+ fields[n].offset = offset;
+ return n + 1;
+ }
+ else
+ return -1;
+ }
+}
+
+/* Identify candidate aggregates for passing in floating-point registers.
+ Candidates have at most two fields after flattening. */
+
+static int
+riscv_flatten_aggregate_argument (const_tree type,
+ riscv_aggregate_field fields[2])
+{
+ if (!type || TREE_CODE (type) != RECORD_TYPE)
+ return -1;
+
+ return riscv_flatten_aggregate_field (type, fields, 0, 0);
+}
+
+/* See whether TYPE is a record whose fields should be returned in one or
+ two floating-point registers. If so, populate FIELDS accordingly. */
+
+static unsigned
+riscv_pass_aggregate_in_fpr_pair_p (const_tree type,
+ riscv_aggregate_field fields[2])
+{
+ int n = riscv_flatten_aggregate_argument (type, fields);
+
+ for (int i = 0; i < n; i++)
+ if (!SCALAR_FLOAT_TYPE_P (fields[i].type))
+ return 0;
+
+ return n > 0 ? n : 0;
+}
+
+/* See whether TYPE is a record whose fields should be returned in one or
+ floating-point register and one integer register. If so, populate
+ FIELDS accordingly. */
+
+static bool
+riscv_pass_aggregate_in_fpr_and_gpr_p (const_tree type,
+ riscv_aggregate_field fields[2])
+{
+ unsigned num_int = 0, num_float = 0;
+ int n = riscv_flatten_aggregate_argument (type, fields);
+
+ for (int i = 0; i < n; i++)
+ {
+ num_float += SCALAR_FLOAT_TYPE_P (fields[i].type);
+ num_int += INTEGRAL_TYPE_P (fields[i].type);
+ }
+
+ return num_int == 1 && num_float == 1;
+}
+
+/* Return the representation of an argument passed or returned in an FPR
+ when the value has mode VALUE_MODE and the type has TYPE_MODE. The
+ two modes may be different for structures like:
+
+ struct __attribute__((packed)) foo { float f; }
+
+ where the SFmode value "f" is passed in REGNO but the struct itself
+ has mode BLKmode. */
+
+static rtx
+riscv_pass_fpr_single (enum machine_mode type_mode, unsigned regno,
+ enum machine_mode value_mode)
+{
+ rtx x = gen_rtx_REG (value_mode, regno);
+
+ if (type_mode != value_mode)
+ {
+ x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
+ x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
+ }
+ return x;
+}
+
+/* Pass or return a composite value in the FPR pair REGNO and REGNO + 1.
+ MODE is the mode of the composite. MODE1 and OFFSET1 are the mode and
+ byte offset for the first value, likewise MODE2 and OFFSET2 for the
+ second value. */
+
+static rtx
+riscv_pass_fpr_pair (enum machine_mode mode, unsigned regno1,
+ enum machine_mode mode1, HOST_WIDE_INT offset1,
+ unsigned regno2, enum machine_mode mode2,
+ HOST_WIDE_INT offset2)
+{
+ return gen_rtx_PARALLEL
+ (mode,
+ gen_rtvec (2,
+ gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (mode1, regno1),
+ GEN_INT (offset1)),
+ gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (mode2, regno2),
+ GEN_INT (offset2))));
+}
+
+/* Fill INFO with information about a single argument, and return an
+ RTL pattern to pass or return the argument. CUM is the cumulative
+ state for earlier arguments. MODE is the mode of this argument and
+ TYPE is its type (if known). NAMED is true if this is a named
+ (fixed) argument rather than a variable one. RETURN_P is true if
+ returning the argument, or false if passing the argument. */
+
+static rtx
+riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum,
+ enum machine_mode mode, const_tree type, bool named,
+ bool return_p)
+{
+ unsigned num_bytes, num_words;
+ unsigned fpr_base = return_p ? FP_RETURN : FP_ARG_FIRST;
+ unsigned gpr_base = return_p ? GP_RETURN : GP_ARG_FIRST;
+ unsigned alignment = riscv_function_arg_boundary (mode, type);
+
+ memset (info, 0, sizeof (*info));
+ info->gpr_offset = cum->num_gprs;
+ info->fpr_offset = cum->num_fprs;
+
+ if (named)
+ {
+ riscv_aggregate_field fields[2];
+ unsigned fregno = fpr_base + info->fpr_offset;
+ unsigned gregno = gpr_base + info->gpr_offset;
+
+ /* Pass one- or two-element floating-point aggregates in FPRs. */
+ if ((info->num_fprs = riscv_pass_aggregate_in_fpr_pair_p (type, fields))
+ && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
+ switch (info->num_fprs)
+ {
+ case 1:
+ return riscv_pass_fpr_single (mode, fregno,
+ TYPE_MODE (fields[0].type));
+
+ case 2:
+ return riscv_pass_fpr_pair (mode, fregno,
+ TYPE_MODE (fields[0].type),
+ fields[0].offset,
+ fregno + 1,
+ TYPE_MODE (fields[1].type),
+ fields[1].offset);
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Pass real and complex floating-point numbers in FPRs. */
+ if ((info->num_fprs = riscv_pass_mode_in_fpr_p (mode))
+ && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_FLOAT:
+ return gen_rtx_REG (mode, fregno);
+
+ case MODE_COMPLEX_FLOAT:
+ return riscv_pass_fpr_pair (mode, fregno, GET_MODE_INNER (mode), 0,
+ fregno + 1, GET_MODE_INNER (mode),
+ GET_MODE_UNIT_SIZE (mode));
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Pass structs with one float and one integer in an FPR and a GPR. */
+ if (riscv_pass_aggregate_in_fpr_and_gpr_p (type, fields)
+ && info->gpr_offset < MAX_ARGS_IN_REGISTERS
+ && info->fpr_offset < MAX_ARGS_IN_REGISTERS)
+ {
+ info->num_gprs = 1;
+ info->num_fprs = 1;
+
+ if (!SCALAR_FLOAT_TYPE_P (fields[0].type))
+ std::swap (fregno, gregno);
+
+ return riscv_pass_fpr_pair (mode, fregno, TYPE_MODE (fields[0].type),
+ fields[0].offset,
+ gregno, TYPE_MODE (fields[1].type),
+ fields[1].offset);
+ }
+ }
+
+ /* Work out the size of the argument. */
+ num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
+ num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ /* Doubleword-aligned varargs start on an even register boundary. */
+ if (!named && num_bytes != 0 && alignment > BITS_PER_WORD)
+ info->gpr_offset += info->gpr_offset & 1;
+
+ /* Partition the argument between registers and stack. */
+ info->num_fprs = 0;
+ info->num_gprs = MIN (num_words, MAX_ARGS_IN_REGISTERS - info->gpr_offset);
+ info->stack_p = (num_words - info->num_gprs) != 0;
+
+ if (info->num_gprs || return_p)
+ return gen_rtx_REG (mode, gpr_base + info->gpr_offset);
+
+ return NULL_RTX;
+}
+
+/* Implement TARGET_FUNCTION_ARG. */
+
+static rtx
+riscv_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ struct riscv_arg_info info;
+
+ if (mode == VOIDmode)
+ return NULL;
+
+ return riscv_get_arg_info (&info, cum, mode, type, named, false);
+}
+
+/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
+
+static void
+riscv_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ struct riscv_arg_info info;
+
+ riscv_get_arg_info (&info, cum, mode, type, named, false);
+
+ /* Advance the register count. This has the effect of setting
+ num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
+ argument required us to skip the final GPR and pass the whole
+ argument on the stack. */
+ cum->num_fprs = info.fpr_offset + info.num_fprs;
+ cum->num_gprs = info.gpr_offset + info.num_gprs;
+}
+
+/* Implement TARGET_ARG_PARTIAL_BYTES. */
+
+static int
+riscv_arg_partial_bytes (cumulative_args_t cum,
+ enum machine_mode mode, tree type, bool named)
+{
+ struct riscv_arg_info arg;
+
+ riscv_get_arg_info (&arg, get_cumulative_args (cum), mode, type, named, false);
+ return arg.stack_p ? arg.num_gprs * UNITS_PER_WORD : 0;
+}
+
+/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
+ VALTYPE is the return type and MODE is VOIDmode. For libcalls,
+ VALTYPE is null and MODE is the mode of the return value. */
+
+rtx
+riscv_function_value (const_tree type, const_tree func, enum machine_mode mode)
+{
+ struct riscv_arg_info info;
+ CUMULATIVE_ARGS args;
+
+ if (type)
+ {
+ int unsigned_p = TYPE_UNSIGNED (type);
+
+ mode = TYPE_MODE (type);
+
+ /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
+ return values, promote the mode here too. */
+ mode = promote_function_mode (type, mode, &unsigned_p, func, 1);
+ }
+
+ memset (&args, 0, sizeof args);
+ return riscv_get_arg_info (&info, &args, mode, type, true, true);
+}
+
+/* Implement TARGET_PASS_BY_REFERENCE. */
+
+static bool
+riscv_pass_by_reference (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ HOST_WIDE_INT size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
+ struct riscv_arg_info info;
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ /* ??? std_gimplify_va_arg_expr passes NULL for cum. Fortunately, we
+ never pass variadic arguments in floating-point registers, so we can
+ avoid the call to riscv_get_arg_info in this case. */
+ if (cum != NULL)
+ {
+ /* Don't pass by reference if we can use a floating-point register. */
+ riscv_get_arg_info (&info, cum, mode, type, named, false);
+ if (info.num_fprs)
+ return false;
+ }
+
+ /* Pass by reference if the data do not fit in two integer registers. */
+ return !IN_RANGE (size, 0, 2 * UNITS_PER_WORD);
+}
+
+/* Implement TARGET_RETURN_IN_MEMORY. */
+
+static bool
+riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS args;
+ cumulative_args_t cum = pack_cumulative_args (&args);
+
+ /* The rules for returning in memory are the same as for passing the
+ first named argument by reference. */
+ memset (&args, 0, sizeof args);
+ return riscv_pass_by_reference (cum, TYPE_MODE (type), type, true);
+}
+
+/* Implement TARGET_SETUP_INCOMING_VARARGS. */
+
+static void
+riscv_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
+ tree type, int *pretend_size ATTRIBUTE_UNUSED,
+ int no_rtl)
+{
+ CUMULATIVE_ARGS local_cum;
+ int gp_saved;
+
+ /* The caller has advanced CUM up to, but not beyond, the last named
+ argument. Advance a local copy of CUM past the last "real" named
+ argument, to find out how many registers are left over. */
+ local_cum = *get_cumulative_args (cum);
+ riscv_function_arg_advance (pack_cumulative_args (&local_cum), mode, type, 1);
+
+ /* Found out how many registers we need to save. */
+ gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
+
+ if (!no_rtl && gp_saved > 0)
+ {
+ rtx ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
+ REG_PARM_STACK_SPACE (cfun->decl)
+ - gp_saved * UNITS_PER_WORD);
+ rtx mem = gen_frame_mem (BLKmode, ptr);
+ set_mem_alias_set (mem, get_varargs_alias_set ());
+
+ move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
+ mem, gp_saved);
+ }
+ if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
+ cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD;
+}
+
+/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
+
+static void
+riscv_va_start (tree valist, rtx nextarg)
+{
+ nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
+ std_expand_builtin_va_start (valist, nextarg);
+}
+
+/* Make ADDR suitable for use as a call or sibcall target. */
+
+rtx
+riscv_legitimize_call_address (rtx addr)
+{
+ if (!call_insn_operand (addr, VOIDmode))
+ {
+ rtx reg = RISCV_PROLOGUE_TEMP (Pmode);
+ riscv_emit_move (reg, addr);
+ return reg;
+ }
+ return addr;
+}
+
+/* Print symbolic operand OP, which is part of a HIGH or LO_SUM
+ in context CONTEXT. HI_RELOC indicates a high-part reloc. */
+
+static void
+riscv_print_operand_reloc (FILE *file, rtx op, bool hi_reloc)
+{
+ const char *reloc;
+
+ switch (riscv_classify_symbolic_expression (op))
+ {
+ case SYMBOL_ABSOLUTE:
+ reloc = hi_reloc ? "%hi" : "%lo";
+ break;
+
+ case SYMBOL_PCREL:
+ reloc = hi_reloc ? "%pcrel_hi" : "%pcrel_lo";
+ break;
+
+ case SYMBOL_TLS_LE:
+ reloc = hi_reloc ? "%tprel_hi" : "%tprel_lo";
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, "%s(", reloc);
+ output_addr_const (file, riscv_strip_unspec_address (op));
+ fputc (')', file);
+}
+
+/* Return true if the .AQ suffix should be added to an AMO to implement the
+ acquire portion of memory model MODEL. */
+
+static bool
+riscv_memmodel_needs_amo_acquire (enum memmodel model)
+{
+ switch (model)
+ {
+ case MEMMODEL_ACQ_REL:
+ case MEMMODEL_SEQ_CST:
+ case MEMMODEL_SYNC_SEQ_CST:
+ case MEMMODEL_ACQUIRE:
+ case MEMMODEL_CONSUME:
+ case MEMMODEL_SYNC_ACQUIRE:
+ return true;
+
+ case MEMMODEL_RELEASE:
+ case MEMMODEL_SYNC_RELEASE:
+ case MEMMODEL_RELAXED:
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if a FENCE should be emitted to before a memory access to
+ implement the release portion of memory model MODEL. */
+
+static bool
+riscv_memmodel_needs_release_fence (enum memmodel model)
+{
+ switch (model)
+ {
+ case MEMMODEL_ACQ_REL:
+ case MEMMODEL_SEQ_CST:
+ case MEMMODEL_SYNC_SEQ_CST:
+ case MEMMODEL_RELEASE:
+ case MEMMODEL_SYNC_RELEASE:
+ return true;
+
+ case MEMMODEL_ACQUIRE:
+ case MEMMODEL_CONSUME:
+ case MEMMODEL_SYNC_ACQUIRE:
+ case MEMMODEL_RELAXED:
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are:
+
+ 'h' Print the high-part relocation associated with OP, after stripping
+ any outermost HIGH.
+ 'R' Print the low-part relocation associated with OP.
+ 'C' Print the integer branch condition for comparison OP.
+ 'A' Print the atomic operation suffix for memory model OP.
+ 'F' Print a FENCE if the memory model requires a release.
+ 'z' Print x0 if OP is zero, otherwise print OP normally. */
+
+static void
+riscv_print_operand (FILE *file, rtx op, int letter)
+{
+ enum machine_mode mode = GET_MODE (op);
+ enum rtx_code code = GET_CODE (op);
+
+ switch (letter)
+ {
+ case 'h':
+ if (code == HIGH)
+ op = XEXP (op, 0);
+ riscv_print_operand_reloc (file, op, true);
+ break;
+
+ case 'R':
+ riscv_print_operand_reloc (file, op, false);
+ break;
+
+ case 'C':
+ /* The RTL names match the instruction names. */
+ fputs (GET_RTX_NAME (code), file);
+ break;
+
+ case 'A':
+ if (riscv_memmodel_needs_amo_acquire ((enum memmodel) INTVAL (op)))
+ fputs (".aq", file);
+ break;
+
+ case 'F':
+ if (riscv_memmodel_needs_release_fence ((enum memmodel) INTVAL (op)))
+ fputs ("fence rw,w; ", file);
+ break;
+
+ default:
+ switch (code)
+ {
+ case REG:
+ if (letter && letter != 'z')
+ output_operand_lossage ("invalid use of '%%%c'", letter);
+ fprintf (file, "%s", reg_names[REGNO (op)]);
+ break;
+
+ case MEM:
+ if (letter && letter != 'z')
+ output_operand_lossage ("invalid use of '%%%c'", letter);
+ else
+ output_address (mode, XEXP (op, 0));
+ break;
+
+ default:
+ if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
+ fputs (reg_names[GP_REG_FIRST], file);
+ else if (letter && letter != 'z')
+ output_operand_lossage ("invalid use of '%%%c'", letter);
+ else
+ output_addr_const (file, riscv_strip_unspec_address (op));
+ break;
+ }
+ }
+}
+
+/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
+
+static void
+riscv_print_operand_address (FILE *file, machine_mode mode ATTRIBUTE_UNUSED, rtx x)
+{
+ struct riscv_address_info addr;
+
+ if (riscv_classify_address (&addr, x, word_mode, true))
+ switch (addr.type)
+ {
+ case ADDRESS_REG:
+ riscv_print_operand (file, addr.offset, 0);
+ fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
+ return;
+
+ case ADDRESS_LO_SUM:
+ riscv_print_operand_reloc (file, addr.offset, false);
+ fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
+ return;
+
+ case ADDRESS_CONST_INT:
+ output_addr_const (file, x);
+ fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
+ return;
+
+ case ADDRESS_SYMBOLIC:
+ output_addr_const (file, riscv_strip_unspec_address (x));
+ return;
+ }
+ gcc_unreachable ();
+}
+
+static bool
+riscv_size_ok_for_small_data_p (int size)
+{
+ return g_switch_value && IN_RANGE (size, 1, g_switch_value);
+}
+
+/* Return true if EXP should be placed in the small data section. */
+
+static bool
+riscv_in_small_data_p (const_tree x)
+{
+ if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL)
+ return false;
+
+ if (TREE_CODE (x) == VAR_DECL && DECL_SECTION_NAME (x))
+ {
+ const char *sec = DECL_SECTION_NAME (x);
+ return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0;
+ }
+
+ return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x)));
+}
+
+/* Return a section for X, handling small data. */
+
+static section *
+riscv_elf_select_rtx_section (enum machine_mode mode, rtx x,
+ unsigned HOST_WIDE_INT align)
+{
+ section *s = default_elf_select_rtx_section (mode, x, align);
+
+ if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode)))
+ {
+ if (strncmp (s->named.name, ".rodata.cst", strlen (".rodata.cst")) == 0)
+ {
+ /* Rename .rodata.cst* to .srodata.cst*. */
+ char *name = (char *) alloca (strlen (s->named.name) + 2);
+ sprintf (name, ".s%s", s->named.name + 1);
+ return get_section (name, s->named.common.flags, NULL);
+ }
+
+ if (s == data_section)
+ return sdata_section;
+ }
+
+ return s;
+}
+
+/* Make the last instruction frame-related and note that it performs
+ the operation described by FRAME_PATTERN. */
+
+static void
+riscv_set_frame_expr (rtx frame_pattern)
+{
+ rtx insn;
+
+ insn = get_last_insn ();
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
+ frame_pattern,
+ REG_NOTES (insn));
+}
+
+/* Return a frame-related rtx that stores REG at MEM.
+ REG must be a single register. */
+
+static rtx
+riscv_frame_set (rtx mem, rtx reg)
+{
+ rtx set = gen_rtx_SET (mem, reg);
+ RTX_FRAME_RELATED_P (set) = 1;
+ return set;
+}
+
+/* Return true if the current function must save register REGNO. */
+
+static bool
+riscv_save_reg_p (unsigned int regno)
+{
+ bool call_saved = !global_regs[regno] && !call_used_regs[regno];
+ bool might_clobber = crtl->saves_all_registers
+ || df_regs_ever_live_p (regno);
+
+ if (call_saved && might_clobber)
+ return true;
+
+ if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
+ return true;
+
+ if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return)
+ return true;
+
+ return false;
+}
+
+/* Determine whether to call GPR save/restore routines. */
+static bool
+riscv_use_save_libcall (const struct riscv_frame_info *frame)
+{
+ if (!TARGET_SAVE_RESTORE || crtl->calls_eh_return || frame_pointer_needed)
+ return false;
+
+ return frame->save_libcall_adjustment != 0;
+}
+
+/* Determine which GPR save/restore routine to call. */
+
+static unsigned
+riscv_save_libcall_count (unsigned mask)
+{
+ for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--)
+ if (BITSET_P (mask, n))
+ return CALLEE_SAVED_REG_NUMBER (n) + 1;
+ abort ();
+}
+
+/* Populate the current function's riscv_frame_info structure.
+
+ RISC-V stack frames grown downward. High addresses are at the top.
+
+ +-------------------------------+
+ | |
+ | incoming stack arguments |
+ | |
+ +-------------------------------+ <-- incoming stack pointer
+ | |
+ | callee-allocated save area |
+ | for arguments that are |
+ | split between registers and |
+ | the stack |
+ | |
+ +-------------------------------+ <-- arg_pointer_rtx
+ | |
+ | callee-allocated save area |
+ | for register varargs |
+ | |
+ +-------------------------------+ <-- hard_frame_pointer_rtx;
+ | | stack_pointer_rtx + gp_sp_offset
+ | GPR save area | + UNITS_PER_WORD
+ | |
+ +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
+ | | + UNITS_PER_HWVALUE
+ | FPR save area |
+ | |
+ +-------------------------------+ <-- frame_pointer_rtx (virtual)
+ | |
+ | local variables |
+ | |
+ P +-------------------------------+
+ | |
+ | outgoing stack arguments |
+ | |
+ +-------------------------------+ <-- stack_pointer_rtx
+
+ Dynamic stack allocations such as alloca insert data at point P.
+ They decrease stack_pointer_rtx but leave frame_pointer_rtx and
+ hard_frame_pointer_rtx unchanged. */
+
+static void
+riscv_compute_frame_info (void)
+{
+ struct riscv_frame_info *frame;
+ HOST_WIDE_INT offset;
+ unsigned int regno, i, num_x_saved = 0, num_f_saved = 0;
+
+ frame = &cfun->machine->frame;
+ memset (frame, 0, sizeof (*frame));
+
+ /* Find out which GPRs we need to save. */
+ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
+ if (riscv_save_reg_p (regno))
+ frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
+
+ /* If this function calls eh_return, we must also save and restore the
+ EH data registers. */
+ if (crtl->calls_eh_return)
+ for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++)
+ frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
+
+ /* Find out which FPRs we need to save. This loop must iterate over
+ the same space as its companion in riscv_for_each_saved_reg. */
+ if (TARGET_HARD_FLOAT)
+ for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
+ if (riscv_save_reg_p (regno))
+ frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++;
+
+ /* At the bottom of the frame are any outgoing stack arguments. */
+ offset = crtl->outgoing_args_size;
+ /* Next are local stack variables. */
+ offset += RISCV_STACK_ALIGN (get_frame_size ());
+ /* The virtual frame pointer points above the local variables. */
+ frame->frame_pointer_offset = offset;
+ /* Next are the callee-saved FPRs. */
+ if (frame->fmask)
+ offset += RISCV_STACK_ALIGN (num_f_saved * UNITS_PER_FP_REG);
+ frame->fp_sp_offset = offset - UNITS_PER_FP_REG;
+ /* Next are the callee-saved GPRs. */
+ if (frame->mask)
+ {
+ unsigned x_save_size = RISCV_STACK_ALIGN (num_x_saved * UNITS_PER_WORD);
+ unsigned num_save_restore = 1 + riscv_save_libcall_count (frame->mask);
+
+ /* Only use save/restore routines if they don't alter the stack size. */
+ if (RISCV_STACK_ALIGN (num_save_restore * UNITS_PER_WORD) == x_save_size)
+ frame->save_libcall_adjustment = x_save_size;
+
+ offset += x_save_size;
+ }
+ frame->gp_sp_offset = offset - UNITS_PER_WORD;
+ /* The hard frame pointer points above the callee-saved GPRs. */
+ frame->hard_frame_pointer_offset = offset;
+ /* Above the hard frame pointer is the callee-allocated varags save area. */
+ offset += RISCV_STACK_ALIGN (cfun->machine->varargs_size);
+ frame->arg_pointer_offset = offset;
+ /* Next is the callee-allocated area for pretend stack arguments. */
+ offset += crtl->args.pretend_args_size;
+ frame->total_size = offset;
+ /* Next points the incoming stack pointer and any incoming arguments. */
+
+ /* Only use save/restore routines when the GPRs are atop the frame. */
+ if (frame->hard_frame_pointer_offset != frame->total_size)
+ frame->save_libcall_adjustment = 0;
+}
+
+/* Make sure that we're not trying to eliminate to the wrong hard frame
+ pointer. */
+
+static bool
+riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
+{
+ return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
+}
+
+/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
+ or argument pointer. TO is either the stack pointer or hard frame
+ pointer. */
+
+HOST_WIDE_INT
+riscv_initial_elimination_offset (int from, int to)
+{
+ HOST_WIDE_INT src, dest;
+
+ riscv_compute_frame_info ();
+
+ if (to == HARD_FRAME_POINTER_REGNUM)
+ dest = cfun->machine->frame.hard_frame_pointer_offset;
+ else if (to == STACK_POINTER_REGNUM)
+ dest = 0; /* The stack pointer is the base of all offsets, hence 0. */
+ else
+ gcc_unreachable ();
+
+ if (from == FRAME_POINTER_REGNUM)
+ src = cfun->machine->frame.frame_pointer_offset;
+ else if (from == ARG_POINTER_REGNUM)
+ src = cfun->machine->frame.arg_pointer_offset;
+ else
+ gcc_unreachable ();
+
+ return src - dest;
+}
+
+/* Implement RETURN_ADDR_RTX. We do not support moving back to a
+ previous frame. */
+
+rtx
+riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+ if (count != 0)
+ return const0_rtx;
+
+ return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
+}
+
+/* Emit code to change the current function's return address to
+ ADDRESS. SCRATCH is available as a scratch register, if needed.
+ ADDRESS and SCRATCH are both word-mode GPRs. */
+
+void
+riscv_set_return_address (rtx address, rtx scratch)
+{
+ rtx slot_address;
+
+ gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
+ slot_address = riscv_add_offset (scratch, stack_pointer_rtx,
+ cfun->machine->frame.gp_sp_offset);
+ riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
+}
+
+/* A function to save or store a register. The first argument is the
+ register and the second is the stack slot. */
+typedef void (*riscv_save_restore_fn) (rtx, rtx);
+
+/* Use FN to save or restore register REGNO. MODE is the register's
+ mode and OFFSET is the offset of its save slot from the current
+ stack pointer. */
+
+static void
+riscv_save_restore_reg (enum machine_mode mode, int regno,
+ HOST_WIDE_INT offset, riscv_save_restore_fn fn)
+{
+ rtx mem;
+
+ mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset));
+ fn (gen_rtx_REG (mode, regno), mem);
+}
+
+/* Call FN for each register that is saved by the current function.
+ SP_OFFSET is the offset of the current stack pointer from the start
+ of the frame. */
+
+static void
+riscv_for_each_saved_reg (HOST_WIDE_INT sp_offset, riscv_save_restore_fn fn)
+{
+ HOST_WIDE_INT offset;
+
+ /* Save the link register and s-registers. */
+ offset = cfun->machine->frame.gp_sp_offset - sp_offset;
+ for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++)
+ if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
+ {
+ riscv_save_restore_reg (word_mode, regno, offset, fn);
+ offset -= UNITS_PER_WORD;
+ }
+
+ /* This loop must iterate over the same space as its companion in
+ riscv_compute_frame_info. */
+ offset = cfun->machine->frame.fp_sp_offset - sp_offset;
+ for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
+ if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
+ {
+ enum machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode;
+
+ riscv_save_restore_reg (mode, regno, offset, fn);
+ offset -= GET_MODE_SIZE (mode);
+ }
+}
+
+/* Save register REG to MEM. Make the instruction frame-related. */
+
+static void
+riscv_save_reg (rtx reg, rtx mem)
+{
+ riscv_emit_move (mem, reg);
+ riscv_set_frame_expr (riscv_frame_set (mem, reg));
+}
+
+/* Restore register REG from MEM. */
+
+static void
+riscv_restore_reg (rtx reg, rtx mem)
+{
+ rtx insn = riscv_emit_move (reg, mem);
+ rtx dwarf = NULL_RTX;
+ dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
+ REG_NOTES (insn) = dwarf;
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+}
+
+/* Return the code to invoke the GPR save routine. */
+
+const char *
+riscv_output_gpr_save (unsigned mask)
+{
+ static char s[32];
+ unsigned n = riscv_save_libcall_count (mask);
+
+ ssize_t bytes = snprintf (s, sizeof (s), "call\tt0,__riscv_save_%u", n);
+ gcc_assert ((size_t) bytes < sizeof (s));
+
+ return s;
+}
+
+/* For stack frames that can't be allocated with a single ADDI instruction,
+ compute the best value to initially allocate. It must at a minimum
+ allocate enough space to spill the callee-saved registers. */
+
+static HOST_WIDE_INT
+riscv_first_stack_step (struct riscv_frame_info *frame)
+{
+ HOST_WIDE_INT min_first_step = frame->total_size - frame->fp_sp_offset;
+ HOST_WIDE_INT max_first_step = IMM_REACH / 2 - STACK_BOUNDARY / 8;
+
+ if (SMALL_OPERAND (frame->total_size))
+ return frame->total_size;
+
+ /* As an optimization, use the least-significant bits of the total frame
+ size, so that the second adjustment step is just LUI + ADD. */
+ if (!SMALL_OPERAND (frame->total_size - max_first_step)
+ && frame->total_size % IMM_REACH < IMM_REACH / 2
+ && frame->total_size % IMM_REACH >= min_first_step)
+ return frame->total_size % IMM_REACH;
+
+ gcc_assert (min_first_step <= max_first_step);
+ return max_first_step;
+}
+
+static rtx
+riscv_adjust_libcall_cfi_prologue ()
+{
+ rtx dwarf = NULL_RTX;
+ rtx adjust_sp_rtx, reg, mem, insn;
+ int saved_size = cfun->machine->frame.save_libcall_adjustment;
+ int offset;
+
+ for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++)
+ if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
+ {
+ /* The save order is ra, s0, s1, s2 to s11. */
+ if (regno == RETURN_ADDR_REGNUM)
+ offset = saved_size - UNITS_PER_WORD;
+ else if (regno == S0_REGNUM)
+ offset = saved_size - UNITS_PER_WORD * 2;
+ else if (regno == S1_REGNUM)
+ offset = saved_size - UNITS_PER_WORD * 3;
+ else
+ offset = saved_size - ((regno - S2_REGNUM + 4) * UNITS_PER_WORD);
+
+ reg = gen_rtx_REG (SImode, regno);
+ mem = gen_frame_mem (SImode, plus_constant (Pmode,
+ stack_pointer_rtx,
+ offset));
+
+ insn = gen_rtx_SET (mem, reg);
+ dwarf = alloc_reg_note (REG_CFA_OFFSET, insn, dwarf);
+ }
+
+ /* Debug info for adjust sp. */
+ adjust_sp_rtx = gen_add3_insn (stack_pointer_rtx,
+ stack_pointer_rtx, GEN_INT (-saved_size));
+ dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx,
+ dwarf);
+ return dwarf;
+}
+
+static void
+riscv_emit_stack_tie (void)
+{
+ if (Pmode == SImode)
+ emit_insn (gen_stack_tiesi (stack_pointer_rtx, hard_frame_pointer_rtx));
+ else
+ emit_insn (gen_stack_tiedi (stack_pointer_rtx, hard_frame_pointer_rtx));
+}
+
+/* Expand the "prologue" pattern. */
+
+void
+riscv_expand_prologue (void)
+{
+ struct riscv_frame_info *frame = &cfun->machine->frame;
+ HOST_WIDE_INT size = frame->total_size;
+ unsigned mask = frame->mask;
+ rtx insn;
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = size;
+
+ /* When optimizing for size, call a subroutine to save the registers. */
+ if (riscv_use_save_libcall (frame))
+ {
+ rtx dwarf = NULL_RTX;
+ dwarf = riscv_adjust_libcall_cfi_prologue ();
+
+ frame->mask = 0; /* Temporarily fib that we need not save GPRs. */
+ size -= frame->save_libcall_adjustment;
+ insn = emit_insn (gen_gpr_save (GEN_INT (mask)));
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = dwarf;
+ }
+
+ /* Save the registers. */
+ if ((frame->mask | frame->fmask) != 0)
+ {
+ HOST_WIDE_INT step1 = MIN (size, riscv_first_stack_step (frame));
+
+ insn = gen_add3_insn (stack_pointer_rtx,
+ stack_pointer_rtx,
+ GEN_INT (-step1));
+ RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
+ size -= step1;
+ riscv_for_each_saved_reg (size, riscv_save_reg);
+ }
+
+ frame->mask = mask; /* Undo the above fib. */
+
+ /* Set up the frame pointer, if we're using one. */
+ if (frame_pointer_needed)
+ {
+ insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (frame->hard_frame_pointer_offset - size));
+ RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
+
+ riscv_emit_stack_tie ();
+ }
+
+ /* Allocate the rest of the frame. */
+ if (size > 0)
+ {
+ if (SMALL_OPERAND (-size))
+ {
+ insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-size));
+ RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
+ }
+ else
+ {
+ riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (-size));
+ emit_insn (gen_add3_insn (stack_pointer_rtx,
+ stack_pointer_rtx,
+ RISCV_PROLOGUE_TEMP (Pmode)));
+
+ /* Describe the effect of the previous instructions. */
+ insn = plus_constant (Pmode, stack_pointer_rtx, -size);
+ insn = gen_rtx_SET (stack_pointer_rtx, insn);
+ riscv_set_frame_expr (insn);
+ }
+ }
+}
+
+static rtx
+riscv_adjust_libcall_cfi_epilogue ()
+{
+ rtx dwarf = NULL_RTX;
+ rtx adjust_sp_rtx, reg;
+ int saved_size = cfun->machine->frame.save_libcall_adjustment;
+
+ /* Debug info for adjust sp. */
+ adjust_sp_rtx = gen_add3_insn (stack_pointer_rtx,
+ stack_pointer_rtx, GEN_INT (saved_size));
+ dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx,
+ dwarf);
+
+ for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++)
+ if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
+ {
+ reg = gen_rtx_REG (SImode, regno);
+ dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
+ }
+
+ return dwarf;
+}
+
+/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
+ says which. */
+
+void
+riscv_expand_epilogue (bool sibcall_p)
+{
+ /* Split the frame into two. STEP1 is the amount of stack we should
+ deallocate before restoring the registers. STEP2 is the amount we
+ should deallocate afterwards.
+
+ Start off by assuming that no registers need to be restored. */
+ struct riscv_frame_info *frame = &cfun->machine->frame;
+ unsigned mask = frame->mask;
+ HOST_WIDE_INT step1 = frame->total_size;
+ HOST_WIDE_INT step2 = 0;
+ bool use_restore_libcall = !sibcall_p && riscv_use_save_libcall (frame);
+ rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
+ rtx insn;
+
+ /* We need to add memory barrier to prevent read from deallocated stack. */
+ bool need_barrier_p = (get_frame_size ()
+ + cfun->machine->frame.arg_pointer_offset) != 0;
+
+ if (!sibcall_p && riscv_can_use_return_insn ())
+ {
+ emit_jump_insn (gen_return ());
+ return;
+ }
+
+ /* Move past any dynamic stack allocations. */
+ if (cfun->calls_alloca)
+ {
+ /* Emit a barrier to prevent loads from a deallocated stack. */
+ riscv_emit_stack_tie ();
+ need_barrier_p = false;
+
+ rtx adjust = GEN_INT (-frame->hard_frame_pointer_offset);
+ if (!SMALL_OPERAND (INTVAL (adjust)))
+ {
+ riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), adjust);
+ adjust = RISCV_PROLOGUE_TEMP (Pmode);
+ }
+
+ insn = emit_insn (
+ gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx,
+ adjust));
+
+ rtx dwarf = NULL_RTX;
+ rtx cfa_adjust_value = gen_rtx_PLUS (
+ Pmode, hard_frame_pointer_rtx,
+ GEN_INT (-frame->hard_frame_pointer_offset));
+ rtx cfa_adjust_rtx = gen_rtx_SET (stack_pointer_rtx, cfa_adjust_value);
+ dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, cfa_adjust_rtx, dwarf);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ REG_NOTES (insn) = dwarf;
+ }
+
+ /* If we need to restore registers, deallocate as much stack as
+ possible in the second step without going out of range. */
+ if ((frame->mask | frame->fmask) != 0)
+ {
+ step2 = riscv_first_stack_step (frame);
+ step1 -= step2;
+ }
+
+ /* Set TARGET to BASE + STEP1. */
+ if (step1 > 0)
+ {
+ /* Emit a barrier to prevent loads from a deallocated stack. */
+ riscv_emit_stack_tie ();
+ need_barrier_p = false;
+
+ /* Get an rtx for STEP1 that we can add to BASE. */
+ rtx adjust = GEN_INT (step1);
+ if (!SMALL_OPERAND (step1))
+ {
+ riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), adjust);
+ adjust = RISCV_PROLOGUE_TEMP (Pmode);
+ }
+
+ insn = emit_insn (
+ gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, adjust));
+
+ rtx dwarf = NULL_RTX;
+ rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ GEN_INT (step2));
+
+ dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ REG_NOTES (insn) = dwarf;
+ }
+
+ if (use_restore_libcall)
+ frame->mask = 0; /* Temporarily fib that we need not save GPRs. */
+
+ /* Restore the registers. */
+ riscv_for_each_saved_reg (frame->total_size - step2, riscv_restore_reg);
+
+ if (use_restore_libcall)
+ {
+ frame->mask = mask; /* Undo the above fib. */
+ gcc_assert (step2 >= frame->save_libcall_adjustment);
+ step2 -= frame->save_libcall_adjustment;
+ }
+
+ if (need_barrier_p)
+ riscv_emit_stack_tie ();
+
+ /* Deallocate the final bit of the frame. */
+ if (step2 > 0)
+ {
+ insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (step2)));
+
+ rtx dwarf = NULL_RTX;
+ rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ const0_rtx);
+ dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ REG_NOTES (insn) = dwarf;
+ }
+
+ if (use_restore_libcall)
+ {
+ rtx dwarf = riscv_adjust_libcall_cfi_epilogue ();
+ insn = emit_insn (gen_gpr_restore (GEN_INT (riscv_save_libcall_count (mask))));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = dwarf;
+
+ emit_jump_insn (gen_gpr_restore_return (ra));
+ return;
+ }
+
+ /* Add in the __builtin_eh_return stack adjustment. */
+ if (crtl->calls_eh_return)
+ emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
+ EH_RETURN_STACKADJ_RTX));
+
+ if (!sibcall_p)
+ emit_jump_insn (gen_simple_return_internal (ra));
+}
+
+/* Return nonzero if this function is known to have a null epilogue.
+ This allows the optimizer to omit jumps to jumps if no stack
+ was created. */
+
+bool
+riscv_can_use_return_insn (void)
+{
+ return reload_completed && cfun->machine->frame.total_size == 0;
+}
+
+/* Implement TARGET_REGISTER_MOVE_COST. */
+
+static int
+riscv_register_move_cost (enum machine_mode mode,
+ reg_class_t from, reg_class_t to)
+{
+ return SECONDARY_MEMORY_NEEDED (from, to, mode) ? 8 : 2;
+}
+
+/* Return true if register REGNO can store a value of mode MODE. */
+
+bool
+riscv_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
+{
+ unsigned int nregs = riscv_hard_regno_nregs (regno, mode);
+
+ if (GP_REG_P (regno))
+ {
+ if (!GP_REG_P (regno + nregs - 1))
+ return false;
+ }
+ else if (FP_REG_P (regno))
+ {
+ if (!FP_REG_P (regno + nregs - 1))
+ return false;
+
+ if (GET_MODE_CLASS (mode) != MODE_FLOAT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+ return false;
+
+ /* Only use callee-saved registers if a potential callee is guaranteed
+ to spill the requisite width. */
+ if (GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_REG
+ || (!call_used_regs[regno]
+ && GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_ARG))
+ return false;
+ }
+ else
+ return false;
+
+ /* Require same callee-savedness for all registers. */
+ for (unsigned i = 1; i < nregs; i++)
+ if (call_used_regs[regno] != call_used_regs[regno + i])
+ return false;
+
+ return true;
+}
+
+/* Implement HARD_REGNO_NREGS. */
+
+unsigned int
+riscv_hard_regno_nregs (int regno, enum machine_mode mode)
+{
+ if (FP_REG_P (regno))
+ return (GET_MODE_SIZE (mode) + UNITS_PER_FP_REG - 1) / UNITS_PER_FP_REG;
+
+ /* All other registers are word-sized. */
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+/* Implement CLASS_MAX_NREGS. */
+
+static unsigned char
+riscv_class_max_nregs (reg_class_t rclass, enum machine_mode mode)
+{
+ if (reg_class_subset_p (FP_REGS, rclass))
+ return riscv_hard_regno_nregs (FP_REG_FIRST, mode);
+
+ if (reg_class_subset_p (GR_REGS, rclass))
+ return riscv_hard_regno_nregs (GP_REG_FIRST, mode);
+
+ return 0;
+}
+
+/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
+
+static reg_class_t
+riscv_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
+{
+ return reg_class_subset_p (FP_REGS, rclass) ? FP_REGS :
+ reg_class_subset_p (GR_REGS, rclass) ? GR_REGS :
+ rclass;
+}
+
+/* Implement TARGET_MEMORY_MOVE_COST. */
+
+static int
+riscv_memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in)
+{
+ return (tune_info->memory_cost
+ + memory_move_secondary_cost (mode, rclass, in));
+}
+
+/* Return the number of instructions that can be issued per cycle. */
+
+static int
+riscv_issue_rate (void)
+{
+ return tune_info->issue_rate;
+}
+
+/* Implement TARGET_ASM_FILE_START. */
+
+static void
+riscv_file_start (void)
+{
+ default_file_start ();
+
+ /* Instruct GAS to generate position-[in]dependent code. */
+ fprintf (asm_out_file, "\t.option %spic\n", (flag_pic ? "" : "no"));
+}
+
+/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
+ in order to avoid duplicating too much logic from elsewhere. */
+
+static void
+riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+ tree function)
+{
+ rtx this_rtx, temp1, temp2, fnaddr;
+ rtx_insn *insn;
+
+ /* Pretend to be a post-reload pass while generating rtl. */
+ reload_completed = 1;
+
+ /* Mark the end of the (empty) prologue. */
+ emit_note (NOTE_INSN_PROLOGUE_END);
+
+ /* Determine if we can use a sibcall to call FUNCTION directly. */
+ fnaddr = gen_rtx_MEM (FUNCTION_MODE, XEXP (DECL_RTL (function), 0));
+
+ /* We need two temporary registers in some cases. */
+ temp1 = gen_rtx_REG (Pmode, RISCV_PROLOGUE_TEMP_REGNUM);
+ temp2 = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
+
+ /* Find out which register contains the "this" pointer. */
+ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
+ this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
+ else
+ this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
+
+ /* Add DELTA to THIS_RTX. */
+ if (delta != 0)
+ {
+ rtx offset = GEN_INT (delta);
+ if (!SMALL_OPERAND (delta))
+ {
+ riscv_emit_move (temp1, offset);
+ offset = temp1;
+ }
+ emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
+ }
+
+ /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
+ if (vcall_offset != 0)
+ {
+ rtx addr;
+
+ /* Set TEMP1 to *THIS_RTX. */
+ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
+
+ /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
+ addr = riscv_add_offset (temp2, temp1, vcall_offset);
+
+ /* Load the offset and add it to THIS_RTX. */
+ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
+ emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
+ }
+
+ /* Jump to the target function. */
+ insn = emit_call_insn (gen_sibcall (fnaddr, const0_rtx, NULL, const0_rtx));
+ SIBLING_CALL_P (insn) = 1;
+
+ /* Run just enough of rest_of_compilation. This sequence was
+ "borrowed" from alpha.c. */
+ insn = get_insns ();
+ split_all_insns_noflow ();
+ shorten_branches (insn);
+ final_start_function (insn, file, 1);
+ final (insn, file, 1);
+ final_end_function ();
+
+ /* Clean up the vars set above. Note that final_end_function resets
+ the global pointer for us. */
+ reload_completed = 0;
+}
+
+/* Allocate a chunk of memory for per-function machine-dependent data. */
+
+static struct machine_function *
+riscv_init_machine_status (void)
+{
+ return ggc_cleared_alloc<machine_function> ();
+}
+
+/* Implement TARGET_OPTION_OVERRIDE. */
+
+static void
+riscv_option_override (void)
+{
+ const struct riscv_cpu_info *cpu;
+
+#ifdef SUBTARGET_OVERRIDE_OPTIONS
+ SUBTARGET_OVERRIDE_OPTIONS;
+#endif
+
+ flag_pcc_struct_return = 0;
+
+ if (flag_pic)
+ g_switch_value = 0;
+
+ /* The presence of the M extension implies that division instructions
+ are present, so include them unless explicitly disabled. */
+ if (TARGET_MUL && (target_flags_explicit & MASK_DIV) == 0)
+ target_flags |= MASK_DIV;
+ else if (!TARGET_MUL && TARGET_DIV)
+ error ("-mdiv requires -march to subsume the %<M%> extension");
+
+ /* Likewise floating-point division and square root. */
+ if (TARGET_HARD_FLOAT && (target_flags_explicit & MASK_FDIV) == 0)
+ target_flags |= MASK_FDIV;
+
+ /* Handle -mtune. */
+ cpu = riscv_parse_cpu (riscv_tune_string ? riscv_tune_string :
+ RISCV_TUNE_STRING_DEFAULT);
+ tune_info = optimize_size ? &optimize_size_tune_info : cpu->tune_info;
+
+ /* If the user hasn't specified a branch cost, use the processor's
+ default. */
+ if (riscv_branch_cost == 0)
+ riscv_branch_cost = tune_info->branch_cost;
+
+ /* Function to allocate machine-dependent function status. */
+ init_machine_status = &riscv_init_machine_status;
+
+ if (flag_pic)
+ riscv_cmodel = CM_PIC;
+
+ /* We get better code with explicit relocs for CM_MEDLOW, but
+ worse code for the others (for now). Pick the best default. */
+ if ((target_flags_explicit & MASK_EXPLICIT_RELOCS) == 0)
+ if (riscv_cmodel == CM_MEDLOW)
+ target_flags |= MASK_EXPLICIT_RELOCS;
+
+ /* Require that the ISA supports the requested floating-point ABI. */
+ if (UNITS_PER_FP_ARG > (TARGET_HARD_FLOAT ? UNITS_PER_FP_REG : 0))
+ error ("requested ABI requires -march to subsume the %qc extension",
+ UNITS_PER_FP_ARG > 8 ? 'Q' : (UNITS_PER_FP_ARG > 4 ? 'D' : 'F'));
+
+ /* We do not yet support ILP32 on RV64. */
+ if (BITS_PER_WORD != POINTER_SIZE)
+ error ("ABI requires -march=rv%d", POINTER_SIZE);
+}
+
+/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
+
+static void
+riscv_conditional_register_usage (void)
+{
+ if (!TARGET_HARD_FLOAT)
+ {
+ for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
+ fixed_regs[regno] = call_used_regs[regno] = 1;
+ }
+}
+
+/* Return a register priority for hard reg REGNO. */
+
+static int
+riscv_register_priority (int regno)
+{
+ /* Favor x8-x15/f8-f15 to improve the odds of RVC instruction selection. */
+ if (TARGET_RVC && (IN_RANGE (regno, GP_REG_FIRST + 8, GP_REG_FIRST + 15)
+ || IN_RANGE (regno, FP_REG_FIRST + 8, FP_REG_FIRST + 15)))
+ return 1;
+
+ return 0;
+}
+
+/* Implement TARGET_TRAMPOLINE_INIT. */
+
+static void
+riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
+{
+ rtx addr, end_addr, mem;
+ uint32_t trampoline[4];
+ unsigned int i;
+ HOST_WIDE_INT static_chain_offset, target_function_offset;
+
+ /* Work out the offsets of the pointers from the start of the
+ trampoline code. */
+ gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE);
+
+ /* Get pointers to the beginning and end of the code block. */
+ addr = force_reg (Pmode, XEXP (m_tramp, 0));
+ end_addr = riscv_force_binary (Pmode, PLUS, addr,
+ GEN_INT (TRAMPOLINE_CODE_SIZE));
+
+
+ if (Pmode == SImode)
+ {
+ chain_value = force_reg (Pmode, chain_value);
+
+ rtx target_function = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0));
+ /* lui t2, hi(chain)
+ lui t1, hi(func)
+ addi t2, t2, lo(chain)
+ jr r1, lo(func)
+ */
+ unsigned HOST_WIDE_INT lui_hi_chain_code, lui_hi_func_code;
+ unsigned HOST_WIDE_INT lo_chain_code, lo_func_code;
+
+ rtx uimm_mask = force_reg (SImode, gen_int_mode (-IMM_REACH, SImode));
+
+ /* 0xfff. */
+ rtx imm12_mask = gen_reg_rtx (SImode);
+ emit_insn (gen_one_cmplsi2 (imm12_mask, uimm_mask));
+
+ rtx fixup_value = force_reg (SImode, gen_int_mode (IMM_REACH/2, SImode));
+
+ /* Gen lui t2, hi(chain). */
+ rtx hi_chain = riscv_force_binary (SImode, PLUS, chain_value,
+ fixup_value);
+ hi_chain = riscv_force_binary (SImode, AND, hi_chain,
+ uimm_mask);
+ lui_hi_chain_code = OPCODE_LUI | (STATIC_CHAIN_REGNUM << SHIFT_RD);
+ rtx lui_hi_chain = riscv_force_binary (SImode, IOR, hi_chain,
+ gen_int_mode (lui_hi_chain_code, SImode));
+
+ mem = adjust_address (m_tramp, SImode, 0);
+ riscv_emit_move (mem, lui_hi_chain);
+
+ /* Gen lui t1, hi(func). */
+ rtx hi_func = riscv_force_binary (SImode, PLUS, target_function,
+ fixup_value);
+ hi_func = riscv_force_binary (SImode, AND, hi_func,
+ uimm_mask);
+ lui_hi_func_code = OPCODE_LUI | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD);
+ rtx lui_hi_func = riscv_force_binary (SImode, IOR, hi_func,
+ gen_int_mode (lui_hi_func_code, SImode));
+
+ mem = adjust_address (m_tramp, SImode, 1 * GET_MODE_SIZE (SImode));
+ riscv_emit_move (mem, lui_hi_func);
+
+ /* Gen addi t2, t2, lo(chain). */
+ rtx lo_chain = riscv_force_binary (SImode, AND, chain_value,
+ imm12_mask);
+ lo_chain = riscv_force_binary (SImode, ASHIFT, lo_chain, GEN_INT (20));
+
+ lo_chain_code = OPCODE_ADDI
+ | (STATIC_CHAIN_REGNUM << SHIFT_RD)
+ | (STATIC_CHAIN_REGNUM << SHIFT_RS1);
+
+ rtx addi_lo_chain = riscv_force_binary (SImode, IOR, lo_chain,
+ force_reg (SImode, GEN_INT (lo_chain_code)));
+
+ mem = adjust_address (m_tramp, SImode, 2 * GET_MODE_SIZE (SImode));
+ riscv_emit_move (mem, addi_lo_chain);
+
+ /* Gen jr r1, lo(func). */
+ rtx lo_func = riscv_force_binary (SImode, AND, target_function,
+ imm12_mask);
+ lo_func = riscv_force_binary (SImode, ASHIFT, lo_func, GEN_INT (20));
+
+ lo_func_code = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1);
+
+ rtx jr_lo_func = riscv_force_binary (SImode, IOR, lo_func,
+ force_reg (SImode, GEN_INT (lo_func_code)));
+
+ mem = adjust_address (m_tramp, SImode, 3 * GET_MODE_SIZE (SImode));
+ riscv_emit_move (mem, jr_lo_func);
+ }
+ else
+ {
+ static_chain_offset = TRAMPOLINE_CODE_SIZE;
+ target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
+
+ /* auipc t2, 0
+ l[wd] t1, target_function_offset(t2)
+ l[wd] t2, static_chain_offset(t2)
+ jr t1
+ */
+ trampoline[0] = OPCODE_AUIPC | (STATIC_CHAIN_REGNUM << SHIFT_RD);
+ trampoline[1] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
+ | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD)
+ | (STATIC_CHAIN_REGNUM << SHIFT_RS1)
+ | (target_function_offset << SHIFT_IMM);
+ trampoline[2] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
+ | (STATIC_CHAIN_REGNUM << SHIFT_RD)
+ | (STATIC_CHAIN_REGNUM << SHIFT_RS1)
+ | (static_chain_offset << SHIFT_IMM);
+ trampoline[3] = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1);
+
+ /* Copy the trampoline code. */
+ for (i = 0; i < ARRAY_SIZE (trampoline); i++)
+ {
+ mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode));
+ riscv_emit_move (mem, gen_int_mode (trampoline[i], SImode));
+ }
+
+ /* Set up the static chain pointer field. */
+ mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
+ riscv_emit_move (mem, chain_value);
+
+ /* Set up the target function field. */
+ mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
+ riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
+ }
+
+ /* Flush the code part of the trampoline. */
+ emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
+ emit_insn (gen_clear_cache (addr, end_addr));
+}
+
+/* Return leaf_function_p () and memoize the result. */
+
+static bool
+riscv_leaf_function_p (void)
+{
+ if (cfun->machine->is_leaf == 0)
+ cfun->machine->is_leaf = leaf_function_p () ? 1 : -1;
+
+ return cfun->machine->is_leaf > 0;
+}
+
+/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
+
+static bool
+riscv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
+ tree exp ATTRIBUTE_UNUSED)
+{
+ /* When optimzing for size, don't use sibcalls in non-leaf routines */
+ if (TARGET_SAVE_RESTORE)
+ return riscv_leaf_function_p ();
+
+ return true;
+}
+
+/* Implement TARGET_CANNOT_COPY_INSN_P. */
+
+static bool
+riscv_cannot_copy_insn_p (rtx_insn *insn)
+{
+ return recog_memoized (insn) >= 0 && get_attr_cannot_copy (insn);
+}
+
+/* Initialize the GCC target structure. */
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
+#undef TARGET_ASM_ALIGNED_SI_OP
+#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE riscv_option_override
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address
+
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE riscv_issue_rate
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL riscv_function_ok_for_sibcall
+
+#undef TARGET_REGISTER_MOVE_COST
+#define TARGET_REGISTER_MOVE_COST riscv_register_move_cost
+#undef TARGET_MEMORY_MOVE_COST
+#define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS riscv_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST riscv_address_cost
+
+#undef TARGET_PREFERRED_RELOAD_CLASS
+#define TARGET_PREFERRED_RELOAD_CLASS riscv_preferred_reload_class
+
+#undef TARGET_ASM_FILE_START
+#define TARGET_ASM_FILE_START riscv_file_start
+#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
+#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
+
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start
+
+#undef TARGET_PROMOTE_FUNCTION_MODE
+#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY riscv_return_in_memory
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
+
+#undef TARGET_PRINT_OPERAND
+#define TARGET_PRINT_OPERAND riscv_print_operand
+#undef TARGET_PRINT_OPERAND_ADDRESS
+#define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address
+
+#undef TARGET_SETUP_INCOMING_VARARGS
+#define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs
+#undef TARGET_STRICT_ARGUMENT_NAMING
+#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
+#undef TARGET_MUST_PASS_IN_STACK
+#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference
+#undef TARGET_ARG_PARTIAL_BYTES
+#define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG riscv_function_arg
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance
+#undef TARGET_FUNCTION_ARG_BOUNDARY
+#define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary
+
+/* The generic ELF target does not always have TLS support. */
+#ifdef HAVE_AS_TLS
+#undef TARGET_HAVE_TLS
+#define TARGET_HAVE_TLS true
+#endif
+
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem
+
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p
+
+#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
+#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p
+
+#undef TARGET_CAN_ELIMINATE
+#define TARGET_CAN_ELIMINATE riscv_can_eliminate
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage
+
+#undef TARGET_CLASS_MAX_NREGS
+#define TARGET_CLASS_MAX_NREGS riscv_class_max_nregs
+
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT riscv_trampoline_init
+
+#undef TARGET_IN_SMALL_DATA_P
+#define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p
+
+#undef TARGET_ASM_SELECT_RTX_SECTION
+#define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section
+
+#undef TARGET_MIN_ANCHOR_OFFSET
+#define TARGET_MIN_ANCHOR_OFFSET (-IMM_REACH/2)
+
+#undef TARGET_MAX_ANCHOR_OFFSET
+#define TARGET_MAX_ANCHOR_OFFSET (IMM_REACH/2-1)
+
+#undef TARGET_REGISTER_PRIORITY
+#define TARGET_REGISTER_PRIORITY riscv_register_priority
+
+#undef TARGET_CANNOT_COPY_INSN_P
+#define TARGET_CANNOT_COPY_INSN_P riscv_cannot_copy_insn_p
+
+#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
+#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV riscv_atomic_assign_expand_fenv
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS riscv_init_builtins
+
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL riscv_builtin_decl
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN riscv_expand_builtin
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+#include "gt-riscv.h"