2011-06-22 Martin Jambor <mjambor@suse.cz>
* ipa-prop.h: Include alloc-pool.h.
(ipa_lattice_type): Removed.
(ipcp_value_source): New type.
(ipcp_value): Likewise.
(ipcp_values_pool): Declare.
(ipcp_sources_pool): Likewise.
(ipa_param_descriptor): Removed.
(ipcp_lattice): Removed fileds type and constant. Added fields decl,
values, values_count, contains_variable, bottom, used and virt_call.
(ipa_node_params): New fields lattices, known_vals,
clone_for_all_contexts and noe dead, removed fields params and
count_scale.
(ipa_get_param): Updated.
(ipa_param_cannot_devirtualize_p): Removed.
(ipa_param_types_vec_empty): Likewise.
(ipa_edge_args): New field next_edge_clone.
(ipa_func_list): Removed.
(ipa_init_func_list): Removed declaration.
(ipa_push_func_to_list_1): Likewise.
(ipa_pop_func_from_list): Likewise.
(ipa_push_func_to_list): Removed.
(ipa_lattice_from_jfunc): Remove declaration.
(ipa_get_jf_pass_through_result): Declare.
(ipa_get_jf_ancestor_result): Likewise.
(ipa_value_from_jfunc): Likewise.
(ipa_get_lattice): Update.
(ipa_lat_is_single_const): New function.
* ipa-prop.c (ipa_push_func_to_list_1): Removed.
(ipa_init_func_list): Likewise.
(ipa_pop_func_from_list): Likewise.
(ipa_get_param_decl_index): Fix coding style.
(ipa_populate_param_decls): Update to use new lattices.
(ipa_initialize_node_params): Likewise.
(visit_ref_for_mod_analysis): Likewise.
(ipa_analyze_params_uses): Likewise.
(ipa_free_node_params_substructures): Likewise.
(ipa_edge_duplication_hook): Add the new edge to the list of edge
clones.
(ipa_node_duplication_hook): Update to use new lattices.
(ipa_free_all_structures_after_ipa_cp): Free alloc pools.
(ipa_free_all_structures_after_iinln): Likewise.
(ipa_write_node_info): Update to use new lattices.
(ipa_read_node_info): Likewise.
(ipa_get_jf_pass_through_result): New function.
(ipa_get_jf_ancestor_result): Likewise.
(ipa_value_from_jfunc): Likewise.
(ipa_cst_from_jfunc): Reimplemented using ipa_value_from_jfunc.
* ipa-cp.c: Reimplemented.
* params.def (PARAM_DEVIRT_TYPE_LIST_SIZE): Removed.
(PARAM_IPA_CP_VALUE_LIST_SIZE): New parameter.
* Makefile.in (IPA_PROP_H): Added alloc-pool.h to dependencies.
* doc/invoke.texi (devirt-type-list-size): Removed description.
(ipa-cp-value-list-size): Added description.
* testsuite/gcc.dg/ipa/ipa-1.c: Updated testcase dump scan.
* testsuite/gcc.dg/ipa/ipa-2.c: Likewise.
* testsuite/gcc.dg/ipa/ipa-3.c: Likewise and made functions static.
* testsuite/gcc.dg/ipa/ipa-4.c: Updated testcase dump scan.
* testsuite/gcc.dg/ipa/ipa-5.c: Likewise.
* testsuite/gcc.dg/ipa/ipa-7.c: Xfail test.
* testsuite/gcc.dg/ipa/ipa-8.c: Updated testcase dump scan.
* testsuite/gcc.dg/ipa/ipacost-1.c: Likewise.
* testsuite/gcc.dg/ipa/ipacost-2.c: Likewise.
* testsuite/gcc.dg/ipa/ipcp-1.c: New test.
* testsuite/gcc.dg/ipa/ipcp-2.c: Likewise.
* testsuite/gcc.dg/tree-ssa/ipa-cp-1.c: Updated testcase.
===================================================================
*************** along with GCC; see the file COPYING3.
#include "vec.h"
#include "cgraph.h"
#include "gimple.h"
+ #include "alloc-pool.h"
/* The following definitions and interfaces are used by
interprocedural analyses or parameters. */
*************** struct GTY (()) ipa_jump_func
} GTY ((desc ("%1.type"))) value;
};
! /* All formal parameters in the program have a lattice associated with it
! computed by the interprocedural stage of IPCP.
! There are three main values of the lattice:
! IPA_TOP - unknown,
! IPA_BOTTOM - variable,
! IPA_CONST_VALUE - simple scalar constant,
!
! We also use this type to propagate types accross the call graph for the
! purpose of devirtualization. In that case, IPA_CONST_VALUE denotes a known
! type, rather than a constant. */
! enum ipa_lattice_type
! {
! IPA_BOTTOM,
! IPA_CONST_VALUE,
! IPA_TOP
! };
! /* All formal parameters in the program have a cval computed by
! the interprocedural stage of IPCP. See enum ipa_lattice_type for
! the various types of lattices supported */
! struct ipcp_lattice
{
! enum ipa_lattice_type type;
! tree constant;
};
! /* Structure describing a single formal parameter. */
! struct ipa_param_descriptor
{
- /* IPA-CP lattice. */
- struct ipcp_lattice ipcp_lattice;
/* PARAM_DECL of this parameter. */
tree decl;
! /* Vector of BINFOs of types that this argument might encounter. NULL
! basically means a top value, bottom is marked by the cannot_devirtualize
! flag below.*/
! VEC (tree, heap) *types;
/* The parameter is used. */
! unsigned used : 1;
! /* Set when parameter type cannot be used for devirtualization. */
! unsigned cannot_devirtualize : 1;
};
/* ipa_node_params stores information related to formal parameters of functions
} GTY ((desc ("%1.type"))) value;
};
! struct ipcp_value;
! /* Describes a particular source for an IPA-CP value. */
!
! struct ipcp_value_source
{
! /* The incoming edge that brought the value. */
! struct cgraph_edge *cs;
! /* If the jump function that resulted into his value was a pass-through or an
! ancestor, this is the ipcp_value of the caller from which the described
! value has been derived. Otherwise it is NULL. */
! struct ipcp_value *val;
! /* Next pointer in a linked list of sources of a value. */
! struct ipcp_value_source *next;
! /* If the jump function that resulted into his value was a pass-through or an
! ancestor, this is the index of the parameter of the caller the jump
! function references. */
! int index;
! };
!
! /* Describes one particular value stored in struct ipcp_lattice. */
!
! struct ipcp_value
! {
! /* The actual value for the given parameter. This is either an IPA invariant
! or a TREE_BINFO describing a type that can be used for
! devirtualization. */
! tree value;
! /* The list of sources from which this value originates. */
! struct ipcp_value_source *sources;
! /* Next pointers in a linked list of all values in a lattice. */
! struct ipcp_value *next;
! /* Next pointers in a linked list of values in a strongly connected component
! of values. */
! struct ipcp_value *scc_next;
! /* Next pointers in a linked list of SCCs of values sorted topologically
! according their sources. */
! struct ipcp_value *topo_next;
! /* A specialized node created for this value, NULL if none has been (so far)
! created. */
! struct cgraph_node *spec_node;
! /* Depth first search number and low link for topological sorting of
! values. */
! int dfs, low_link;
! /* Time benefit and size cost that specializing the function for this value
! would bring about in this function alone. */
! int local_time_benefit, local_size_cost;
! /* Time benefit and size cost that specializing the function for this value
! can bring about in it's callees (transitively). */
! int prop_time_benefit, prop_size_cost;
! /* True if this valye is currently on the topo-sort stack. */
! bool on_stack;
};
! extern alloc_pool ipcp_values_pool;
! extern alloc_pool ipcp_sources_pool;
!
! /* Lattice describing potential values of a formal parameter of a function and
! some of their other properties. */
!
! struct ipcp_lattice
{
/* PARAM_DECL of this parameter. */
tree decl;
!
! /* The list of known values and types in this lattice. */
! struct ipcp_value *values;
! /* Number of known values and types in this lattice. */
! int values_count;
! /* The lattice contains a variable component (in addition to values). */
! bool contains_variable;
! /* The value of the lattice is bottom (i.e. variable and unusable for any
! propagation). */
! bool bottom;
/* The parameter is used. */
! bool used;
! /* There is a virtual call based on this parameter. */
! bool virt_call;
};
/* ipa_node_params stores information related to formal parameters of functions
*************** struct ipa_param_descriptor
parameters (such as ipa-cp). */
struct ipa_node_params
{
/* Number of formal parameters of this function. When set to 0, this
function's parameters would not be analyzed by IPA CP. */
int param_count;
/* Whether this function is called with variable number of actual
arguments. */
unsigned called_with_var_arguments : 1;
/* Whether the param uses analysis has already been performed. */
unsigned uses_analysis_done : 1;
! /* Whether the function is enqueued in an ipa_func_list. */
unsigned node_enqueued : 1;
! /* Pointer to an array of structures describing individual formal
! parameters. */
! struct ipa_param_descriptor *params;
! /* Only for versioned nodes this field would not be NULL,
! it points to the node that IPA cp cloned from. */
! struct cgraph_node *ipcp_orig_node;
! /* Meaningful only for original functions. Expresses the
! ratio between the direct calls and sum of all invocations of
! this function (given by profiling info). It is used to calculate
! the profiling information of the original function and the versioned
! one. */
! gcov_type count_scale;
};
/* ipa_node_params access functions. Please use these to access fields that
parameters (such as ipa-cp). */
struct ipa_node_params
{
+ /* Pointer to an array of structures describing individual formal
+ parameters. */
+ struct ipcp_lattice *lattices;
+ /* Only for versioned nodes this field would not be NULL,
+ it points to the node that IPA cp cloned from. */
+ struct cgraph_node *ipcp_orig_node;
/* Number of formal parameters of this function. When set to 0, this
function's parameters would not be analyzed by IPA CP. */
+
+ /* If this node is an ipa-cp clone, these are the known values that describe
+ what it has been specialized for. */
+ VEC (tree, heap) *known_vals;
int param_count;
/* Whether this function is called with variable number of actual
arguments. */
unsigned called_with_var_arguments : 1;
+ /* Set when it is possible to create specialized versions of this node. */
+ unsigned node_versionable : 1;
/* Whether the param uses analysis has already been performed. */
unsigned uses_analysis_done : 1;
! /* Whether the function is enqueued in ipa-cp propagation stack. */
unsigned node_enqueued : 1;
! /* Whether we should create a specialized version based on values that are
! known to be constant in all contexts. */
! unsigned clone_for_all_contexts : 1;
! /* Node has been completely replaced by clones and will be removed after
! ipa-cp is finished. */
! unsigned node_dead : 1;
};
/* ipa_node_params access functions. Please use these to access fields that
*************** static inline tree
ipa_get_param (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return info->params[i].decl;
}
/* Return the used flag corresponding to the Ith formal parameter of
ipa_get_param (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return info->lattices[i].decl;
}
/* Return the used flag corresponding to the Ith formal parameter of
*************** static inline bool
ipa_is_param_used (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return info->params[i].used;
! }
!
! /* Return the cannot_devirtualize flag corresponding to the Ith formal
! parameter of the function associated with INFO. The corresponding function
! to set the flag is ipa_set_param_cannot_devirtualize. */
!
! static inline bool
! ipa_param_cannot_devirtualize_p (struct ipa_node_params *info, int i)
! {
! gcc_assert (i >= 0 && i <= info->param_count);
! return info->params[i].cannot_devirtualize;
! }
!
! /* Return true iff the vector of possible types of the Ith formal parameter of
! the function associated with INFO is empty. */
!
! static inline bool
! ipa_param_types_vec_empty (struct ipa_node_params *info, int i)
! {
! gcc_assert (i >= 0 && i <= info->param_count);
! return info->params[i].types == NULL;
}
/* Flag this node as having callers with variable number of arguments. */
ipa_is_param_used (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return info->lattices[i].used;
}
/* Flag this node as having callers with variable number of arguments. */
*************** ipa_is_called_with_var_arguments (struct
arguments. It can be accessed by the IPA_EDGE_REF macro. */
typedef struct GTY(()) ipa_edge_args
{
+ /* Next pointer in a linked list of clones of the same function. */
+ struct cgraph_edge *next_edge_clone;
+
/* Number of actual arguments in this callsite. When set to 0,
this callsite's parameters would not be analyzed by the different
stages of IPA CP. */
*************** ipa_edge_args_info_available_for_edge_p
ipa_edge_args_vector));
}
- /* A function list element. It is used to create a temporary worklist used in
- the propagation stage of IPCP. (can be used for more IPA optimizations) */
- struct ipa_func_list
- {
- struct cgraph_node *node;
- struct ipa_func_list *next;
- };
-
- /* ipa_func_list interface. */
- struct ipa_func_list *ipa_init_func_list (void);
- void ipa_push_func_to_list_1 (struct ipa_func_list **, struct cgraph_node *,
- struct ipa_node_params *);
- struct cgraph_node *ipa_pop_func_from_list (struct ipa_func_list **);
-
- /* Add cgraph NODE to the worklist WL if it is not already in one. */
-
- static inline void
- ipa_push_func_to_list (struct ipa_func_list **wl, struct cgraph_node *node)
- {
- struct ipa_node_params *info = IPA_NODE_REF (node);
-
- if (!info->node_enqueued)
- ipa_push_func_to_list_1 (wl, node, info);
- }
-
- void ipa_analyze_node (struct cgraph_node *);
-
/* Function formal parameters related computations. */
void ipa_initialize_node_params (struct cgraph_node *node);
bool ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
*************** bool ipa_propagate_indirect_call_infos (
struct cgraph_edge *ipa_make_edge_direct_to_target (struct cgraph_edge *, tree,
tree);
+ /* Functions related to both. */
+ void ipa_analyze_node (struct cgraph_node *);
/* Debugging interface. */
void ipa_print_node_params (FILE *, struct cgraph_node *node);
*************** void ipa_prop_write_jump_functions (cgra
void ipa_prop_read_jump_functions (void);
void ipa_update_after_lto_read (void);
int ipa_get_param_decl_index (struct ipa_node_params *, tree);
! void ipa_lattice_from_jfunc (struct ipa_node_params *info,
! struct ipcp_lattice *lat,
! struct ipa_jump_func *jfunc);
tree ipa_cst_from_jfunc (struct ipa_node_params *info,
struct ipa_jump_func *jfunc);
void ipa_prop_read_jump_functions (void);
void ipa_update_after_lto_read (void);
int ipa_get_param_decl_index (struct ipa_node_params *, tree);
! tree ipa_get_jf_pass_through_result (struct ipa_jump_func *, tree);
! tree ipa_get_jf_ancestor_result (struct ipa_jump_func *, tree);
! tree ipa_value_from_jfunc (struct ipa_node_params *info,
! struct ipa_jump_func *jfunc);
tree ipa_cst_from_jfunc (struct ipa_node_params *info,
struct ipa_jump_func *jfunc);
*************** static inline struct ipcp_lattice *
ipa_get_lattice (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return &(info->params[i].ipcp_lattice);
}
#endif /* IPA_PROP_H */
ipa_get_lattice (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i <= info->param_count);
! return &(info->lattices[i]);
! }
!
! /* Return whether LAT is a lattice with a single constant and without an
! undefined value. */
!
! static inline bool
! ipa_lat_is_single_const (struct ipcp_lattice *lat)
! {
! if (lat->bottom
! || lat->contains_variable
! || lat->values_count != 1)
! return false;
! else
! return true;
}
#endif /* IPA_PROP_H */
===================================================================
*************** static struct cgraph_2edge_hook_list *ed
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
static struct cgraph_node_hook_list *function_insertion_hook_holder;
- /* Add cgraph NODE described by INFO to the worklist WL regardless of whether
- it is in one or not. It should almost never be used directly, as opposed to
- ipa_push_func_to_list. */
-
- void
- ipa_push_func_to_list_1 (struct ipa_func_list **wl,
- struct cgraph_node *node,
- struct ipa_node_params *info)
- {
- struct ipa_func_list *temp;
-
- info->node_enqueued = 1;
- temp = XCNEW (struct ipa_func_list);
- temp->node = node;
- temp->next = *wl;
- *wl = temp;
- }
-
- /* Initialize worklist to contain all functions. */
-
- struct ipa_func_list *
- ipa_init_func_list (void)
- {
- struct cgraph_node *node;
- struct ipa_func_list * wl;
-
- wl = NULL;
- for (node = cgraph_nodes; node; node = node->next)
- if (node->analyzed && !node->alias)
- {
- struct ipa_node_params *info = IPA_NODE_REF (node);
- /* Unreachable nodes should have been eliminated before ipcp and
- inlining. */
- gcc_assert (node->needed || node->reachable);
- ipa_push_func_to_list_1 (&wl, node, info);
- }
-
- return wl;
- }
-
- /* Remove a function from the worklist WL and return it. */
-
- struct cgraph_node *
- ipa_pop_func_from_list (struct ipa_func_list **wl)
- {
- struct ipa_node_params *info;
- struct ipa_func_list *first;
- struct cgraph_node *node;
-
- first = *wl;
- *wl = (*wl)->next;
- node = first->node;
- free (first);
-
- info = IPA_NODE_REF (node);
- info->node_enqueued = 0;
- return node;
- }
-
/* Return index of the formal whose tree is PTREE in function which corresponds
to INFO. */
*************** ipa_get_param_decl_index (struct ipa_nod
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
! if (ipa_get_param(info, i) == ptree)
return i;
return -1;
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
! if (ipa_get_param (info, i) == ptree)
return i;
return -1;
*************** ipa_populate_param_decls (struct cgraph_
param_num = 0;
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
{
! info->params[param_num].decl = parm;
param_num++;
}
}
param_num = 0;
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
{
! info->lattices[param_num].decl = parm;
param_num++;
}
}
*************** ipa_initialize_node_params (struct cgrap
{
struct ipa_node_params *info = IPA_NODE_REF (node);
! if (!info->params)
{
ipa_count_formal_params (node, info);
! info->params = XCNEWVEC (struct ipa_param_descriptor,
! ipa_get_param_count (info));
ipa_populate_param_decls (node, info);
}
}
{
struct ipa_node_params *info = IPA_NODE_REF (node);
! if (!info->lattices)
{
ipa_count_formal_params (node, info);
! info->lattices = XCNEWVEC (struct ipcp_lattice,
! ipa_get_param_count (info));
ipa_populate_param_decls (node, info);
}
}
*************** visit_ref_for_mod_analysis (gimple stmt
{
int index = ipa_get_param_decl_index (info, op);
gcc_assert (index >= 0);
! info->params[index].used = true;
}
return false;
{
int index = ipa_get_param_decl_index (info, op);
gcc_assert (index >= 0);
! info->lattices[index].used = true;
}
return false;
*************** ipa_analyze_params_uses (struct cgraph_n
the flag during modification analysis. */
if (is_gimple_reg (parm)
&& gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
! info->params[i].used = true;
}
func = DECL_STRUCT_FUNCTION (decl);
the flag during modification analysis. */
if (is_gimple_reg (parm)
&& gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
! info->lattices[i].used = true;
}
func = DECL_STRUCT_FUNCTION (decl);
*************** ipa_free_all_edge_args (void)
void
ipa_free_node_params_substructures (struct ipa_node_params *info)
{
! free (info->params);
!
memset (info, 0, sizeof (*info));
}
void
ipa_free_node_params_substructures (struct ipa_node_params *info)
{
! free (info->lattices);
! /* Lattice values and their sources are deallocated with their alocation
! pool. */
! VEC_free (tree, heap, info->known_vals);
memset (info, 0, sizeof (*info));
}
*************** ipa_edge_duplication_hook (struct cgraph
arg_count = ipa_get_cs_argument_count (old_args);
ipa_set_cs_argument_count (new_args, arg_count);
+
+ new_args->next_edge_clone = old_args->next_edge_clone;
+ old_args->next_edge_clone = dst;
+
new_args->jump_functions =
duplicate_ipa_jump_func_array (old_args->jump_functions, arg_count);
*************** ipa_node_duplication_hook (struct cgraph
param_count = ipa_get_param_count (old_info);
ipa_set_param_count (new_info, param_count);
! new_info->params = (struct ipa_param_descriptor *)
! duplicate_array (old_info->params,
! sizeof (struct ipa_param_descriptor) * param_count);
for (i = 0; i < param_count; i++)
! new_info->params[i].types = VEC_copy (tree, heap,
! old_info->params[i].types);
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
- new_info->count_scale = old_info->count_scale;
new_info->called_with_var_arguments = old_info->called_with_var_arguments;
new_info->uses_analysis_done = old_info->uses_analysis_done;
param_count = ipa_get_param_count (old_info);
ipa_set_param_count (new_info, param_count);
! new_info->lattices = (struct ipcp_lattice *)
! duplicate_array (old_info->lattices,
! sizeof (struct ipcp_lattice) * param_count);
for (i = 0; i < param_count; i++)
! new_info->lattices[i].values = old_info->lattices[i].values;
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
new_info->called_with_var_arguments = old_info->called_with_var_arguments;
new_info->uses_analysis_done = old_info->uses_analysis_done;
*************** ipa_free_all_structures_after_ipa_cp (vo
{
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
+ free_alloc_pool (ipcp_sources_pool);
+ free_alloc_pool (ipcp_values_pool);
ipa_unregister_cgraph_hooks ();
}
}
*************** ipa_free_all_structures_after_iinln (voi
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
ipa_unregister_cgraph_hooks ();
+ if (ipcp_sources_pool)
+ free_alloc_pool (ipcp_sources_pool);
+ if (ipcp_values_pool)
+ free_alloc_pool (ipcp_values_pool);
}
/* Print ipa_tree_map data structures of all functions in the
*************** ipa_write_node_info (struct output_block
gcc_assert (!info->node_enqueued);
gcc_assert (!info->ipcp_orig_node);
for (j = 0; j < ipa_get_param_count (info); j++)
! bp_pack_value (&bp, info->params[j].used, 1);
lto_output_bitpack (&bp);
for (e = node->callees; e; e = e->next_callee)
{
gcc_assert (!info->node_enqueued);
gcc_assert (!info->ipcp_orig_node);
for (j = 0; j < ipa_get_param_count (info); j++)
! bp_pack_value (&bp, info->lattices[j].used, 1);
lto_output_bitpack (&bp);
for (e = node->callees; e; e = e->next_callee)
{
*************** ipa_read_node_info (struct lto_input_blo
info->uses_analysis_done = true;
info->node_enqueued = false;
for (k = 0; k < ipa_get_param_count (info); k++)
! info->params[k].used = bp_unpack_value (&bp, 1);
for (e = node->callees; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
info->uses_analysis_done = true;
info->node_enqueued = false;
for (k = 0; k < ipa_get_param_count (info); k++)
! info->lattices[k].used = bp_unpack_value (&bp, 1);
for (e = node->callees; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
*************** ipa_update_after_lto_read (void)
}
}
! /* Given the jump function JFUNC, compute the lattice LAT that describes the
! value coming down the callsite. INFO describes the caller node so that
! pass-through jump functions can be evaluated. */
! void
! ipa_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
! struct ipa_jump_func *jfunc)
{
! if (jfunc->type == IPA_JF_CONST)
{
! lat->type = IPA_CONST_VALUE;
! lat->constant = jfunc->value.constant;
}
! else if (jfunc->type == IPA_JF_PASS_THROUGH)
{
! struct ipcp_lattice *caller_lat;
! tree cst;
! caller_lat = ipa_get_lattice (info, jfunc->value.pass_through.formal_id);
! lat->type = caller_lat->type;
! if (caller_lat->type != IPA_CONST_VALUE)
! return;
! cst = caller_lat->constant;
! if (jfunc->value.pass_through.operation != NOP_EXPR)
{
! tree restype;
! if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
! == tcc_comparison)
! restype = boolean_type_node;
else
! restype = TREE_TYPE (cst);
! cst = fold_binary (jfunc->value.pass_through.operation,
! restype, cst, jfunc->value.pass_through.operand);
! }
! if (!cst || !is_gimple_ip_invariant (cst))
! lat->type = IPA_BOTTOM;
! lat->constant = cst;
! }
! else if (jfunc->type == IPA_JF_ANCESTOR)
! {
! struct ipcp_lattice *caller_lat;
! tree t;
!
! caller_lat = ipa_get_lattice (info, jfunc->value.ancestor.formal_id);
! lat->type = caller_lat->type;
! if (caller_lat->type != IPA_CONST_VALUE)
! return;
! if (TREE_CODE (caller_lat->constant) != ADDR_EXPR)
{
! /* This can happen when the constant is a NULL pointer. */
! lat->type = IPA_BOTTOM;
! return;
}
- t = TREE_OPERAND (caller_lat->constant, 0);
- t = build_ref_for_offset (EXPR_LOCATION (t), t,
- jfunc->value.ancestor.offset,
- jfunc->value.ancestor.type, NULL, false);
- lat->constant = build_fold_addr_expr (t);
}
else
! lat->type = IPA_BOTTOM;
}
/* Determine whether JFUNC evaluates to a constant and if so, return it.
}
}
! /* Return the result of a (possibly arithmetic) pass through jump function
! JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
! determined or itself is considered an interprocedural invariant. */
! tree
! ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
{
! tree restype, res;
!
! gcc_checking_assert (is_gimple_ip_invariant (input));
! if (jfunc->value.pass_through.operation == NOP_EXPR)
! return input;
!
! if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
! == tcc_comparison)
! restype = boolean_type_node;
! else
! restype = TREE_TYPE (input);
! res = fold_binary (jfunc->value.pass_through.operation, restype,
! input, jfunc->value.pass_through.operand);
!
! if (res && !is_gimple_ip_invariant (res))
! return NULL_TREE;
!
! return res;
! }
!
! /* Return the result of an ancestor jump function JFUNC on te constant value
! INPUT. Return NULL_TREE if that cannot be determined. */
!
! tree
! ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
! {
! if (TREE_CODE (input) == ADDR_EXPR)
{
! tree t = TREE_OPERAND (input, 0);
! t = build_ref_for_offset (EXPR_LOCATION (t), t,
! jfunc->value.ancestor.offset,
! jfunc->value.ancestor.type, NULL, false);
! return build_fold_addr_expr (t);
}
! else
! return NULL_TREE;
! }
!
! /* Determine whether JFUNC evaluates to a known value (that is either a
! constant or a binfo) and if so, return it. Otherwise return NULL. INFO
! describes the caller node so that pass-through jump functions can be
! evaluated. */
!
! tree
! ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
! {
! if (jfunc->type == IPA_JF_CONST)
! return jfunc->value.constant;
! else if (jfunc->type == IPA_JF_KNOWN_TYPE)
! return jfunc->value.base_binfo;
! else if (jfunc->type == IPA_JF_PASS_THROUGH
! || jfunc->type == IPA_JF_ANCESTOR)
{
! tree input;
! int idx;
! if (jfunc->type == IPA_JF_PASS_THROUGH)
! idx = jfunc->value.pass_through.formal_id;
! else
! idx = jfunc->value.ancestor.formal_id;
! if (info->ipcp_orig_node)
! input = VEC_index (tree, info->known_vals, idx);
! else
{
! struct ipcp_lattice *lat = ipa_get_lattice (info, idx);
! if (!ipa_lat_is_single_const (lat))
! return NULL_TREE;
! input = lat->values->value;
! }
!
! if (!input)
! return NULL_TREE;
!
! if (jfunc->type == IPA_JF_PASS_THROUGH)
! {
! if (jfunc->value.pass_through.operation == NOP_EXPR)
! return input;
! else if (TREE_CODE (input) == TREE_BINFO)
! return NULL_TREE;
else
! return ipa_get_jf_pass_through_result (jfunc, input);
! }
! else
{
! if (TREE_CODE (input) == TREE_BINFO)
! return get_binfo_at_offset (input, jfunc->value.ancestor.offset,
! jfunc->value.ancestor.type);
! else
! return ipa_get_jf_ancestor_result (jfunc, input);
}
}
else
! return NULL_TREE;
}
/* Determine whether JFUNC evaluates to a constant and if so, return it.
*************** ipa_lattice_from_jfunc (struct ipa_node_
tree
ipa_cst_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
{
! struct ipcp_lattice lat;
! ipa_lattice_from_jfunc (info, &lat, jfunc);
! if (lat.type == IPA_CONST_VALUE)
! return lat.constant;
! else
return NULL_TREE;
}
tree
ipa_cst_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
{
! tree res = ipa_value_from_jfunc (info, jfunc);
! if (res && TREE_CODE (res) == TREE_BINFO)
return NULL_TREE;
+ else
+ return res;
}
===================================================================
*************** You should have received a copy of the G
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
! /* Interprocedural constant propagation. The aim of interprocedural constant
! propagation (IPCP) is to find which function's argument has the same
! constant value in each invocation throughout the whole program. For example,
! consider the following program:
!
! int g (int y)
! {
! printf ("value is %d",y);
! }
!
! int f (int x)
! {
! g (x);
! }
!
! int h (int y)
! {
! g (y);
! }
!
! void main (void)
! {
! f (3);
! h (3);
! }
!
!
! The IPCP algorithm will find that g's formal argument y is always called
! with the value 3.
!
! The algorithm used is based on "Interprocedural Constant Propagation", by
! David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86, pg
! 152-161
- The optimization is divided into three stages:
First stage - intraprocedural analysis
=======================================
This phase computes jump_function and modification flags.
! A jump function for a callsite represents the values passed as an actual
! arguments of a given callsite. There are three types of values:
! Pass through - the caller's formal parameter is passed as an actual argument.
Constant - a constant is passed as an actual argument.
Unknown - neither of the above.
! The jump function info, ipa_jump_func, is stored in ipa_edge_args
! structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
! modified_flags are defined in ipa_node_params structure
! (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
! -ipcp_generate_summary() is the first stage driver.
Second stage - interprocedural analysis
========================================
- This phase does the interprocedural constant propagation.
- It computes lattices for all formal parameters in the program
- and their value that may be:
- TOP - unknown.
- BOTTOM - non constant.
- CONSTANT - constant value.
-
- Lattice describing a formal parameter p will have a constant value if all
- callsites invoking this function have the same constant value passed to p.
! The lattices are stored in ipcp_lattice which is itself in ipa_node_params
! structure (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
! -ipcp_iterate_stage() is the second stage driver.
! Third phase - transformation of function code
============================================
- Propagates the constant-valued formals into the function.
- For each function whose parameters are constants, we create its clone.
! Then we process the clone in two ways:
! 1. We insert an assignment statement 'parameter = const' at the beginning
! of the cloned function.
! 2. For read-only parameters that do not live in memory, we replace all their
! uses with the constant.
!
! We also need to modify some callsites to call the cloned functions instead
! of the original ones. For a callsite passing an argument found to be a
! constant by IPCP, there are two different cases to handle:
! 1. A constant is passed as an argument. In this case the callsite in the
! should be redirected to call the cloned callee.
! 2. A parameter (of the caller) passed as an argument (pass through
! argument). In such cases both the caller and the callee have clones and
! only the callsite in the cloned caller is redirected to call to the
! cloned callee.
!
! This update is done in two steps: First all cloned functions are created
! during a traversal of the call graph, during which all callsites are
! redirected to call the cloned function. Then the callsites are traversed
! and many calls redirected back to fit the description above.
!
! -ipcp_insert_stage() is the third phase driver.
!
!
! This pass also performs devirtualization - turns virtual calls into direct
! ones if it can prove that all invocations of the function call the same
! callee. This is achieved by building a list of all base types (actually,
! their BINFOs) that individual parameters can have in an iterative matter
! just like propagating scalar constants and then examining whether virtual
! calls which take a parameter as their object fold to the same target for all
! these types. If we cannot enumerate all types or there is a type which does
! not have any BINFO associated with it, cannot_devirtualize of the associated
! parameter descriptor is set which is an equivalent of BOTTOM lattice value
! in standard IPA constant propagation.
! */
#include "config.h"
#include "system.h"
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
! /* Interprocedural constant propagation (IPA-CP).
!
! The goal of this transformation is to
!
! 1) discover functions which are always invoked with some arguments with the
! same known constant values and modify the functions so that the
! subsequent optimizations can take advantage of the knowledge, and
!
! 2) create specialized versions of functions transformed in this way if
! some parameters are known constants only in certain contexts but the
! estimated tradeoff between speedup and cost size is deemed good.
!
! The algorithm also propagates types and attempts to perform type based
! devirtualization. Types are propagated much like constants.
!
! The algorithm basically consists of three stages. In the first, functions
! are analyzed one at a time and jump functions are constructed for all known
! call-sites. In the second phase, the pass propagates information from the
! jump functions across the call to reveal what values are available at what
! call sites, performs estimations of effects of known values on functions and
! their callees, and finally decides what specialized extra versions should be
! created. In the third, the special versions materialize and appropriate
! calls are redirected.
!
! The algorithm used is to a certain extent based on "Interprocedural Constant
! Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
! Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
! Cooper, Mary W. Hall, and Ken Kennedy.
First stage - intraprocedural analysis
=======================================
+
This phase computes jump_function and modification flags.
! A jump function for a call-site represents the values passed as an actual
! arguments of a given call-site. In principle, there are three types of
! values:
!
! Pass through - the caller's formal parameter is passed as an actual
! argument, plus an operation on it can be performed.
Constant - a constant is passed as an actual argument.
Unknown - neither of the above.
! All jump function types are described in detail in ipa-prop.h, together with
! the data structures that represent them and methods of accessing them.
! ipcp_generate_summary() is the main function of the first stage.
Second stage - interprocedural analysis
========================================
! This stage is itself divided into two phases. In the first, we propagate
! known values over the call graph, in the second, we make cloning decisions.
! First, we traverse the functions topologically from callers to callees and,
! for each strongly connected component (SCC), we propagate constants
! according to previously computed jump functions. We also record what known
! values depend on other known values and estimate local effects. Finally, we
! propagate cumulative information about these effects from dependant values
! to those on which they depend.
!
! Second, we again traverse the call graph in the same topological order and
! make clones for functions which we know are called with the same values in
! all contexts and decide about extra specialized clones of functions just for
! some contexts - these decisions are based on both local estimates and
! cumulative estimates propagated from callees.
! ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
! third stage.
!
! Third phase - materialization of clones, call statement updates.
============================================
! This stage is currently performed by call graph code (mainly in cgraphunit.c
! and tree-inline.c) according to instructions inserted to the call graph by
! the second stage. */
#include "config.h"
#include "system.h"
*************** along with GCC; see the file COPYING3.
#include "fibheap.h"
#include "params.h"
#include "ipa-inline.h"
!
! /* Number of functions identified as candidates for cloning. When not cloning
! we can simplify iterate stage not forcing it to go through the decision
! on what is profitable and what not. */
! static int n_cloning_candidates;
/* Maximal count found in program. */
static gcov_type max_count;
! /* Cgraph nodes that has been completely replaced by cloning during iterate
! * stage and will be removed after ipcp is finished. */
! static bitmap dead_nodes;
! static void ipcp_print_profile_data (FILE *);
! static void ipcp_function_scale_print (FILE *);
! /* Get the original node field of ipa_node_params associated with node NODE. */
! static inline struct cgraph_node *
! ipcp_get_orig_node (struct cgraph_node *node)
! {
! return IPA_NODE_REF (node)->ipcp_orig_node;
! }
! /* Return true if NODE describes a cloned/versioned function. */
! static inline bool
! ipcp_node_is_clone (struct cgraph_node *node)
! {
! return (ipcp_get_orig_node (node) != NULL);
! }
! /* Create ipa_node_params and its data structures for NEW_NODE. Set ORIG_NODE
! as the ipcp_orig_node field in ipa_node_params. */
! static void
! ipcp_init_cloned_node (struct cgraph_node *orig_node,
! struct cgraph_node *new_node)
! {
! gcc_checking_assert (ipa_node_params_vector
! && (VEC_length (ipa_node_params_t,
! ipa_node_params_vector)
! > (unsigned) cgraph_max_uid));
! gcc_checking_assert (IPA_NODE_REF (new_node)->params);
! IPA_NODE_REF (new_node)->ipcp_orig_node = orig_node;
! }
! /* Return scale for NODE. */
! static inline gcov_type
! ipcp_get_node_scale (struct cgraph_node *node)
! {
! return IPA_NODE_REF (node)->count_scale;
! }
! /* Set COUNT as scale for NODE. */
! static inline void
! ipcp_set_node_scale (struct cgraph_node *node, gcov_type count)
! {
! IPA_NODE_REF (node)->count_scale = count;
! }
- /* Return whether LAT is a constant lattice. */
static inline bool
! ipcp_lat_is_const (struct ipcp_lattice *lat)
{
! if (lat->type == IPA_CONST_VALUE)
! return true;
! else
! return false;
! }
! /* Return whether LAT is a constant lattice that ipa-cp can actually insert
! into the code (i.e. constants excluding member pointers and pointers). */
! static inline bool
! ipcp_lat_is_insertable (struct ipcp_lattice *lat)
! {
! return lat->type == IPA_CONST_VALUE;
}
! /* Return true if LAT1 and LAT2 are equal. */
! static inline bool
! ipcp_lats_are_equal (struct ipcp_lattice *lat1, struct ipcp_lattice *lat2)
! {
! gcc_assert (ipcp_lat_is_const (lat1) && ipcp_lat_is_const (lat2));
! if (lat1->type != lat2->type)
! return false;
!
! if (TREE_CODE (lat1->constant) == ADDR_EXPR
! && TREE_CODE (lat2->constant) == ADDR_EXPR
! && TREE_CODE (TREE_OPERAND (lat1->constant, 0)) == CONST_DECL
! && TREE_CODE (TREE_OPERAND (lat2->constant, 0)) == CONST_DECL)
! return operand_equal_p (DECL_INITIAL (TREE_OPERAND (lat1->constant, 0)),
! DECL_INITIAL (TREE_OPERAND (lat2->constant, 0)), 0);
! else
! return operand_equal_p (lat1->constant, lat2->constant, 0);
! }
- /* Compute Meet arithmetics:
- Meet (IPA_BOTTOM, x) = IPA_BOTTOM
- Meet (IPA_TOP,x) = x
- Meet (const_a,const_b) = IPA_BOTTOM, if const_a != const_b.
- MEET (const_a,const_b) = const_a, if const_a == const_b.*/
static void
! ipa_lattice_meet (struct ipcp_lattice *res, struct ipcp_lattice *lat1,
! struct ipcp_lattice *lat2)
{
! if (lat1->type == IPA_BOTTOM || lat2->type == IPA_BOTTOM)
! {
! res->type = IPA_BOTTOM;
! return;
! }
! if (lat1->type == IPA_TOP)
! {
! res->type = lat2->type;
! res->constant = lat2->constant;
! return;
! }
! if (lat2->type == IPA_TOP)
! {
! res->type = lat1->type;
! res->constant = lat1->constant;
! return;
! }
! if (!ipcp_lats_are_equal (lat1, lat2))
{
! res->type = IPA_BOTTOM;
! return;
}
! res->type = lat1->type;
! res->constant = lat1->constant;
! }
!
! /* True when OLD_LAT and NEW_LAT values are not the same. */
!
! static bool
! ipcp_lattice_changed (struct ipcp_lattice *old_lat,
! struct ipcp_lattice *new_lat)
! {
! if (old_lat->type == new_lat->type)
{
! if (!ipcp_lat_is_const (old_lat))
! return false;
! if (ipcp_lats_are_equal (old_lat, new_lat))
! return false;
}
! return true;
}
/* Print all ipcp_lattices of all functions to F. */
static void
! ipcp_print_all_lattices (FILE * f)
{
struct cgraph_node *node;
int i, count;
! fprintf (f, "\nLattice:\n");
! for (node = cgraph_nodes; node; node = node->next)
{
struct ipa_node_params *info;
- if (!node->analyzed)
- continue;
info = IPA_NODE_REF (node);
! fprintf (f, " Node: %s:\n", cgraph_node_name (node));
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
fprintf (f, " param [%d]: ", i);
! if (lat->type == IPA_CONST_VALUE)
{
! tree cst = lat->constant;
! fprintf (f, "type is CONST ");
! print_generic_expr (f, cst, 0);
! if (TREE_CODE (cst) == ADDR_EXPR
! && TREE_CODE (TREE_OPERAND (cst, 0)) == CONST_DECL)
{
! fprintf (f, " -> ");
! print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (cst, 0)),
! 0);
}
}
! else if (lat->type == IPA_TOP)
! fprintf (f, "type is TOP");
! else
! fprintf (f, "type is BOTTOM");
! if (ipa_param_cannot_devirtualize_p (info, i))
! fprintf (f, " - cannot_devirtualize set\n");
! else if (ipa_param_types_vec_empty (info, i))
! fprintf (f, " - type list empty\n");
! else
fprintf (f, "\n");
}
}
}
! /* Return true if ipcp algorithms would allow cloning NODE. */
! static bool
! ipcp_versionable_function_p (struct cgraph_node *node)
{
struct cgraph_edge *edge;
!
! /* We always version the actual function and redirect through the aliases. */
! if (node->alias)
! return false;
!
! /* We don't know how to clone thunks. */
! if (node->thunk.thunk_p)
! return false;
/* There are a number of generic reasons functions cannot be versioned. We
also cannot remove parameters if there are type attributes such as fnspec
present. */
! if (!inline_summary (node)->versionable
! || TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
! return false;
! /* Removing arguments doesn't work if the function takes varargs
! or use __builtin_apply_args.
! FIXME: handle this together with can_change_signature flag. */
! for (edge = node->callees; edge; edge = edge->next_callee)
! {
! tree t = edge->callee->decl;
! if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
! && (DECL_FUNCTION_CODE (t) == BUILT_IN_APPLY_ARGS
! || DECL_FUNCTION_CODE (t) == BUILT_IN_VA_START))
! return false;
! }
- return true;
}
/* Return true if this NODE is viable candidate for cloning. */
static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
! int n_calls = 0;
! int n_hot_calls = 0;
! gcov_type direct_call_sum = 0;
! struct cgraph_edge *e;
!
! /* We look through aliases, so we clone the aliased function instead. */
! if (node->alias)
! return false;
! /* We never clone functions that are not visible from outside.
! FIXME: in future we should clone such functions when they are called with
! different constants, but current ipcp implementation is not good on this.
! */
! if (cgraph_only_called_directly_p (node) || !node->analyzed)
return false;
! /* When function address is taken, we are pretty sure it will be called in hidden way. */
! if (node->address_taken)
! {
! if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; address is taken.\n",
! cgraph_node_name (node));
! return false;
! }
!
! if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
! {
! if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; body is overwritable.\n",
! cgraph_node_name (node));
! return false;
! }
! if (!ipcp_versionable_function_p (node))
{
if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; body is not versionable.\n",
cgraph_node_name (node));
return false;
}
- for (e = node->callers; e; e = e->next_caller)
- {
- direct_call_sum += e->count;
- n_calls ++;
- if (cgraph_maybe_hot_edge_p (e))
- n_hot_calls ++;
- }
! if (!n_calls)
{
if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; no direct calls.\n",
cgraph_node_name (node));
return false;
}
- if (inline_summary (node)->self_size < n_calls)
- {
- if (dump_file)
- fprintf (dump_file, "Considering %s for cloning; code would shrink.\n",
- cgraph_node_name (node));
- return true;
- }
! if (!flag_ipa_cp_clone)
! {
! if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; -fipa-cp-clone disabled.\n",
! cgraph_node_name (node));
! return false;
! }
! if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
{
if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; optimizing it for size.\n",
cgraph_node_name (node));
! return false;
}
/* When profile is available and function is hot, propagate into it even if
#include "fibheap.h"
#include "params.h"
#include "ipa-inline.h"
! #include "ipa-utils.h"
/* Maximal count found in program. */
+
static gcov_type max_count;
! /* Original overall size of the program. */
! static long overall_size, max_new_size;
! /* Allocation pools for values and their sources. */
! alloc_pool ipcp_values_pool;
! alloc_pool ipcp_sources_pool;
! /* Head of the linked list of topologically sorted values. */
! static struct ipcp_value *values_topo;
! /* Return true iff the CS is an edge within a strongly connected component as
! computed by ipa_reduced_postorder. */
static inline bool
! edge_within_scc (struct cgraph_edge *cs)
{
! struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
! struct ipa_dfs_info *callee_dfs;
! struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
! callee_dfs = (struct ipa_dfs_info *) callee->aux;
! return (caller_dfs
! && callee_dfs
! && caller_dfs->scc_no == callee_dfs->scc_no);
}
! /* Print V which is extracted from a value in a lattice to F. */
static void
! print_ipcp_constant_value (FILE * f, tree v)
{
! if (TREE_CODE (v) == TREE_BINFO)
{
! fprintf (f, "BINFO ");
! print_generic_expr (f, BINFO_TYPE (v), 0);
}
! else if (TREE_CODE (v) == ADDR_EXPR
! && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
{
! fprintf (f, "& ");
! print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
}
! else
! print_generic_expr (f, v, 0);
}
/* Print all ipcp_lattices of all functions to F. */
+
static void
! print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
{
struct cgraph_node *node;
int i, count;
! fprintf (f, "\nLattices:\n");
! FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
struct ipa_node_params *info;
info = IPA_NODE_REF (node);
! fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid);
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
+ struct ipcp_value *val;
+ bool prev = false;
fprintf (f, " param [%d]: ", i);
! if (lat->bottom)
! {
! fprintf (f, "BOTTOM\n");
! continue;
! }
!
! if (!lat->values_count && !lat->contains_variable)
! {
! fprintf (f, "TOP\n");
! continue;
! }
!
! if (lat->contains_variable)
! {
! fprintf (f, "VARIABLE");
! prev = true;
! if (dump_benefits)
! fprintf (f, "\n");
! }
!
! for (val = lat->values; val; val = val->next)
{
! if (dump_benefits && prev)
! fprintf (f, " ");
! else if (!dump_benefits && prev)
! fprintf (f, ", ");
! else
! prev = true;
!
! print_ipcp_constant_value (f, val->value);
!
! if (dump_sources)
{
! struct ipcp_value_source *s;
!
! fprintf (f, " [from:");
! for (s = val->sources; s; s = s->next)
! fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
! fprintf (f, "]");
}
+
+ if (dump_benefits)
+ fprintf (f, " [loc_time: %i, loc_size: %i, "
+ "prop_time: %i, prop_size: %i]\n",
+ val->local_time_benefit, val->local_size_cost,
+ val->prop_time_benefit, val->prop_size_cost);
}
! if (!dump_benefits)
fprintf (f, "\n");
}
}
}
! /* Determine whether it is at all technically possible to create clones of NODE
! and store this information in the ipa_node_params structure associated
! with NODE. */
! static void
! determine_versionability (struct cgraph_node *node)
{
struct cgraph_edge *edge;
! bool res = true;
/* There are a number of generic reasons functions cannot be versioned. We
also cannot remove parameters if there are type attributes such as fnspec
present. */
! if (node->alias || node->thunk.thunk_p
! || !inline_summary (node)->versionable
! || TYPE_ATTRIBUTES (TREE_TYPE (node->decl))
! || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
! res = false;
! else
! /* Removing arguments doesn't work if the function takes varargs
! or use __builtin_apply_args.
! FIXME: handle this together with can_change_signature flag. */
! for (edge = node->callees; edge; edge = edge->next_callee)
! {
! tree t = edge->callee->decl;
! if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
! && (DECL_FUNCTION_CODE (t) == BUILT_IN_APPLY_ARGS
! || DECL_FUNCTION_CODE (t) == BUILT_IN_VA_START))
! {
! res = false;
! break;
! };
! }
! if (!res && dump_file && node->alias && node->thunk.thunk_p)
! fprintf (dump_file, "Function %s/%i is not versionable.\n",
! cgraph_node_name (node), node->uid);
!
! IPA_NODE_REF (node)->node_versionable = res;
! }
!
! /* Return true if it is at all technically possible to create clones of a
! NODE. */
!
! static bool
! ipcp_versionable_function_p (struct cgraph_node *node)
! {
! return IPA_NODE_REF (node)->node_versionable;
! }
!
! /* Structure holding accumulated information about callers of a node. */
!
! struct caller_statistics
! {
! gcov_type count_sum;
! int n_calls, n_hot_calls, freq_sum;
! };
!
! /* Initialize fields of STAT to zeroes. */
!
! static inline void
! init_caller_stats (struct caller_statistics *stats)
! {
! stats->count_sum = 0;
! stats->n_calls = 0;
! stats->n_hot_calls = 0;
! stats->freq_sum = 0;
! }
!
! /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
! non-thunk incoming edges to NODE. */
!
! static bool
! gather_caller_stats (struct cgraph_node *node, void *data)
! {
! struct caller_statistics *stats = (struct caller_statistics *) data;
! struct cgraph_edge *cs;
!
! for (cs = node->callers; cs; cs = cs->next_caller)
! if (cs->caller->thunk.thunk_p)
! gather_caller_stats (cs->caller, stats);
! else
! {
! stats->count_sum += cs->count;
! stats->freq_sum += cs->frequency;
! stats->n_calls++;
! if (cgraph_maybe_hot_edge_p (cs))
! stats->n_hot_calls ++;
! }
! return false;
}
/* Return true if this NODE is viable candidate for cloning. */
+
static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
! struct caller_statistics stats;
! if (!cgraph_function_with_gimple_body_p (node))
return false;
! if (!flag_ipa_cp_clone)
{
if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; "
! "-fipa-cp-clone disabled.\n",
cgraph_node_name (node));
return false;
}
! if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
{
if (dump_file)
! fprintf (dump_file, "Not considering %s for cloning; "
! "optimizing it for size.\n",
cgraph_node_name (node));
return false;
}
! init_caller_stats (&stats);
! cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
! if (inline_summary (node)->self_size < stats.n_calls)
{
if (dump_file)
! fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
cgraph_node_name (node));
! return true;
}
/* When profile is available and function is hot, propagate into it even if
*************** ipcp_cloning_candidate_p (struct cgraph_
significantly. */
if (max_count)
{
! if (direct_call_sum > node->count * 90 / 100)
{
if (dump_file)
! fprintf (dump_file, "Considering %s for cloning; usually called directly.\n",
cgraph_node_name (node));
return true;
}
}
! if (!n_hot_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
significantly. */
if (max_count)
{
! if (stats.count_sum > node->count * 90 / 100)
{
if (dump_file)
! fprintf (dump_file, "Considering %s for cloning; "
! "usually called directly.\n",
cgraph_node_name (node));
return true;
}
}
! if (!stats.n_hot_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
*************** ipcp_cloning_candidate_p (struct cgraph_
return true;
}
! /* Mark parameter with index I of function described by INFO as unsuitable for
! devirtualization. Return true if it has already been marked so. */
! static bool
! ipa_set_param_cannot_devirtualize (struct ipa_node_params *info, int i)
{
! bool ret = info->params[i].cannot_devirtualize;
! info->params[i].cannot_devirtualize = true;
! if (info->params[i].types)
! VEC_free (tree, heap, info->params[i].types);
! return ret;
! }
- /* Initialize ipcp_lattices array. The lattices corresponding to supported
- types (integers, real types and Fortran constants defined as const_decls)
- are initialized to IPA_TOP, the rest of them to IPA_BOTTOM. */
static void
! ipcp_initialize_node_lattices (struct cgraph_node *node)
{
! int i;
! struct ipa_node_params *info = IPA_NODE_REF (node);
! enum ipa_lattice_type type;
! if (ipa_is_called_with_var_arguments (info))
! type = IPA_BOTTOM;
! /* We don't know how to clone thunks even when they are local. */
! else if (node->local.local
! && !node->thunk.thunk_p)
! type = IPA_TOP;
! /* When cloning is allowed, we can assume that externally visible functions
! are not called. We will compensate this by cloning later. */
! else if (ipcp_cloning_candidate_p (node))
! type = IPA_TOP, n_cloning_candidates ++;
! else
! type = IPA_BOTTOM;
! for (i = 0; i < ipa_get_param_count (info) ; i++)
! {
! ipa_get_lattice (info, i)->type = type;
! if (type == IPA_BOTTOM)
! ipa_set_param_cannot_devirtualize (info, i);
! }
}
! /* Build a constant tree with type TREE_TYPE and value according to LAT.
! Return the tree, or, if it is not possible to convert such value
! to TREE_TYPE, NULL. */
! static tree
! build_const_val (struct ipcp_lattice *lat, tree tree_type)
{
! tree val;
! gcc_assert (ipcp_lat_is_const (lat));
! val = lat->constant;
! if (!useless_type_conversion_p (tree_type, TREE_TYPE (val)))
{
! if (fold_convertible_p (tree_type, val))
! return fold_build1 (NOP_EXPR, tree_type, val);
! else if (TYPE_SIZE (tree_type) == TYPE_SIZE (TREE_TYPE (val)))
! return fold_build1 (VIEW_CONVERT_EXPR, tree_type, val);
! else
! return NULL;
}
! return val;
}
! /* Compute the proper scale for NODE. It is the ratio between the number of
! direct calls (represented on the incoming cgraph_edges) and sum of all
! invocations of NODE (represented as count in cgraph_node).
! FIXME: This code is wrong. Since the callers can be also clones and
! the clones are not scaled yet, the sums gets unrealistically high.
! To properly compute the counts, we would need to do propagation across
! callgraph (as external call to A might imply call to non-cloned B
! if A's clone calls cloned B). */
! static void
! ipcp_compute_node_scale (struct cgraph_node *node)
{
! gcov_type sum;
! struct cgraph_edge *cs;
!
! sum = 0;
! /* Compute sum of all counts of callers. */
! for (cs = node->callers; cs != NULL; cs = cs->next_caller)
! sum += cs->count;
! /* Work around the unrealistically high sum problem. We just don't want
! the non-cloned body to have negative or very low frequency. Since
! majority of execution time will be spent in clones anyway, this should
! give good enough profile. */
! if (sum > node->count * 9 / 10)
! sum = node->count * 9 / 10;
! if (node->count == 0)
! ipcp_set_node_scale (node, 0);
! else
! ipcp_set_node_scale (node, sum * REG_BR_PROB_BASE / node->count);
}
! /* Return true if there are some formal parameters whose value is IPA_TOP (in
! the whole compilation unit). Change their values to IPA_BOTTOM, since they
! most probably get their values from outside of this compilation unit. */
! static bool
! ipcp_change_tops_to_bottom (void)
! {
! int i, count;
! struct cgraph_node *node;
! bool prop_again;
! prop_again = false;
! for (node = cgraph_nodes; node; node = node->next)
! if (!node->alias)
! {
! struct ipa_node_params *info = IPA_NODE_REF (node);
! count = ipa_get_param_count (info);
! for (i = 0; i < count; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! if (lat->type == IPA_TOP)
! {
! prop_again = true;
! if (dump_file)
! {
! fprintf (dump_file, "Forcing param ");
! print_generic_expr (dump_file, ipa_get_param (info, i), 0);
! fprintf (dump_file, " of node %s to bottom.\n",
! cgraph_node_name (node));
! }
! lat->type = IPA_BOTTOM;
! }
! if (!ipa_param_cannot_devirtualize_p (info, i)
! && ipa_param_types_vec_empty (info, i))
! {
! prop_again = true;
! ipa_set_param_cannot_devirtualize (info, i);
! if (dump_file)
! {
! fprintf (dump_file, "Marking param ");
! print_generic_expr (dump_file, ipa_get_param (info, i), 0);
! fprintf (dump_file, " of node %s as unusable for "
! "devirtualization.\n",
! cgraph_node_name (node));
! }
! }
! }
! }
! return prop_again;
}
! /* Insert BINFO to the list of known types of parameter number I of the
! function described by CALLEE_INFO. Return true iff the type information
! associated with the callee parameter changed in any way. */
! static bool
! ipcp_add_param_type (struct ipa_node_params *callee_info, int i, tree binfo)
{
! int j, count;
! if (ipa_param_cannot_devirtualize_p (callee_info, i))
! return false;
! if (callee_info->params[i].types)
{
! count = VEC_length (tree, callee_info->params[i].types);
! for (j = 0; j < count; j++)
! if (VEC_index (tree, callee_info->params[i].types, j) == binfo)
! return false;
}
! if (VEC_length (tree, callee_info->params[i].types)
! == (unsigned) PARAM_VALUE (PARAM_DEVIRT_TYPE_LIST_SIZE))
! return !ipa_set_param_cannot_devirtualize (callee_info, i);
!
! VEC_safe_push (tree, heap, callee_info->params[i].types, binfo);
! return true;
}
! /* Copy known types information for parameter number CALLEE_IDX of CALLEE_INFO
! from a parameter of CALLER_INFO as described by JF. Return true iff the
! type information changed in any way. JF must be a pass-through or an
! ancestor jump function. */
! static bool
! ipcp_copy_types (struct ipa_node_params *caller_info,
! struct ipa_node_params *callee_info,
! int callee_idx, struct ipa_jump_func *jf)
{
! int caller_idx, j, count;
! bool res;
!
! if (ipa_param_cannot_devirtualize_p (callee_info, callee_idx))
! return false;
!
! if (jf->type == IPA_JF_PASS_THROUGH)
! {
! if (jf->value.pass_through.operation != NOP_EXPR)
! {
! ipa_set_param_cannot_devirtualize (callee_info, callee_idx);
! return true;
! }
! caller_idx = jf->value.pass_through.formal_id;
! }
! else
! caller_idx = jf->value.ancestor.formal_id;
! if (ipa_param_cannot_devirtualize_p (caller_info, caller_idx))
{
! ipa_set_param_cannot_devirtualize (callee_info, callee_idx);
! return true;
! }
!
! if (!caller_info->params[caller_idx].types)
! return false;
! res = false;
! count = VEC_length (tree, caller_info->params[caller_idx].types);
! for (j = 0; j < count; j++)
! {
! tree binfo = VEC_index (tree, caller_info->params[caller_idx].types, j);
! if (jf->type == IPA_JF_ANCESTOR)
{
! binfo = get_binfo_at_offset (binfo, jf->value.ancestor.offset,
! jf->value.ancestor.type);
! if (!binfo)
{
! ipa_set_param_cannot_devirtualize (callee_info, callee_idx);
! return true;
}
}
- res |= ipcp_add_param_type (callee_info, callee_idx, binfo);
}
! return res;
}
! /* Propagate type information for parameter of CALLEE_INFO number I as
! described by JF. CALLER_INFO describes the caller. Return true iff the
! type information changed in any way. */
static bool
! ipcp_propagate_types (struct ipa_node_params *caller_info,
! struct ipa_node_params *callee_info,
! struct ipa_jump_func *jf, int i)
{
! switch (jf->type)
! {
! case IPA_JF_UNKNOWN:
! case IPA_JF_CONST_MEMBER_PTR:
! case IPA_JF_CONST:
! break;
! case IPA_JF_KNOWN_TYPE:
! return ipcp_add_param_type (callee_info, i, jf->value.base_binfo);
! case IPA_JF_PASS_THROUGH:
! case IPA_JF_ANCESTOR:
! return ipcp_copy_types (caller_info, callee_info, i, jf);
! }
! /* If we reach this we cannot use this parameter for devirtualization. */
! return !ipa_set_param_cannot_devirtualize (callee_info, i);
}
! /* Interprocedural analysis. The algorithm propagates constants from the
! caller's parameters to the callee's arguments. */
static void
! ipcp_propagate_stage (void)
{
! int i;
! struct ipcp_lattice inc_lat = { IPA_BOTTOM, NULL };
! struct ipcp_lattice new_lat = { IPA_BOTTOM, NULL };
! struct ipcp_lattice *dest_lat;
! struct cgraph_edge *cs;
! struct ipa_jump_func *jump_func;
! struct ipa_func_list *wl;
! int count;
!
! ipa_check_create_node_params ();
! ipa_check_create_edge_args ();
! /* Initialize worklist to contain all functions. */
! wl = ipa_init_func_list ();
! while (wl)
! {
! struct cgraph_node *node = ipa_pop_func_from_list (&wl);
! struct ipa_node_params *info = IPA_NODE_REF (node);
! for (cs = node->callees; cs; cs = cs->next_callee)
! {
! struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee, NULL);
! struct ipa_node_params *callee_info = IPA_NODE_REF (callee);
! struct ipa_edge_args *args = IPA_EDGE_REF (cs);
!
! if (ipa_is_called_with_var_arguments (callee_info)
! || !cs->callee->analyzed
! || ipa_is_called_with_var_arguments (callee_info))
! continue;
- count = ipa_get_cs_argument_count (args);
- for (i = 0; i < count; i++)
- {
- jump_func = ipa_get_ith_jump_func (args, i);
- ipa_lattice_from_jfunc (info, &inc_lat, jump_func);
- dest_lat = ipa_get_lattice (callee_info, i);
- ipa_lattice_meet (&new_lat, &inc_lat, dest_lat);
- if (ipcp_lattice_changed (&new_lat, dest_lat))
- {
- dest_lat->type = new_lat.type;
- dest_lat->constant = new_lat.constant;
- ipa_push_func_to_list (&wl, callee);
- }
! if (ipcp_propagate_types (info, callee_info, jump_func, i))
! ipa_push_func_to_list (&wl, callee);
! }
! }
! }
! }
! /* Call the constant propagation algorithm and re-call it if necessary
! (if there are undetermined values left). */
! static void
! ipcp_iterate_stage (void)
{
! struct cgraph_node *node;
! n_cloning_candidates = 0;
! if (dump_file)
! fprintf (dump_file, "\nIPA iterate stage:\n\n");
- if (in_lto_p)
- ipa_update_after_lto_read ();
! for (node = cgraph_nodes; node; node = node->next)
! if (!node->alias)
{
! ipcp_initialize_node_lattices (node);
! ipcp_compute_node_scale (node);
! }
! if (dump_file && (dump_flags & TDF_DETAILS))
! {
! ipcp_print_all_lattices (dump_file);
! ipcp_function_scale_print (dump_file);
}
! ipcp_propagate_stage ();
! if (ipcp_change_tops_to_bottom ())
! /* Some lattices have changed from IPA_TOP to IPA_BOTTOM.
! This change should be propagated. */
{
! gcc_assert (n_cloning_candidates);
! ipcp_propagate_stage ();
}
! if (dump_file)
{
! fprintf (dump_file, "\nIPA lattices after propagation:\n");
! ipcp_print_all_lattices (dump_file);
! if (dump_flags & TDF_DETAILS)
! ipcp_print_profile_data (dump_file);
}
}
! /* Check conditions to forbid constant insertion to function described by
! NODE. */
! static inline bool
! ipcp_node_modifiable_p (struct cgraph_node *node)
{
! /* Once we will be able to do in-place replacement, we can be more
! lax here. */
! return ipcp_versionable_function_p (node);
}
! /* Print count scale data structures. */
! static void
! ipcp_function_scale_print (FILE * f)
{
! struct cgraph_node *node;
! for (node = cgraph_nodes; node; node = node->next)
{
! if (!node->analyzed)
continue;
! fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
! fprintf (f, "value is " HOST_WIDE_INT_PRINT_DEC
! " \n", (HOST_WIDE_INT) ipcp_get_node_scale (node));
}
}
! /* Print counts of all cgraph nodes. */
static void
! ipcp_print_func_profile_counts (FILE * f)
{
! struct cgraph_node *node;
! for (node = cgraph_nodes; node; node = node->next)
{
! fprintf (f, "function %s: ", cgraph_node_name (node));
! fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC
! " \n", (HOST_WIDE_INT) node->count);
}
}
! /* Print counts of all cgraph edges. */
static void
! ipcp_print_call_profile_counts (FILE * f)
{
! struct cgraph_node *node;
! struct cgraph_edge *cs;
! for (node = cgraph_nodes; node; node = node->next)
{
! for (cs = node->callees; cs; cs = cs->next_callee)
{
! fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
! cgraph_node_name (cs->callee));
! fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC " \n",
! (HOST_WIDE_INT) cs->count);
}
}
}
! /* Print profile info for all functions. */
static void
! ipcp_print_profile_data (FILE * f)
{
! fprintf (f, "\nNODE COUNTS :\n");
! ipcp_print_func_profile_counts (f);
! fprintf (f, "\nCS COUNTS stage:\n");
! ipcp_print_call_profile_counts (f);
}
! /* Build and initialize ipa_replace_map struct according to LAT. This struct is
! processed by versioning, which operates according to the flags set.
! PARM_TREE is the formal parameter found to be constant. LAT represents the
! constant. */
! static struct ipa_replace_map *
! ipcp_create_replace_map (tree parm_tree, struct ipcp_lattice *lat)
{
! struct ipa_replace_map *replace_map;
! tree const_val;
! const_val = build_const_val (lat, TREE_TYPE (parm_tree));
! if (const_val == NULL_TREE)
{
! if (dump_file)
{
! fprintf (dump_file, " const ");
! print_generic_expr (dump_file, lat->constant, 0);
! fprintf (dump_file, " can't be converted to param ");
! print_generic_expr (dump_file, parm_tree, 0);
! fprintf (dump_file, "\n");
}
- return NULL;
}
! replace_map = ggc_alloc_ipa_replace_map ();
if (dump_file)
{
! fprintf (dump_file, " replacing param ");
! print_generic_expr (dump_file, parm_tree, 0);
! fprintf (dump_file, " with const ");
! print_generic_expr (dump_file, const_val, 0);
! fprintf (dump_file, "\n");
}
! replace_map->old_tree = parm_tree;
! replace_map->new_tree = const_val;
! replace_map->replace_p = true;
! replace_map->ref_p = false;
! return replace_map;
}
! /* Return true if this callsite should be redirected to the original callee
! (instead of the cloned one). */
static bool
! ipcp_need_redirect_p (struct cgraph_edge *cs)
{
! struct ipa_node_params *orig_callee_info;
! int i, count;
! struct cgraph_node *node = cgraph_function_or_thunk_node (cs->callee, NULL);
! struct cgraph_node *orig;
! if (!n_cloning_candidates)
return false;
!
! /* We can't redirect anything in thunks, yet. */
! if (cs->caller->thunk.thunk_p)
return true;
! if ((orig = ipcp_get_orig_node (node)) != NULL)
! node = orig;
! if (ipcp_get_orig_node (cs->caller))
! return false;
! orig_callee_info = IPA_NODE_REF (node);
! count = ipa_get_param_count (orig_callee_info);
! for (i = 0; i < count; i++)
{
! struct ipcp_lattice *lat = ipa_get_lattice (orig_callee_info, i);
! struct ipa_jump_func *jump_func;
!
! jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
! if ((ipcp_lat_is_const (lat)
! && jump_func->type != IPA_JF_CONST)
! || (!ipa_param_cannot_devirtualize_p (orig_callee_info, i)
! && !ipa_param_types_vec_empty (orig_callee_info, i)
! && jump_func->type != IPA_JF_CONST
! && jump_func->type != IPA_JF_KNOWN_TYPE))
! return true;
}
! return false;
}
! /* Fix the callsites and the call graph after function cloning was done. */
static void
! ipcp_update_callgraph (void)
{
! struct cgraph_node *node;
! for (node = cgraph_nodes; node; node = node->next)
! if (node->analyzed && ipcp_node_is_clone (node))
! {
! bitmap args_to_skip = NULL;
! struct cgraph_node *orig_node = ipcp_get_orig_node (node);
! struct ipa_node_params *info = IPA_NODE_REF (orig_node);
! int i, count = ipa_get_param_count (info);
! struct cgraph_edge *cs, *next;
- if (node->local.can_change_signature)
- {
- args_to_skip = BITMAP_ALLOC (NULL);
- for (i = 0; i < count; i++)
- {
- struct ipcp_lattice *lat = ipa_get_lattice (info, i);
-
- /* We can proactively remove obviously unused arguments. */
- if (!ipa_is_param_used (info, i))
- {
- bitmap_set_bit (args_to_skip, i);
- continue;
- }
! if (lat->type == IPA_CONST_VALUE)
! bitmap_set_bit (args_to_skip, i);
! }
! }
! for (cs = node->callers; cs; cs = next)
! {
! next = cs->next_caller;
! if (!ipcp_node_is_clone (cs->caller) && ipcp_need_redirect_p (cs))
! {
! if (dump_file)
! fprintf (dump_file, "Redirecting edge %s/%i -> %s/%i "
! "back to %s/%i.",
! cgraph_node_name (cs->caller), cs->caller->uid,
! cgraph_node_name (cs->callee), cs->callee->uid,
! cgraph_node_name (orig_node), orig_node->uid);
! cgraph_redirect_edge_callee (cs, orig_node);
! }
! }
! }
! }
- /* Update profiling info for versioned functions and the functions they were
- versioned from. */
static void
! ipcp_update_profiling (void)
{
- struct cgraph_node *node, *orig_node;
- gcov_type scale, scale_complement;
struct cgraph_edge *cs;
! for (node = cgraph_nodes; node; node = node->next)
{
! if (ipcp_node_is_clone (node))
! {
! orig_node = ipcp_get_orig_node (node);
! scale = ipcp_get_node_scale (orig_node);
! node->count = orig_node->count * scale / REG_BR_PROB_BASE;
! scale_complement = REG_BR_PROB_BASE - scale;
! gcc_assert (scale_complement >= 0);
! orig_node->count =
! orig_node->count * scale_complement / REG_BR_PROB_BASE;
! for (cs = node->callees; cs; cs = cs->next_callee)
! cs->count = cs->count * scale / REG_BR_PROB_BASE;
! for (cs = orig_node->callees; cs; cs = cs->next_callee)
! cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
! }
}
}
! /* If NODE was cloned, how much would program grow? */
! static long
! ipcp_estimate_growth (struct cgraph_node *node)
{
struct cgraph_edge *cs;
! int redirectable_node_callers = 0;
! int removable_args = 0;
! bool need_original
! = !cgraph_will_be_removed_from_program_if_no_direct_calls (node);
! VEC (tree, heap) *known_vals = NULL;
! struct ipa_node_params *info;
! int i, count;
! int growth;
! for (cs = node->callers; cs != NULL; cs = cs->next_caller)
! if (cs->caller == node || !ipcp_need_redirect_p (cs))
! redirectable_node_callers++;
else
! need_original = true;
! /* If we will be able to fully replace original node, we never increase
! program size. */
! if (!need_original)
! return 0;
!
! info = IPA_NODE_REF (node);
! count = ipa_get_param_count (info);
! VEC_safe_grow_cleared (tree, heap, known_vals, count);
! if (node->local.can_change_signature)
! for (i = 0; i < count; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! /* We can proactively remove obviously unused arguments. */
! if (!ipa_is_param_used (info, i))
! removable_args++;
! if (lat->type == IPA_CONST_VALUE)
! {
! removable_args++;
! VEC_replace (tree, known_vals, i, lat->constant);
! }
! }
! /* We make just very simple estimate of savings for removal of operand from
! call site. Precise cost is difficult to get, as our size metric counts
! constants and moves as free. Generally we are looking for cases that
! small function is called very many times. */
! estimate_ipcp_clone_size_and_time (node, known_vals, &growth, NULL);
! VEC_free (tree, heap, known_vals);
! growth = growth
! - removable_args * redirectable_node_callers;
! if (growth < 0)
! return 0;
! return growth;
! }
! /* Estimate cost of cloning NODE. */
! static long
! ipcp_estimate_cloning_cost (struct cgraph_node *node)
! {
! int freq_sum = 1;
! gcov_type count_sum = 1;
! struct cgraph_edge *e;
! int cost;
! cost = ipcp_estimate_growth (node) * 1000;
! if (!cost)
{
! if (dump_file)
! fprintf (dump_file, "Versioning of %s will save code size\n",
! cgraph_node_name (node));
! return 0;
}
! for (e = node->callers; e; e = e->next_caller)
! if (!bitmap_bit_p (dead_nodes, e->caller->uid)
! && !ipcp_need_redirect_p (e))
! {
! count_sum += e->count;
! freq_sum += e->frequency + 1;
! }
! if (max_count)
! cost /= count_sum * 1000 / max_count + 1;
! else
! cost /= freq_sum * 1000 / REG_BR_PROB_BASE + 1;
! if (dump_file)
! fprintf (dump_file, "Cost of versioning %s is %i, (size: %i, freq: %i)\n",
! cgraph_node_name (node), cost, inline_summary (node)->self_size,
! freq_sum);
! return cost + 1;
}
! /* Walk indirect calls of NODE and if any polymorphic can be turned into a
! direct one now, do so. */
static void
! ipcp_process_devirtualization_opportunities (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
! struct cgraph_edge *ie, *next_ie;
! for (ie = node->indirect_calls; ie; ie = next_ie)
{
! int param_index;
! HOST_WIDE_INT token, anc_offset;
! tree target, delta, otr_type;
! struct ipcp_lattice *lat;
! next_ie = ie->next_callee;
! if (!ie->indirect_info->polymorphic)
! continue;
! param_index = ie->indirect_info->param_index;
! if (param_index == -1)
continue;
! lat = ipa_get_lattice (info, param_index);
! token = ie->indirect_info->otr_token;
! anc_offset = ie->indirect_info->anc_offset;
! otr_type = ie->indirect_info->otr_type;
! target = NULL_TREE;
! if (lat->type == IPA_CONST_VALUE)
{
! tree binfo = gimple_extract_devirt_binfo_from_cst (lat->constant);
! if (!binfo)
! continue;
! binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
! if (!binfo)
! continue;
! target = gimple_get_virt_method_for_binfo (token, binfo, &delta);
! }
! else
! {
! int types_count, j;
! if (ipa_param_cannot_devirtualize_p (info, param_index)
! || ipa_param_types_vec_empty (info, param_index))
! continue;
! types_count = VEC_length (tree, info->params[param_index].types);
! for (j = 0; j < types_count; j++)
{
! tree binfo = VEC_index (tree, info->params[param_index].types, j);
! tree d, t;
!
! binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
! if (!binfo)
! {
! target = NULL_TREE;
! break;
! }
!
! t = gimple_get_virt_method_for_binfo (token, binfo, &d);
! if (!t)
! {
! target = NULL_TREE;
! break;
! }
! else if (!target)
! {
! target = t;
! delta = d;
! }
! else if (target != t || !tree_int_cst_equal (delta, d))
! {
! target = NULL_TREE;
! break;
! }
}
}
! if (target)
! ipa_make_edge_direct_to_target (ie, target, delta);
! }
! }
!
! /* Return number of live constant parameters. */
! static int
! ipcp_const_param_count (struct cgraph_node *node)
! {
! int const_param = 0;
! struct ipa_node_params *info = IPA_NODE_REF (node);
! int count = ipa_get_param_count (info);
! int i;
! for (i = 0; i < count; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! if ((ipcp_lat_is_insertable (lat)
! /* Do not count obviously unused arguments. */
! && ipa_is_param_used (info, i))
! || (!ipa_param_cannot_devirtualize_p (info, i)
! && !ipa_param_types_vec_empty (info, i)))
! const_param++;
}
- return const_param;
}
! /* Given that a formal parameter of NODE given by INDEX is known to be constant
! CST, try to find any indirect edges that can be made direct and make them
! so. Note that INDEX is the number the parameter at the time of analyzing
! parameter uses and parameter removals should not be considered for it. (In
! fact, the parameter itself has just been removed.) */
static void
! ipcp_discover_new_direct_edges (struct cgraph_node *node, int index, tree cst)
{
! struct cgraph_edge *ie, *next_ie;
! for (ie = node->indirect_calls; ie; ie = next_ie)
{
! struct cgraph_indirect_call_info *ici = ie->indirect_info;
! next_ie = ie->next_callee;
! if (ici->param_index != index
! || ici->polymorphic)
! continue;
! ipa_make_edge_direct_to_target (ie, cst, NULL_TREE);
}
}
! /* Propagate the constant parameters found by ipcp_iterate_stage()
! to the function's code. */
static void
! ipcp_insert_stage (void)
{
! struct cgraph_node *node, *node1 = NULL;
int i;
- VEC (cgraph_edge_p, heap) * redirect_callers;
- VEC (ipa_replace_map_p,gc)* replace_trees;
- int count;
- tree parm_tree;
- struct ipa_replace_map *replace_param;
- fibheap_t heap;
- long overall_size = 0, new_size = 0;
- long max_new_size;
-
- ipa_check_create_node_params ();
- ipa_check_create_edge_args ();
- if (dump_file)
- fprintf (dump_file, "\nIPA insert stage:\n\n");
! dead_nodes = BITMAP_ALLOC (NULL);
- FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
- {
- if (node->count > max_count)
- max_count = node->count;
- overall_size += inline_summary (node)->self_size;
- }
! max_new_size = overall_size;
! if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
! max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
! max_new_size = max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
! /* First collect all functions we proved to have constant arguments to
! heap. */
! heap = fibheap_new ();
! for (node = cgraph_nodes; node; node = node->next)
! {
! struct ipa_node_params *info;
! /* Propagation of the constant is forbidden in certain conditions. */
! if (!node->analyzed || !ipcp_node_modifiable_p (node))
! continue;
! info = IPA_NODE_REF (node);
! if (ipa_is_called_with_var_arguments (info))
! continue;
! if (ipcp_const_param_count (node))
! node->aux = fibheap_insert (heap, ipcp_estimate_cloning_cost (node),
! node);
! }
!
! /* Now clone in priority order until code size growth limits are met or
! heap is emptied. */
! while (!fibheap_empty (heap))
! {
! struct ipa_node_params *info;
! int growth = 0;
! bitmap args_to_skip;
! struct cgraph_edge *cs;
! node = (struct cgraph_node *)fibheap_extract_min (heap);
! node->aux = NULL;
! if (dump_file)
! fprintf (dump_file, "considering function %s\n",
! cgraph_node_name (node));
! growth = ipcp_estimate_growth (node);
! if (new_size + growth > max_new_size)
! break;
! if (growth
! && cgraph_optimize_for_size_p (node))
! {
! if (dump_file)
! fprintf (dump_file, "Not versioning, cold code would grow");
! continue;
! }
! info = IPA_NODE_REF (node);
! count = ipa_get_param_count (info);
! replace_trees = VEC_alloc (ipa_replace_map_p, gc, 1);
! if (node->local.can_change_signature)
! args_to_skip = BITMAP_GGC_ALLOC ();
! else
! args_to_skip = NULL;
! for (i = 0; i < count; i++)
{
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! parm_tree = ipa_get_param (info, i);
! /* We can proactively remove obviously unused arguments. */
! if (!ipa_is_param_used (info, i))
{
! if (args_to_skip)
! bitmap_set_bit (args_to_skip, i);
continue;
}
! if (lat->type == IPA_CONST_VALUE)
{
! replace_param =
! ipcp_create_replace_map (parm_tree, lat);
! if (replace_param == NULL)
! break;
! VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_param);
! if (args_to_skip)
! bitmap_set_bit (args_to_skip, i);
}
! }
! if (i < count)
! {
if (dump_file)
! fprintf (dump_file, "Not versioning, some parameters couldn't be replaced");
! continue;
! }
! new_size += growth;
! /* Look if original function becomes dead after cloning. */
! for (cs = node->callers; cs != NULL; cs = cs->next_caller)
! if (cs->caller == node || ipcp_need_redirect_p (cs))
! break;
! if (!cs && cgraph_will_be_removed_from_program_if_no_direct_calls (node))
! bitmap_set_bit (dead_nodes, node->uid);
!
! redirect_callers = collect_callers_of_node (node);
!
! /* Redirecting all the callers of the node to the
! new versioned node. */
! node1 =
! cgraph_create_virtual_clone (node, redirect_callers, replace_trees,
! args_to_skip, "constprop");
! args_to_skip = NULL;
! VEC_free (cgraph_edge_p, heap, redirect_callers);
! replace_trees = NULL;
! if (node1 == NULL)
! continue;
! ipcp_process_devirtualization_opportunities (node1);
if (dump_file)
! fprintf (dump_file, "versioned function %s with growth %i, overall %i\n",
! cgraph_node_name (node), (int)growth, (int)new_size);
! ipcp_init_cloned_node (node, node1);
info = IPA_NODE_REF (node);
! for (i = 0; i < count; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! if (lat->type == IPA_CONST_VALUE)
! ipcp_discover_new_direct_edges (node1, i, lat->constant);
! }
! if (dump_file)
! dump_function_to_file (node1->decl, dump_file, dump_flags);
! for (cs = node->callees; cs; cs = cs->next_callee)
! {
! struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee, NULL);
! if (callee->aux)
! {
! fibheap_delete_node (heap, (fibnode_t) callee->aux);
! callee->aux = fibheap_insert (heap,
! ipcp_estimate_cloning_cost (callee),
! callee);
! }
! }
}
! while (!fibheap_empty (heap))
{
! if (dump_file)
! fprintf (dump_file, "skipping function %s\n",
! cgraph_node_name (node));
! node = (struct cgraph_node *) fibheap_extract_min (heap);
! node->aux = NULL;
}
- fibheap_delete (heap);
- BITMAP_FREE (dead_nodes);
- ipcp_update_callgraph ();
- ipcp_update_profiling ();
}
/* The IPCP driver. */
static unsigned int
ipcp_driver (void)
{
cgraph_remove_unreachable_nodes (true,dump_file);
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
return true;
}
! /* Arrays representing a topological ordering of call graph nodes and a stack
! of noes used during constant propagation. */
! struct topo_info
{
! struct cgraph_node **order;
! struct cgraph_node **stack;
! int nnodes, stack_top;
! };
!
! /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
static void
! build_topo_info (struct topo_info *topo)
{
! topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
! topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
! topo->stack_top = 0;
! topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
! }
! /* Free information about strongly connected components and the arrays in
! TOPO. */
! static void
! free_topo_info (struct topo_info *topo)
! {
! ipa_free_postorder_info ();
! free (topo->order);
! free (topo->stack);
}
! /* Add NODE to the stack in TOPO, unless it is already there. */
!
! static inline void
! push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
{
! struct ipa_node_params *info = IPA_NODE_REF (node);
! if (info->node_enqueued)
! return;
! info->node_enqueued = 1;
! topo->stack[topo->stack_top++] = node;
! }
! /* Pop a node from the stack in TOPO and return it or return NULL if the stack
! is empty. */
! static struct cgraph_node *
! pop_node_from_stack (struct topo_info *topo)
! {
! if (topo->stack_top)
{
! struct cgraph_node *node;
! topo->stack_top--;
! node = topo->stack[topo->stack_top];
! IPA_NODE_REF (node)->node_enqueued = 0;
! return node;
}
! else
! return NULL;
}
! /* Set lattice LAT to bottom and return true if it previously was not set as
! such. */
! static inline bool
! set_lattice_to_bottom (struct ipcp_lattice *lat)
{
! bool ret = !lat->bottom;
! lat->bottom = true;
! return ret;
}
! /* Mark lattice as containing an unknown value and return true if it previously
! was not marked as such. */
! static inline bool
! set_lattice_contains_variable (struct ipcp_lattice *lat)
! {
! bool ret = !lat->contains_variable;
! lat->contains_variable = true;
! return ret;
}
! /* Initialize ipcp_lattices. */
! static void
! initialize_node_lattices (struct cgraph_node *node)
{
! struct ipa_node_params *info = IPA_NODE_REF (node);
! struct cgraph_edge *ie;
! bool disable = false, variable = false;
! int i;
! /* FIXME: Can we clobber only the first argument of thunks? */
! if (node->alias || node->thunk.thunk_p
! || ipa_is_called_with_var_arguments (info))
! disable = true;
! else if (!node->local.local)
! {
! /* When cloning is allowed, we can assume that externally visible
! functions are not called. We will compensate this by cloning
! later. */
! if (ipcp_versionable_function_p (node)
! && ipcp_cloning_candidate_p (node))
! variable = true;
! else
! disable = true;
! }
! if (disable || variable)
{
! for (i = 0; i < ipa_get_param_count (info) ; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! if (disable)
! set_lattice_to_bottom (lat);
! else
! set_lattice_contains_variable (lat);
! }
! if (dump_file && (dump_flags & TDF_DETAILS)
! && node->alias && node->thunk.thunk_p)
! fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
! cgraph_node_name (node), node->uid,
! disable ? "BOTTOM" : "VARIABLE");
}
! for (ie = node->indirect_calls; ie; ie = ie->next_callee)
! if (ie->indirect_info->polymorphic)
! {
! gcc_checking_assert (ie->indirect_info->param_index >= 0);
! ipa_get_lattice (info, ie->indirect_info->param_index)->virt_call = 1;
! }
}
! /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
! bottom, not containing a variable component and without any known value at
! the same time. */
! static void
! verify_propagated_values (void)
{
! #ifdef ENABLE_CHECKING
! struct cgraph_node *node;
! FOR_EACH_DEFINED_FUNCTION (node)
{
! struct ipa_node_params *info = IPA_NODE_REF (node);
! int i, count = ipa_get_param_count (info);
! for (i = 0; i < count; i++)
{
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
!
! if (!lat->bottom
! && !lat->contains_variable
! && lat->values_count == 0)
{
! if (dump_file)
! {
! fprintf (dump_file, "\nIPA lattices after constant "
! "propagation:\n");
! print_all_lattices (dump_file, true, false);
! }
!
! gcc_unreachable ();
}
}
}
! #endif
}
! /* Return true iff X and Y should be considered equal values by IPA-CP. */
static bool
! values_equal_for_ipcp_p (tree x, tree y)
{
! gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
! if (x == y)
! return true;
! if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
! return false;
! if (TREE_CODE (x) == ADDR_EXPR
! && TREE_CODE (y) == ADDR_EXPR
! && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
! && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
! return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
! DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
! else
! return operand_equal_p (x, y, 0);
}
! /* Add a new value source to VAL, marking that a value comes from edge CS and
! (if the underlying jump function is a pass-through or an ancestor one) from
! a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */
!
static void
! add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
! struct ipcp_value *src_val, int src_idx)
{
! struct ipcp_value_source *src;
! src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
! src->cs = cs;
! src->val = src_val;
! src->index = src_idx;
! src->next = val->sources;
! val->sources = src;
! }
! /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
! it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
! same meaning. */
! static bool
! add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
! struct cgraph_edge *cs, struct ipcp_value *src_val,
! int src_idx)
{
! struct ipcp_value *val;
! if (lat->bottom)
! return false;
! for (val = lat->values; val; val = val->next)
! if (values_equal_for_ipcp_p (val->value, newval))
{
! if (edge_within_scc (cs))
! {
! struct ipcp_value_source *s;
! for (s = val->sources; s ; s = s->next)
! if (s->cs == cs)
! break;
! if (s)
! return false;
! }
!
! add_value_source (val, cs, src_val, src_idx);
! return false;
! }
!
! if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
! {
! /* We can only free sources, not the values themselves, because sources
! of other values in this this SCC might point to them. */
! for (val = lat->values; val; val = val->next)
! {
! while (val->sources)
! {
! struct ipcp_value_source *src = val->sources;
! val->sources = src->next;
! pool_free (ipcp_sources_pool, src);
! }
! }
!
! lat->values = NULL;
! return set_lattice_to_bottom (lat);
}
! lat->values_count++;
! val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
! memset (val, 0, sizeof (*val));
!
! add_value_source (val, cs, src_val, src_idx);
! val->value = newval;
! val->next = lat->values;
! lat->values = val;
! return true;
! }
!
! /* Propagate values through a pass-through jump function JFUNC associated with
! edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
! is the index of the source parameter. */
!
! static bool
! propagate_vals_accross_pass_through (struct cgraph_edge *cs,
! struct ipa_jump_func *jfunc,
! struct ipcp_lattice *src_lat,
! struct ipcp_lattice *dest_lat,
! int src_idx)
! {
! struct ipcp_value *src_val;
! bool ret = false;
!
! if (jfunc->value.pass_through.operation == NOP_EXPR)
! for (src_val = src_lat->values; src_val; src_val = src_val->next)
! ret |= add_value_to_lattice (dest_lat, src_val->value, cs,
! src_val, src_idx);
! else if (edge_within_scc (cs))
! ret = set_lattice_contains_variable (dest_lat);
! else
! for (src_val = src_lat->values; src_val; src_val = src_val->next)
! {
! tree cstval = src_val->value;
!
! if (TREE_CODE (cstval) == TREE_BINFO)
! {
! ret |= set_lattice_contains_variable (dest_lat);
! continue;
! }
! cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
!
! if (cstval)
! ret |= add_value_to_lattice (dest_lat, cstval, cs, src_val, src_idx);
! else
! ret |= set_lattice_contains_variable (dest_lat);
! }
!
! return ret;
! }
!
! /* Propagate values through an ancestor jump function JFUNC associated with
! edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
! is the index of the source parameter. */
!
! static bool
! propagate_vals_accross_ancestor (struct cgraph_edge *cs,
! struct ipa_jump_func *jfunc,
! struct ipcp_lattice *src_lat,
! struct ipcp_lattice *dest_lat,
! int src_idx)
! {
! struct ipcp_value *src_val;
! bool ret = false;
!
! if (edge_within_scc (cs))
! return set_lattice_contains_variable (dest_lat);
!
! for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
! tree t = src_val->value;
!
! if (TREE_CODE (t) == TREE_BINFO)
! t = get_binfo_at_offset (t, jfunc->value.ancestor.offset,
! jfunc->value.ancestor.type);
! else
! t = ipa_get_jf_ancestor_result (jfunc, t);
!
! if (t)
! ret |= add_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
! else
! ret |= set_lattice_contains_variable (dest_lat);
}
!
! return ret;
! }
!
! /* Propagate values across jump function JFUNC that is associated with edge CS
! and put the values into DEST_LAT. */
!
! static bool
! propagate_accross_jump_function (struct cgraph_edge *cs,
! struct ipa_jump_func *jfunc,
! struct ipcp_lattice *dest_lat)
! {
! if (dest_lat->bottom)
! return false;
!
! if (jfunc->type == IPA_JF_CONST
! || jfunc->type == IPA_JF_KNOWN_TYPE)
{
! tree val;
!
! if (jfunc->type == IPA_JF_KNOWN_TYPE)
! val = jfunc->value.base_binfo;
! else
! val = jfunc->value.constant;
! return add_value_to_lattice (dest_lat, val, cs, NULL, 0);
! }
! else if (jfunc->type == IPA_JF_PASS_THROUGH
! || jfunc->type == IPA_JF_ANCESTOR)
! {
! struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
! struct ipcp_lattice *src_lat;
! int src_idx;
! bool ret;
!
! if (jfunc->type == IPA_JF_PASS_THROUGH)
! src_idx = jfunc->value.pass_through.formal_id;
! else
! src_idx = jfunc->value.ancestor.formal_id;
!
! src_lat = ipa_get_lattice (caller_info, src_idx);
! if (src_lat->bottom)
! return set_lattice_contains_variable (dest_lat);
!
! /* If we would need to clone the caller and cannot, do not propagate. */
! if (!ipcp_versionable_function_p (cs->caller)
! && (src_lat->contains_variable
! || (src_lat->values_count > 1)))
! return set_lattice_contains_variable (dest_lat);
!
! if (jfunc->type == IPA_JF_PASS_THROUGH)
! ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
! dest_lat, src_idx);
! else
! ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
! src_idx);
!
! if (src_lat->contains_variable)
! ret |= set_lattice_contains_variable (dest_lat);
!
! return ret;
}
+
+ /* TODO: We currently do not handle member method pointers in IPA-CP (we only
+ use it for indirect inlining), we should propagate them too. */
+ return set_lattice_contains_variable (dest_lat);
}
! /* Propagate constants from the caller to the callee of CS. INFO describes the
! caller. */
!
! static bool
! propagate_constants_accross_call (struct cgraph_edge *cs)
{
! struct ipa_node_params *callee_info;
! enum availability availability;
! struct cgraph_node *callee;
! struct ipa_edge_args *args;
! bool ret = false;
! int i, count;
!
! callee = cgraph_function_or_thunk_node (cs->callee, &availability);
! if (!callee || !cgraph_function_with_gimple_body_p (callee))
! return false;
!
! callee_info = IPA_NODE_REF (callee);
! if (ipa_is_called_with_var_arguments (callee_info))
! return false;
!
! args = IPA_EDGE_REF (cs);
! count = ipa_get_cs_argument_count (args);
! for (i = 0; i < count; i++)
! {
! struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
! struct ipcp_lattice *dest_lat = ipa_get_lattice (callee_info, i);
!
! if (availability == AVAIL_OVERWRITABLE)
! ret |= set_lattice_contains_variable (dest_lat);
! else
! ret |= propagate_accross_jump_function (cs, jump_func, dest_lat);
! }
! return ret;
}
! /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
! (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
! NULL) return the destination. If simple thunk delta must be applied too,
! store it to DELTA. */
!
! static tree
! get_indirect_edge_target (struct cgraph_edge *ie, tree *delta,
! VEC (tree, heap) *known_vals,
! VEC (tree, heap) *known_binfos)
! {
! int param_index = ie->indirect_info->param_index;
! HOST_WIDE_INT token, anc_offset;
! tree otr_type;
! tree t;
!
! if (param_index == -1)
! return NULL_TREE;
!
! if (!ie->indirect_info->polymorphic)
! {
! tree t = VEC_index (tree, known_vals, param_index);
! if (t &&
! TREE_CODE (t) == ADDR_EXPR
! && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
! {
! *delta = NULL_TREE;
! return TREE_OPERAND (t, 0);
! }
! else
! return NULL_TREE;
! }
!
! token = ie->indirect_info->otr_token;
! anc_offset = ie->indirect_info->anc_offset;
! otr_type = ie->indirect_info->otr_type;
!
! t = VEC_index (tree, known_vals, param_index);
! if (!t && known_binfos)
! t = VEC_index (tree, known_binfos, param_index);
! if (!t)
! return NULL_TREE;
!
! if (TREE_CODE (t) != TREE_BINFO)
! {
! tree binfo;
! binfo = gimple_extract_devirt_binfo_from_cst (t);
! if (!binfo)
! return NULL_TREE;
! binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
! if (!binfo)
! return NULL_TREE;
! return gimple_get_virt_method_for_binfo (token, binfo, delta);
! }
! else
! {
! tree binfo;
!
! binfo = get_binfo_at_offset (t, anc_offset, otr_type);
! if (!binfo)
! return NULL_TREE;
! return gimple_get_virt_method_for_binfo (token, binfo, delta);
! }
! }
!
! /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
! and KNOWN_BINFOS. */
!
! static int
! devirtualization_time_bonus (struct cgraph_node *node,
! VEC (tree, heap) *known_csts,
! VEC (tree, heap) *known_binfos)
{
! struct cgraph_edge *ie;
! int res = 0;
! for (ie = node->indirect_calls; ie; ie = ie->next_callee)
{
! struct cgraph_node *callee;
! struct inline_summary *isummary;
! tree delta, target;
!
! target = get_indirect_edge_target (ie, &delta, known_csts, known_binfos);
! if (!target)
! continue;
!
! /* Only bare minimum benefit for clearly un-inlineable targets. */
! res += 1;
! callee = cgraph_get_node (target);
! if (!callee)
continue;
!
! /* FIXME: The values below need re-considering and perhaps also
! integrating into the cost metrics, at lest in some very basic way. */
! isummary = inline_summary (callee);
! if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
! res += 31;
! else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
! res += 15;
! else if (isummary->size <= MAX_INLINE_INSNS_AUTO
! || DECL_DECLARED_INLINE_P (callee->decl))
! res += 7;
}
+
+ return res;
}
! /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
! and SIZE_COST and with the sum of frequencies of incoming edges to the
! potential new clone in FREQUENCIES. */
!
! static bool
! good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
! int freq_sum, gcov_type count_sum, int size_cost)
! {
! if (time_benefit == 0
! || !flag_ipa_cp_clone
! || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
! return false;
!
! gcc_checking_assert (size_cost >= 0);
!
! /* FIXME: These decisions need tuning. */
! if (max_count)
! {
! int evaluation, factor = (count_sum * 1000) / max_count;
!
! evaluation = (time_benefit * factor) / size_cost;
!
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
! "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
! ") -> evaluation: %i, threshold: %i\n",
! time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
! evaluation, 500);
!
! return evaluation > 500;
! }
! else
! {
! int evaluation = (time_benefit * freq_sum) / size_cost;
!
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
! "size: %i, freq_sum: %i) -> evaluation: %i, threshold: %i\n",
! time_benefit, size_cost, freq_sum, evaluation,
! CGRAPH_FREQ_BASE /2);
!
! return evaluation > (CGRAPH_FREQ_BASE /2);
! }
! }
!
!
! /* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
! parameters that are known independent of the context. INFO describes the
! function. If REMOVABLE_PARAMS is non-NULL, store the number o removable
! parameters in it. */
!
! static bool
! gather_context_independent_values (struct ipa_node_params *info,
! VEC (tree, heap) **known_csts,
! VEC (tree, heap) **known_binfos,
! int *removable_params)
! {
! int i, count = ipa_get_param_count (info);
! int rparams = 0;
! bool ret = false;
!
! *known_csts = NULL;
! *known_binfos = NULL;
! VEC_safe_grow_cleared (tree, heap, *known_csts, count);
! VEC_safe_grow_cleared (tree, heap, *known_binfos, count);
!
! for (i = 0; i < count ; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
!
! if (ipa_lat_is_single_const (lat))
! {
! struct ipcp_value *val = lat->values;
! if (TREE_CODE (val->value) != TREE_BINFO)
! {
! VEC_replace (tree, *known_csts, i, val->value);
! rparams++;
! ret = true;
! }
! else if (lat->virt_call)
! {
! VEC_replace (tree, *known_binfos, i, val->value);
! ret = true;
! }
! else if (!ipa_is_param_used (info, i))
! rparams++;
! }
! else if (!ipa_is_param_used (info, i))
! rparams++;
! }
!
! if (removable_params)
! *removable_params = rparams;
! return ret;
! }
!
! /* Iterate over known values of parameters of NODE and estimate the local
! effects in terms of time and size they have. */
!
static void
! estimate_local_effects (struct cgraph_node *node)
{
! struct ipa_node_params *info = IPA_NODE_REF (node);
! int i, count = ipa_get_param_count (info);
! VEC (tree, heap) *known_csts, *known_binfos;
! bool always_const;
! int base_time = inline_summary (node)->time;
! int removable_params;
!
! if (!count || !ipcp_versionable_function_p (node))
! return;
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
! cgraph_node_name (node), node->uid, base_time);
!
! always_const = gather_context_independent_values (info, &known_csts,
! &known_binfos,
! &removable_params);
! if (always_const)
! {
! struct caller_statistics stats;
! int time, size;
!
! init_caller_stats (&stats);
! cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
! estimate_ipcp_clone_size_and_time (node, known_csts, &size, &time);
! time -= devirtualization_time_bonus (node, known_csts, known_binfos);
! size -= stats.n_calls * removable_params;
!
! if (dump_file)
! fprintf (dump_file, " * context independent values, size: %i, "
! "time_benefit: %i\n", size, base_time - time);
!
! if (size <= 0
! || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
! {
! info->clone_for_all_contexts = true;
! base_time = time;
!
! if (dump_file)
! fprintf (dump_file, " Decided to specialize for all "
! "known contexts, code not going to grow.\n");
! }
! else if (good_cloning_opportunity_p (node, base_time - time,
! stats.freq_sum, stats.count_sum,
! size))
! {
! if (size + overall_size <= max_new_size)
! {
! info->clone_for_all_contexts = true;
! base_time = time;
! overall_size += size;
!
! if (dump_file)
! fprintf (dump_file, " Decided to specialize for all "
! "known contexts, growth deemed beneficial.\n");
! }
! else if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, " Not cloning for all contexts because "
! "max_new_size would be reached with %li.\n",
! size + overall_size);
! }
! }
!
! for (i = 0; i < count ; i++)
{
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! struct ipcp_value *val;
!
! if (lat->bottom
! || !lat->values
! || VEC_index (tree, known_csts, i)
! || VEC_index (tree, known_binfos, i))
! continue;
!
! for (val = lat->values; val; val = val->next)
! {
! int time, size, time_benefit;
!
! if (TREE_CODE (val->value) != TREE_BINFO)
! {
! VEC_replace (tree, known_csts, i, val->value);
! VEC_replace (tree, known_binfos, i, NULL_TREE);
! }
! else if (lat->virt_call)
! {
! VEC_replace (tree, known_csts, i, NULL_TREE);
! VEC_replace (tree, known_binfos, i, val->value);
! }
! else
! continue;
!
! estimate_ipcp_clone_size_and_time (node, known_csts, &size, &time);
! time_benefit = base_time - time
! + devirtualization_time_bonus (node, known_csts, known_binfos);
!
! if (dump_file && (dump_flags & TDF_DETAILS))
! {
! fprintf (dump_file, " - estimates for value ");
! print_ipcp_constant_value (dump_file, val->value);
! fprintf (dump_file, " for parameter ");
! print_generic_expr (dump_file, ipa_get_param (info, i), 0);
! fprintf (dump_file, ": time_benefit: %i, size: %i\n",
! time_benefit, size);
! }
!
! val->local_time_benefit = time_benefit;
! val->local_size_cost = size;
! }
}
+
+ VEC_free (tree, heap, known_csts);
+ VEC_free (tree, heap, known_binfos);
}
!
! /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
! topological sort of values. */
!
static void
! add_val_to_toposort (struct ipcp_value *cur_val)
{
! static int dfs_counter = 0;
! static struct ipcp_value *stack;
! struct ipcp_value_source *src;
!
! if (cur_val->dfs)
! return;
!
! dfs_counter++;
! cur_val->dfs = dfs_counter;
! cur_val->low_link = dfs_counter;
!
! cur_val->topo_next = stack;
! stack = cur_val;
! cur_val->on_stack = true;
! for (src = cur_val->sources; src; src = src->next)
! if (src->val)
! {
! if (src->val->dfs == 0)
! {
! add_val_to_toposort (src->val);
! if (src->val->low_link < cur_val->low_link)
! cur_val->low_link = src->val->low_link;
! }
! else if (src->val->on_stack
! && src->val->dfs < cur_val->low_link)
! cur_val->low_link = src->val->dfs;
! }
!
! if (cur_val->dfs == cur_val->low_link)
{
! struct ipcp_value *v, *scc_list = NULL;
!
! do
{
! v = stack;
! stack = v->topo_next;
! v->on_stack = false;
!
! v->scc_next = scc_list;
! scc_list = v;
}
+ while (v != cur_val);
+
+ cur_val->topo_next = values_topo;
+ values_topo = cur_val;
}
}
! /* Add all values in lattices associated with NODE to the topological sort if
! they are not there yet. */
!
static void
! add_all_node_vals_to_toposort (struct cgraph_node *node)
{
! struct ipa_node_params *info = IPA_NODE_REF (node);
! int i, count = ipa_get_param_count (info);
!
! for (i = 0; i < count ; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! struct ipcp_value *val;
!
! if (lat->bottom || !lat->values)
! continue;
! for (val = lat->values; val; val = val->next)
! add_val_to_toposort (val);
! }
}
! /* One pass of constants propagation along the call graph edges, from callers
! to callees (requires topological ordering in TOPO), iterate over strongly
! connected components. */
!
! static void
! propagate_constants_topo (struct topo_info *topo)
{
! int i;
! for (i = topo->nnodes - 1; i >= 0; i--)
{
! struct cgraph_node *v, *node = topo->order[i];
! struct ipa_dfs_info *node_dfs_info;
!
! if (!cgraph_function_with_gimple_body_p (node))
! continue;
!
! node_dfs_info = (struct ipa_dfs_info *) node->aux;
! /* First, iteratively propagate within the strongly connected component
! until all lattices stabilize. */
! v = node_dfs_info->next_cycle;
! while (v)
! {
! push_node_to_stack (topo, v);
! v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
! }
!
! v = node;
! while (v)
! {
! struct cgraph_edge *cs;
!
! for (cs = v->callees; cs; cs = cs->next_callee)
! if (edge_within_scc (cs)
! && propagate_constants_accross_call (cs))
! push_node_to_stack (topo, cs->callee);
! v = pop_node_from_stack (topo);
! }
!
! /* Afterwards, propagate along edges leading out of the SCC, calculates
! the local effects of the discovered constants and all valid values to
! their topological sort. */
! v = node;
! while (v)
{
! struct cgraph_edge *cs;
!
! estimate_local_effects (v);
! add_all_node_vals_to_toposort (v);
! for (cs = v->callees; cs; cs = cs->next_callee)
! if (!edge_within_scc (cs))
! propagate_constants_accross_call (cs);
!
! v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
}
}
! }
!
! /* Propagate the estimated effects of individual values along the topological
! from the dependant values to those they depend on. */
!
! static void
! propagate_effects (void)
! {
! struct ipcp_value *base;
!
! for (base = values_topo; base; base = base->topo_next)
! {
! struct ipcp_value_source *src;
! struct ipcp_value *val;
! int time = 0, size = 0;
!
! for (val = base; val; val = val->scc_next)
! {
! time += val->local_time_benefit + val->prop_time_benefit;
! size += val->local_size_cost + val->prop_size_cost;
! }
!
! for (val = base; val; val = val->scc_next)
! for (src = val->sources; src; src = src->next)
! if (src->val
! && cgraph_maybe_hot_edge_p (src->cs))
! {
! src->val->prop_time_benefit += time;
! src->val->prop_size_cost += size;
! }
! }
! }
!
!
! /* Propagate constants, binfos and their effects from the summaries
! interprocedurally. */
!
! static void
! ipcp_propagate_stage (struct topo_info *topo)
! {
! struct cgraph_node *node;
!
! if (dump_file)
! fprintf (dump_file, "\n Propagating constants:\n\n");
!
! if (in_lto_p)
! ipa_update_after_lto_read ();
!
! FOR_EACH_DEFINED_FUNCTION (node)
! {
! determine_versionability (node);
! initialize_node_lattices (node);
! if (node->count > max_count)
! max_count = node->count;
! overall_size += inline_summary (node)->self_size;
! }
!
! max_new_size = overall_size;
! if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
! max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
! max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
!
! if (dump_file)
! fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
! overall_size, max_new_size);
!
! propagate_constants_topo (topo);
! verify_propagated_values ();
! propagate_effects ();
!
if (dump_file)
{
! fprintf (dump_file, "\nIPA lattices after all propagation:\n");
! print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
}
! }
! /* Discover newly direct outgoing edges from NODE which is a new clone with
! known KNOWN_VALS and make them direct. */
!
! static void
! ipcp_discover_new_direct_edges (struct cgraph_node *node,
! VEC (tree, heap) *known_vals)
! {
! struct cgraph_edge *ie, *next_ie;
!
! for (ie = node->indirect_calls; ie; ie = next_ie)
! {
! tree delta, target;
!
! next_ie = ie->next_callee;
! target = get_indirect_edge_target (ie, &delta, known_vals, NULL);
! if (target)
! ipa_make_edge_direct_to_target (ie, target, delta);
! }
}
! /* Return true if edge CS does bring about the value described by SRC. */
!
static bool
! cgraph_edge_brings_value_p (struct cgraph_edge *cs,
! struct ipcp_value_source *src)
{
! struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
! if (IPA_NODE_REF (cs->callee)->ipcp_orig_node
! || caller_info->node_dead)
return false;
! if (!src->val)
return true;
! if (caller_info->ipcp_orig_node)
! {
! tree t = VEC_index (tree, caller_info->known_vals, src->index);
! return (t != NULL_TREE
! && values_equal_for_ipcp_p (src->val->value, t));
! }
! else
! {
! struct ipcp_lattice *lat = ipa_get_lattice (caller_info, src->index);
! if (ipa_lat_is_single_const (lat)
! && values_equal_for_ipcp_p (src->val->value, lat->values->value))
! return true;
! else
! return false;
! }
! }
!
! /* Get the next clone in the linked list of clones of an edge. */
!
! static inline struct cgraph_edge *
! get_next_cgraph_edge_clone (struct cgraph_edge *cs)
! {
! struct ipa_edge_args *args = IPA_EDGE_REF (cs);
! return args->next_edge_clone;
! }
!
! /* Given VAL, iterate over all its sources and if they still hold, add their
! edge frequency and their number into *FREQUENCY and *CALLER_COUNT
! respectively. */
!
! static bool
! get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
! gcov_type *count_sum, int *caller_count)
! {
! struct ipcp_value_source *src;
! int freq = 0, count = 0;
! gcov_type cnt = 0;
! bool hot = false;
!
! for (src = val->sources; src; src = src->next)
! {
! struct cgraph_edge *cs = src->cs;
! while (cs)
! {
! if (cgraph_edge_brings_value_p (cs, src))
! {
! count++;
! freq += cs->frequency;
! cnt += cs->count;
! hot |= cgraph_maybe_hot_edge_p (cs);
! }
! cs = get_next_cgraph_edge_clone (cs);
! }
! }
!
! *freq_sum = freq;
! *count_sum = cnt;
! *caller_count = count;
! return hot;
! }
!
! /* Return a vector of incoming edges that do bring value VAL. It is assumed
! their number is known and equal to CALLER_COUNT. */
!
! static VEC (cgraph_edge_p,heap) *
! gather_edges_for_value (struct ipcp_value *val, int caller_count)
! {
! struct ipcp_value_source *src;
! VEC (cgraph_edge_p,heap) *ret;
!
! ret = VEC_alloc (cgraph_edge_p, heap, caller_count);
! for (src = val->sources; src; src = src->next)
! {
! struct cgraph_edge *cs = src->cs;
! while (cs)
! {
! if (cgraph_edge_brings_value_p (cs, src))
! VEC_quick_push (cgraph_edge_p, ret, cs);
! cs = get_next_cgraph_edge_clone (cs);
! }
! }
!
! return ret;
! }
!
! /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
! Return it or NULL if for some reason it cannot be created. */
!
! static struct ipa_replace_map *
! get_replacement_map (tree value, tree parm)
! {
! tree req_type = TREE_TYPE (parm);
! struct ipa_replace_map *replace_map;
!
! if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
! {
! if (fold_convertible_p (req_type, value))
! value = fold_build1 (NOP_EXPR, req_type, value);
! else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
! value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
! else
! {
! if (dump_file)
! {
! fprintf (dump_file, " const ");
! print_generic_expr (dump_file, value, 0);
! fprintf (dump_file, " can't be converted to param ");
! print_generic_expr (dump_file, parm, 0);
! fprintf (dump_file, "\n");
! }
! return NULL;
! }
! }
! replace_map = ggc_alloc_ipa_replace_map ();
! if (dump_file)
{
! fprintf (dump_file, " replacing param ");
! print_generic_expr (dump_file, parm, 0);
! fprintf (dump_file, " with const ");
! print_generic_expr (dump_file, value, 0);
! fprintf (dump_file, "\n");
}
+ replace_map->old_tree = parm;
+ replace_map->new_tree = value;
+ replace_map->replace_p = true;
+ replace_map->ref_p = false;
! return replace_map;
}
! /* Dump new profiling counts */
!
static void
! dump_profile_updates (struct cgraph_node *orig_node,
! struct cgraph_node *new_node)
{
! struct cgraph_edge *cs;
! fprintf (dump_file, " setting count of the specialized node to "
! HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
! for (cs = new_node->callees; cs ; cs = cs->next_callee)
! fprintf (dump_file, " edge to %s has count "
! HOST_WIDE_INT_PRINT_DEC "\n",
! cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
!
! fprintf (dump_file, " setting count of the original node to "
! HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
! for (cs = orig_node->callees; cs ; cs = cs->next_callee)
! fprintf (dump_file, " edge to %s is left with "
! HOST_WIDE_INT_PRINT_DEC "\n",
! cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
! }
! /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
! their profile information to reflect this. */
static void
! update_profiling_info (struct cgraph_node *orig_node,
! struct cgraph_node *new_node)
{
struct cgraph_edge *cs;
+ struct caller_statistics stats;
+ gcov_type new_sum, orig_sum;
+ gcov_type remainder, orig_node_count = orig_node->count;
+
+ if (orig_node_count == 0)
+ return;
+
+ init_caller_stats (&stats);
+ cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
+ orig_sum = stats.count_sum;
+ init_caller_stats (&stats);
+ cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
+ new_sum = stats.count_sum;
! if (orig_node_count < orig_sum + new_sum)
{
! if (dump_file)
! fprintf (dump_file, " Problem: node %s/%i has too low count "
! HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
! "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
! cgraph_node_name (orig_node), orig_node->uid,
! (HOST_WIDE_INT) orig_node_count,
! (HOST_WIDE_INT) (orig_sum + new_sum));
! orig_node_count = (orig_sum + new_sum) * 12 / 10;
! if (dump_file)
! fprintf (dump_file, " proceeding by pretending it was "
! HOST_WIDE_INT_PRINT_DEC "\n",
! (HOST_WIDE_INT) orig_node_count);
}
+
+ new_node->count = new_sum;
+ remainder = orig_node_count - new_sum;
+ orig_node->count = remainder;
+
+ for (cs = new_node->callees; cs ; cs = cs->next_callee)
+ if (cs->frequency)
+ cs->count = cs->count * new_sum / orig_node_count;
+ else
+ cs->count = 0;
+
+ for (cs = orig_node->callees; cs ; cs = cs->next_callee)
+ cs->count = cs->count * remainder / orig_node_count;
+
+ if (dump_file)
+ dump_profile_updates (orig_node, new_node);
}
! /* Update the respective profile of specialized NEW_NODE and the original
! ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
! have been redirected to the specialized version. */
!
! static void
! update_specialized_profile (struct cgraph_node *new_node,
! struct cgraph_node *orig_node,
! gcov_type redirected_sum)
{
struct cgraph_edge *cs;
! gcov_type new_node_count, orig_node_count = orig_node->count;
! if (dump_file)
! fprintf (dump_file, " the sum of counts of redirected edges is "
! HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
! if (orig_node_count == 0)
! return;
!
! gcc_assert (orig_node_count >= redirected_sum);
!
! new_node_count = new_node->count;
! new_node->count += redirected_sum;
! orig_node->count -= redirected_sum;
!
! for (cs = new_node->callees; cs ; cs = cs->next_callee)
! if (cs->frequency)
! cs->count += cs->count * redirected_sum / new_node_count;
else
! cs->count = 0;
! for (cs = orig_node->callees; cs ; cs = cs->next_callee)
! {
! gcov_type dec = cs->count * redirected_sum / orig_node_count;
! if (dec < cs->count)
! cs->count -= dec;
! else
! cs->count = 0;
! }
! if (dump_file)
! dump_profile_updates (orig_node, new_node);
! }
! /* Create a specialized version of NODE with known constants and types of
! parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
! static struct cgraph_node *
! create_specialized_node (struct cgraph_node *node,
! VEC (tree, heap) *known_vals,
! VEC (cgraph_edge_p,heap) *callers)
! {
! struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
! VEC (ipa_replace_map_p,gc)* replace_trees = NULL;
! struct cgraph_node *new_node;
! int i, count = ipa_get_param_count (info);
! bitmap args_to_skip;
+ gcc_assert (!info->ipcp_orig_node);
+
+ if (node->local.can_change_signature)
+ {
+ args_to_skip = BITMAP_GGC_ALLOC ();
+ for (i = 0; i < count; i++)
+ {
+ tree t = VEC_index (tree, known_vals, i);
! if ((t && TREE_CODE (t) != TREE_BINFO)
! || !ipa_is_param_used (info, i))
! bitmap_set_bit (args_to_skip, i);
! }
! }
! else
! args_to_skip = NULL;
! for (i = 0; i < count ; i++)
{
! tree t = VEC_index (tree, known_vals, i);
! if (t && TREE_CODE (t) != TREE_BINFO)
! {
! struct ipa_replace_map *replace_map;
!
! replace_map = get_replacement_map (t, ipa_get_param (info, i));
! if (replace_map)
! VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_map);
! }
}
! new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
! args_to_skip, "constprop");
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, " the new node is %s/%i.\n",
! cgraph_node_name (new_node), new_node->uid);
! gcc_checking_assert (ipa_node_params_vector
! && (VEC_length (ipa_node_params_t,
! ipa_node_params_vector)
! > (unsigned) cgraph_max_uid));
! update_profiling_info (node, new_node);
! new_info = IPA_NODE_REF (new_node);
! gcc_checking_assert (new_info->lattices);
! new_info->ipcp_orig_node = node;
! new_info->known_vals = known_vals;
! ipcp_discover_new_direct_edges (new_node, known_vals);
!
! VEC_free (cgraph_edge_p, heap, callers);
! return new_node;
}
! /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
! KNOWN_VALS with constants and types that are also known for all of the
! CALLERS. */
static void
! find_more_values_for_callers_subset (struct cgraph_node *node,
! VEC (tree, heap) *known_vals,
! VEC (cgraph_edge_p,heap) *callers)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
! int i, count = ipa_get_param_count (info);
! for (i = 0; i < count ; i++)
{
! struct cgraph_edge *cs;
! tree newval = NULL_TREE;
! int j;
! if (ipa_get_lattice (info, i)->bottom
! || VEC_index (tree, known_vals, i))
continue;
! FOR_EACH_VEC_ELT (cgraph_edge_p, callers, j, cs)
{
! struct ipa_jump_func *jump_func;
! tree t;
! jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
! t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
! if (!t
! || (newval
! && !values_equal_for_ipcp_p (t, newval)))
{
! newval = NULL_TREE;
! break;
}
+ else
+ newval = t;
}
! if (newval)
! {
! if (dump_file && (dump_flags & TDF_DETAILS))
! {
! fprintf (dump_file, " adding an extra known value ");
! print_ipcp_constant_value (dump_file, newval);
! fprintf (dump_file, " for parameter ");
! print_generic_expr (dump_file, ipa_get_param (info, i), 0);
! fprintf (dump_file, "\n");
! }
! VEC_replace (tree, known_vals, i, newval);
! }
}
}
! /* Given an original NODE and a VAL for which we have already created a
! specialized clone, look whether there are incoming edges that still lead
! into the old node but now also bring the requested value and also conform to
! all other criteria such that they can be redirected the the special node.
! This function can therefore redirect the final edge in a SCC. */
static void
! perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
{
! struct ipa_node_params *dest_info = IPA_NODE_REF (val->spec_node);
! struct ipcp_value_source *src;
! int count = ipa_get_param_count (dest_info);
! gcov_type redirected_sum = 0;
! for (src = val->sources; src; src = src->next)
{
! struct cgraph_edge *cs = src->cs;
! while (cs)
! {
! enum availability availability;
! bool insufficient = false;
! if (cgraph_function_or_thunk_node (cs->callee, &availability) == node
! && availability > AVAIL_OVERWRITABLE
! && cgraph_edge_brings_value_p (cs, src))
! {
! struct ipa_node_params *caller_info;
! struct ipa_edge_args *args;
! int i;
!
! caller_info = IPA_NODE_REF (cs->caller);
! args = IPA_EDGE_REF (cs);
! for (i = 0; i < count; i++)
! {
! struct ipa_jump_func *jump_func;
! tree val, t;
! val = VEC_index (tree, dest_info->known_vals, i);
! if (!val)
! continue;
!
! jump_func = ipa_get_ith_jump_func (args, i);
! t = ipa_value_from_jfunc (caller_info, jump_func);
! if (!t || !values_equal_for_ipcp_p (val, t))
! {
! insufficient = true;
! break;
! }
! }
!
! if (!insufficient)
! {
! if (dump_file)
! fprintf (dump_file, " - adding an extra caller %s/%i"
! " of %s/%i\n",
! cgraph_node_name (cs->caller), cs->caller->uid,
! cgraph_node_name (val->spec_node),
! val->spec_node->uid);
!
! cgraph_redirect_edge_callee (cs, val->spec_node);
! redirected_sum += cs->count;
! }
! }
! cs = get_next_cgraph_edge_clone (cs);
! }
}
+
+ if (redirected_sum)
+ update_specialized_profile (val->spec_node, node, redirected_sum);
}
! /* Copy KNOWN_BINFOS to KNOWN_VALS. */
!
static void
! move_binfos_to_values (VEC (tree, heap) *known_vals,
! VEC (tree, heap) *known_binfos)
{
! tree t;
int i;
! for (i = 0; VEC_iterate (tree, known_binfos, i, t); i++)
! if (t)
! VEC_replace (tree, known_vals, i, t);
! }
! /* Decide whether and what specialized clones of NODE should be created. */
! static bool
! decide_whether_version_node (struct cgraph_node *node)
! {
! struct ipa_node_params *info = IPA_NODE_REF (node);
! int i, count = ipa_get_param_count (info);
! VEC (tree, heap) *known_csts, *known_binfos;
! bool ret = false;
! if (count == 0)
! return false;
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
! cgraph_node_name (node), node->uid);
! gather_context_independent_values (info, &known_csts, &known_binfos,
! NULL);
! for (i = 0; i < count ; i++)
! {
! struct ipcp_lattice *lat = ipa_get_lattice (info, i);
! struct ipcp_value *val;
! if (lat->bottom
! || VEC_index (tree, known_csts, i)
! || VEC_index (tree, known_binfos, i))
! continue;
! for (val = lat->values; val; val = val->next)
{
! int freq_sum, caller_count;
! gcov_type count_sum;
! VEC (cgraph_edge_p, heap) *callers;
! VEC (tree, heap) *kv;
! if (val->spec_node)
! {
! perhaps_add_new_callers (node, val);
! continue;
! }
! else if (val->local_size_cost + overall_size > max_new_size)
{
! if (dump_file && (dump_flags & TDF_DETAILS))
! fprintf (dump_file, " Ignoring candidate value because "
! "max_new_size would be reached with %li.\n",
! val->local_size_cost + overall_size);
continue;
}
+ else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
+ &caller_count))
+ continue;
! if (dump_file && (dump_flags & TDF_DETAILS))
{
! fprintf (dump_file, " - considering value ");
! print_ipcp_constant_value (dump_file, val->value);
! fprintf (dump_file, " for parameter ");
! print_generic_expr (dump_file, ipa_get_param (info, i), 0);
! fprintf (dump_file, " (caller_count: %i)\n", caller_count);
}
!
!
! if (!good_cloning_opportunity_p (node, val->local_time_benefit,
! freq_sum, count_sum,
! val->local_size_cost)
! && !good_cloning_opportunity_p (node,
! val->local_time_benefit
! + val->prop_time_benefit,
! freq_sum, count_sum,
! val->local_size_cost
! + val->prop_size_cost))
! continue;
!
if (dump_file)
! fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
! cgraph_node_name (node), node->uid);
! callers = gather_edges_for_value (val, caller_count);
! kv = VEC_copy (tree, heap, known_csts);
! move_binfos_to_values (kv, known_binfos);
! VEC_replace (tree, kv, i, val->value);
! find_more_values_for_callers_subset (node, kv, callers);
! val->spec_node = create_specialized_node (node, kv, callers);
! overall_size += val->local_size_cost;
! info = IPA_NODE_REF (node);
!
! /* TODO: If for some lattice there is only one other known value
! left, make a special node for it too. */
! ret = true;
! VEC_replace (tree, kv, i, val->value);
! }
! }
! if (info->clone_for_all_contexts)
! {
! VEC (cgraph_edge_p, heap) *callers;
if (dump_file)
! fprintf (dump_file, " * Creating a specialized node of %s/%i "
! "for all contexts.\n", cgraph_node_name (node), node->uid);
+ callers = collect_callers_of_node (node);
+ move_binfos_to_values (known_csts, known_binfos);
+ create_specialized_node (node, known_csts, callers);
info = IPA_NODE_REF (node);
! info->clone_for_all_contexts = false;
! ret = true;
! }
! else
! VEC_free (tree, heap, known_csts);
! VEC_free (tree, heap, known_binfos);
! return ret;
! }
! /* Transitively mark all callees of NODE within the same SCC as not dead. */
!
! static void
! spread_undeadness (struct cgraph_node *node)
! {
! struct cgraph_edge *cs;
!
! for (cs = node->callees; cs; cs = cs->next_callee)
! if (edge_within_scc (cs))
! {
! struct cgraph_node *callee;
! struct ipa_node_params *info;
!
! callee = cgraph_function_or_thunk_node (cs->callee, NULL);
! info = IPA_NODE_REF (callee);
!
! if (info->node_dead)
! {
! info->node_dead = 0;
! spread_undeadness (callee);
! }
! }
! }
!
! /* Return true if NODE has a caller from outside of its SCC that is not
! dead. Worker callback for cgraph_for_node_and_aliases. */
!
! static bool
! has_unded_caller_from_outside_scc_p (struct cgraph_node *node,
! void *data ATTRIBUTE_UNUSED)
! {
! struct cgraph_edge *cs;
!
! for (cs = node->callers; cs; cs = cs->next_caller)
! if (cs->caller->thunk.thunk_p
! && has_unded_caller_from_outside_scc_p (cs->caller, NULL))
! return true;
! else if (!edge_within_scc (cs)
! && !IPA_NODE_REF (cs->caller)->node_dead)
! return true;
! return false;
! }
!
!
! /* Identify nodes within the same SCC as NODE which are no longer needed
! because of new clones and will be removed as unreachable. */
!
! static void
! identify_dead_nodes (struct cgraph_node *node)
! {
! struct cgraph_node *v;
! for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
! if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
! && !cgraph_for_node_and_aliases (v,
! has_unded_caller_from_outside_scc_p,
! NULL, true))
! IPA_NODE_REF (v)->node_dead = 1;
!
! for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
! if (!IPA_NODE_REF (v)->node_dead)
! spread_undeadness (v);
!
! if (dump_file && (dump_flags & TDF_DETAILS))
! {
! for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
! if (IPA_NODE_REF (v)->node_dead)
! fprintf (dump_file, " Marking node as dead: %s/%i.\n",
! cgraph_node_name (v), v->uid);
}
+ }
+
+ /* The decision stage. Iterate over the topological order of call graph nodes
+ TOPO and make specialized clones if deemed beneficial. */
+
+ static void
+ ipcp_decision_stage (struct topo_info *topo)
+ {
+ int i;
! if (dump_file)
! fprintf (dump_file, "\nIPA decision stage:\n\n");
!
! for (i = topo->nnodes - 1; i >= 0; i--)
{
! struct cgraph_node *node = topo->order[i];
! bool change = false, iterate = true;
!
! while (iterate)
! {
! struct cgraph_node *v;
! iterate = false;
! for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
! if (cgraph_function_with_gimple_body_p (v)
! && ipcp_versionable_function_p (v))
! iterate |= decide_whether_version_node (v);
!
! change |= iterate;
! }
! if (change)
! identify_dead_nodes (node);
}
}
/* The IPCP driver. */
+
static unsigned int
ipcp_driver (void)
{
+ struct topo_info topo;
+
cgraph_remove_unreachable_nodes (true,dump_file);
+ ipa_check_create_node_params ();
+ ipa_check_create_edge_args ();
+ ipcp_values_pool = create_alloc_pool ("IPA-CP values",
+ sizeof (struct ipcp_value), 32);
+ ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
+ sizeof (struct ipcp_value_source), 64);
+
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
*************** ipcp_driver (void)
ipa_print_all_params (dump_file);
ipa_print_all_jump_functions (dump_file);
}
! ipa_check_create_node_params ();
! ipa_check_create_edge_args ();
/* 2. Do the interprocedural propagation. */
! ipcp_iterate_stage ();
! /* 3. Insert the constants found to the functions. */
! ipcp_insert_stage ();
! if (dump_file && (dump_flags & TDF_DETAILS))
! {
! fprintf (dump_file, "\nProfiling info after insert stage:\n");
! ipcp_print_profile_data (dump_file);
! }
/* Free all IPCP structures. */
ipa_free_all_structures_after_ipa_cp ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
ipa_print_all_params (dump_file);
ipa_print_all_jump_functions (dump_file);
}
!
! build_topo_info (&topo);
/* 2. Do the interprocedural propagation. */
! ipcp_propagate_stage (&topo);
! /* 3. Decide what constant propagation and cloning should be performed. */
! ipcp_decision_stage (&topo);
!
/* Free all IPCP structures. */
+ free_topo_info (&topo);
+
ipa_free_all_structures_after_ipa_cp ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
*************** ipcp_generate_summary (void)
}
/* Write ipcp summary for nodes in SET. */
+
static void
ipcp_write_summary (cgraph_node_set set,
varpool_node_set vset ATTRIBUTE_UNUSED)
*************** ipcp_write_summary (cgraph_node_set set,
}
/* Read ipcp summary. */
+
static void
ipcp_read_summary (void)
{
*************** ipcp_read_summary (void)
}
/* Gate for IPCP optimization. */
+
static bool
cgraph_gate_cp (void)
{
===================================================================
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
- /* { dg-final { scan-ipa-dump "replacing param b with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
- /* { dg-final { scan-ipa-dump "replacing param c with const 3" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
***************
#include <stdio.h>
void t(void);
! int g (double b, double c)
{
t();
return (int)(b+c);
}
! int f (double a)
{
if (a > 0)
g (a, 3.1);
#include <stdio.h>
void t(void);
! static int g (double b, double c)
{
t();
return (int)(b+c);
}
! static int f (double a)
{
if (a > 0)
g (a, 3.1);
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param b with const 7" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param c with const 3" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
+ /* { dg-final { scan-ipa-dump "Creating a specialized node of g" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param b with const 7" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param c with const 3" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 1 "cp" } } */
/* { dg-final { scan-ipa-dump-times "replacing param a with const 7" 1 "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" } } */
/* { dg-final { scan-ipa-dump-times "replacing param a with const 7" 1 "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** int main ()
return 0;
}
!
! /* { dg-final { scan-ipa-dump-times "versioned function" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param c with const 3" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
return 0;
}
! /* { dg-final { scan-ipa-dump-times "Creating a specialized node" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param c with const 3" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "replacing param a with const 7" 1 "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" { xfail *-*-* } } } */
! /* { dg-final { scan-ipa-dump-times "replacing param . with const 7" 1 "cp" { xfail *-*-* } } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** int main ()
}
! /* { dg-final { scan-ipa-dump-times "versioned function" 2 "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param b with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
}
! /* { dg-final { scan-ipa-dump "Creating a specialized node of f" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
+ /* { dg-final { scan-ipa-dump "Creating a specialized node of g" "cp" } } */
/* { dg-final { scan-ipa-dump "replacing param b with const 7" "cp" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** main()
i_can_not_be_propagated_fully2 (array);
}
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_be_propagated_fully2" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_be_propagated_fully " 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-not "versioned function i_can_not_be_propagated_fully2" "cp" } } */
! /* { dg-final { scan-ipa-dump-not "versioned function i_can_not_be_propagated_fully " "cp" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully " "optimized" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully2 " "optimized" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
i_can_not_be_propagated_fully2 (array);
}
! /* { dg-final { scan-ipa-dump-times "Creating a specialized node of i_can_be_propagated_fully2" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "Creating a specialized node of i_can_be_propagated_fully/" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-not "Creating a specialized node of i_can_not_be_propagated_fully2" "cp" } } */
! /* { dg-final { scan-ipa-dump-not "Creating a specialized node of i_can_not_be_propagated_fully/" "cp" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully " "optimized" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully2 " "optimized" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
*************** main()
i_can_not_be_propagated_fully2 (array);
}
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_be_propagated_fully2" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_be_propagated_fully " 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_not_be_propagated_fully2" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "versioned function i_can_not_be_propagated_fully " 1 "cp" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully \\(" "optimized" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully2 \\(" "optimized" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
i_can_not_be_propagated_fully2 (array);
}
! /* { dg-final { scan-ipa-dump-times "Creating a specialized node of i_can_be_propagated_fully2" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-times "Creating a specialized node of i_can_be_propagated_fully/" 1 "cp" } } */
! /* { dg-final { scan-ipa-dump-not "Creating a specialized node of i_can_not_be_propagated_fully2" "cp" } } */
! /* { dg-final { scan-ipa-dump-not "Creating a specialized node of i_can_not_be_propagated_fully/" "cp" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully \\(" "optimized" } } */
/* { dg-final { scan-tree-dump-not "i_can_be_propagated_fully2 \\(" "optimized" } } */
/* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
***************
+ /* Test that IPA-CP is able to figure out that poth parameters a are constant 7
+ even though f and h recursively call each other and specialize them
+ accordinly. */
+
+ /* { dg-do compile } */
+ /* { dg-options "-O3 -fipa-cp -fipa-cp-clone -fdump-ipa-cp -fno-early-inlining" } */
+ /* { dg-add-options bind_pic_locally } */
+
+ extern void use_stuff (int);
+
+ static
+ int g (int b, int c)
+ {
+ int i;
+
+ for (i = 0; i < b; i++)
+ use_stuff (c);
+ }
+
+ static void f (int a, int x, int z);
+
+ static void h (int z, int a)
+ {
+ use_stuff (z);
+ f (a, 9, 10);
+
+ }
+
+ static void
+ f (int a, int x, int z)
+ {
+ if (z > 1)
+ g (a, x);
+ else
+ h (5, a);
+ }
+
+ int
+ main (int argc, char *argv[])
+ {
+ int i;
+ for (i = 0; i < 100; i++)
+ f (7, 8, argc);
+ return 0;
+ }
+
+
+ /* { dg-final { scan-ipa-dump "Creating a specialized node of f.*for all contexts" "cp" } } */
+ /* { dg-final { scan-ipa-dump "replacing param a with const 7" "cp" } } */
+ /* { dg-final { cleanup-ipa-dump "cp" } } */
+
+
===================================================================
***************
+ /* { dg-do compile } */
+ /* { dg-options "-O3 -fipa-cp -fipa-cp-clone -fdump-ipa-cp -fno-early-inlining" } */
+ /* { dg-add-options bind_pic_locally } */
+
+ extern int get_stuff (int);
+ extern void do_stuff (int);
+ extern void do_stuff2 (int);
+ extern void do_other_stuff (void);
+ extern int get_element (int, int, int);
+ extern int adjust (int, int, int, int);
+
+ extern int count;
+
+ int
+ foo (int s, int p)
+ {
+ int c, r = 0;
+
+ for (c = 0 ; c < count; c++)
+ {
+ r += get_stuff (s);
+ /* The following is just something big that can go away. */
+ if (p != 0)
+ {
+ int a[64][64];
+ int i, j, k;
+
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ a[i][j] = get_element (p + c, i, j);
+
+ for (k = 0; k < 4; k++)
+ {
+ r = r / 2;
+
+ for (i = 1; i < 63; i++)
+ for (j = 62; j > 0; j--)
+ a[i][j] += adjust (a[i-1][j], a[i][j-1],
+ a[i+1][j], a[i][j+1]);
+
+ for (i = 4; i < 64; i += 4)
+ for (j = 4; j < 64; j += 4)
+ r += a[i][j] / 4;
+ }
+ }
+ }
+ return r;
+ }
+
+ int
+ bar (int p, int q)
+ {
+ if (q > 0)
+ do_stuff (q);
+ else
+ do_stuff (-q);
+
+ if (q % 2)
+ do_stuff2 (2 * q);
+ else
+ do_stuff2 (2 * (q + 1));
+
+ return foo (4, p);
+ }
+
+ int
+ bah (int p, int q)
+ {
+ int i, j;
+
+ while (q < -20)
+ q += get_stuff (-q);
+
+ for (i = 0; i < 36; i++)
+ for (j = 0; j < 36; j++)
+ do_stuff (get_stuff (q * i + 2));
+
+ bar (p, q);
+ }
+
+ int
+ top1 (int q)
+ {
+ do_other_stuff ();
+ return bah (0, q);
+ }
+
+ int
+ top2 (int q)
+ {
+ do_stuff (200);
+ do_other_stuff ();
+ return bah (16, q);
+ }
+
+ /* { dg-final { scan-ipa-dump-times "Creating a specialized node of foo" 1 "cp" } } */
+ /* { dg-final { scan-ipa-dump-times "replacing param p with const 0" 3 "cp" } } */
+ /* { dg-final { scan-ipa-dump "replacing param s with const 4" "cp" } } */
+ /* { dg-final { cleanup-ipa-dump "cp" } } */
===================================================================
***************
int
very_long_function(int a)
{
! return very_long_function (a)/4;
}
! main()
{
very_long_function (1);
}
int
very_long_function(int a)
{
! if (a > 0)
! return 2 * a + very_long_function (a)/4;
! else
! return 2 * -a + very_long_function (a)/4;
}
!
! blah ()
{
very_long_function (1);
}
===================================================================
*************** loop in the loop nest by a given number
length can be changed using the @option{loop-block-tile-size}
parameter. The default value is 51 iterations.
! @item devirt-type-list-size
! IPA-CP attempts to track all possible types passed to a function's
! parameter in order to perform devirtualization.
! @option{devirt-type-list-size} is the maximum number of types it
! stores per a single formal parameter of a function.
@item lto-partitions
Specify desired number of partitions produced during WHOPR compilation.
length can be changed using the @option{loop-block-tile-size}
parameter. The default value is 51 iterations.
! @item ipa-cp-value-list-size
! IPA-CP attempts to track all possible values and types passed to a function's
! parameter in order to propagate them and perform devirtualization.
! @option{ipa-cp-value-list-size} is the maximum number of values and types it
! stores per one formal parameter of a function.
@item lto-partitions
Specify desired number of partitions produced during WHOPR compilation.
===================================================================
*************** DEFPARAM (PARAM_IPA_SRA_PTR_GROWTH_FACTO
"a pointer to an aggregate with",
2, 0, 0)
! DEFPARAM (PARAM_DEVIRT_TYPE_LIST_SIZE,
! "devirt-type-list-size",
! "Maximum size of a type list associated with each parameter for "
! "devirtualization",
8, 0, 0)
/* WHOPR partitioning configuration. */
"a pointer to an aggregate with",
2, 0, 0)
! DEFPARAM (PARAM_IPA_CP_VALUE_LIST_SIZE,
! "ipa-cp-value-list-size",
! "Maximum size of a list of values associated with each parameter for "
! "interprocedural constant propagation",
8, 0, 0)
/* WHOPR partitioning configuration. */
===================================================================
*************** LTO_STREAMER_H = lto-streamer.h $(LINKER
$(CGRAPH_H) $(VEC_H) vecprim.h $(TREE_H) $(GIMPLE_H) \
$(GCOV_IO_H)
TREE_VECTORIZER_H = tree-vectorizer.h $(TREE_DATA_REF_H)
! IPA_PROP_H = ipa-prop.h $(TREE_H) $(VEC_H) $(CGRAPH_H) $(GIMPLE_H)
GSTAB_H = gstab.h stab.def
BITMAP_H = bitmap.h $(HASHTAB_H) statistics.h
GCC_PLUGIN_H = gcc-plugin.h highlev-plugin-common.h $(CONFIG_H) $(SYSTEM_H) \
$(CGRAPH_H) $(VEC_H) vecprim.h $(TREE_H) $(GIMPLE_H) \
$(GCOV_IO_H)
TREE_VECTORIZER_H = tree-vectorizer.h $(TREE_DATA_REF_H)
! IPA_PROP_H = ipa-prop.h $(TREE_H) $(VEC_H) $(CGRAPH_H) $(GIMPLE_H) alloc-pool.h
GSTAB_H = gstab.h stab.def
BITMAP_H = bitmap.h $(HASHTAB_H) statistics.h
GCC_PLUGIN_H = gcc-plugin.h highlev-plugin-common.h $(CONFIG_H) $(SYSTEM_H) \
Hi, this is an updated version of a patch I've posted here before: http://gcc.gnu.org/ml/gcc-patches/2011-06/msg01161.html and http://gcc.gnu.org/ml/gcc-patches/2011-06/msg00557.html It is a new IPA-CP that now works well with the alias infrastructure Honza introduced over the weekend. It applies to trunk revision 175247. Everything in the previous email messages still applies. It bootstraps, profile-bootstraps and tests well and Honza even tried LTO-building Firefox with (a previous version of) it and it survived. It brings about big speedup on c-ray, SPEC 2006 numbers are within noise. This is indeed the pass I have briefly introduced it at the Gathering in London this weekend. As in the previous case, below you'll find the new ipa-prop.h and ipa-cp.c, the actual context diff is attached. I believe it is more convenient that way. Thanks a lot for any comments, Martin 2011-06-22 Martin Jambor <mjambor@suse.cz> * ipa-prop.h: Include alloc-pool.h. (ipa_lattice_type): Removed. (ipcp_value_source): New type. (ipcp_value): Likewise. (ipcp_values_pool): Declare. (ipcp_sources_pool): Likewise. (ipa_param_descriptor): Removed. (ipcp_lattice): Removed fileds type and constant. Added fields decl, values, values_count, contains_variable, bottom, used and virt_call. (ipa_node_params): New fields lattices, known_vals, clone_for_all_contexts and noe dead, removed fields params and count_scale. (ipa_get_param): Updated. (ipa_param_cannot_devirtualize_p): Removed. (ipa_param_types_vec_empty): Likewise. (ipa_edge_args): New field next_edge_clone. (ipa_func_list): Removed. (ipa_init_func_list): Removed declaration. (ipa_push_func_to_list_1): Likewise. (ipa_pop_func_from_list): Likewise. (ipa_push_func_to_list): Removed. (ipa_lattice_from_jfunc): Remove declaration. (ipa_get_jf_pass_through_result): Declare. (ipa_get_jf_ancestor_result): Likewise. (ipa_value_from_jfunc): Likewise. (ipa_get_lattice): Update. (ipa_lat_is_single_const): New function. * ipa-prop.c (ipa_push_func_to_list_1): Removed. (ipa_init_func_list): Likewise. (ipa_pop_func_from_list): Likewise. (ipa_get_param_decl_index): Fix coding style. (ipa_populate_param_decls): Update to use new lattices. (ipa_initialize_node_params): Likewise. (visit_ref_for_mod_analysis): Likewise. (ipa_analyze_params_uses): Likewise. (ipa_free_node_params_substructures): Likewise. (ipa_edge_duplication_hook): Add the new edge to the list of edge clones. (ipa_node_duplication_hook): Update to use new lattices. (ipa_free_all_structures_after_ipa_cp): Free alloc pools. (ipa_free_all_structures_after_iinln): Likewise. (ipa_write_node_info): Update to use new lattices. (ipa_read_node_info): Likewise. (ipa_get_jf_pass_through_result): New function. (ipa_get_jf_ancestor_result): Likewise. (ipa_value_from_jfunc): Likewise. (ipa_cst_from_jfunc): Reimplemented using ipa_value_from_jfunc. * ipa-cp.c: Reimplemented. * params.def (PARAM_DEVIRT_TYPE_LIST_SIZE): Removed. (PARAM_IPA_CP_VALUE_LIST_SIZE): New parameter. * Makefile.in (IPA_PROP_H): Added alloc-pool.h to dependencies. * doc/invoke.texi (devirt-type-list-size): Removed description. (ipa-cp-value-list-size): Added description. * testsuite/gcc.dg/ipa/ipa-1.c: Updated testcase dump scan. * testsuite/gcc.dg/ipa/ipa-2.c: Likewise. * testsuite/gcc.dg/ipa/ipa-3.c: Likewise and made functions static. * testsuite/gcc.dg/ipa/ipa-4.c: Updated testcase dump scan. * testsuite/gcc.dg/ipa/ipa-5.c: Likewise. * testsuite/gcc.dg/ipa/ipa-7.c: Xfail test. * testsuite/gcc.dg/ipa/ipa-8.c: Updated testcase dump scan. * testsuite/gcc.dg/ipa/ipacost-1.c: Likewise. * testsuite/gcc.dg/ipa/ipacost-2.c: Likewise. * testsuite/gcc.dg/ipa/ipcp-1.c: New test. * testsuite/gcc.dg/ipa/ipcp-2.c: Likewise. * testsuite/gcc.dg/tree-ssa/ipa-cp-1.c: Updated testcase. ==================== ipa-prop.h ==================== /* Interprocedural analyses. Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #ifndef IPA_PROP_H #define IPA_PROP_H #include "tree.h" #include "vec.h" #include "cgraph.h" #include "gimple.h" #include "alloc-pool.h" /* The following definitions and interfaces are used by interprocedural analyses or parameters. */ /* ipa-prop.c stuff (ipa-cp, indirect inlining): */ /* A jump function for a callsite represents the values passed as actual arguments of the callsite. There are three main types of values : Pass-through - the caller's formal parameter is passed as an actual argument, possibly one simple operation performed on it. Constant - a constant (is_gimple_ip_invariant)is passed as an actual argument. Unknown - neither of the above. IPA_JF_CONST_MEMBER_PTR stands for C++ member pointers, it is a special constant in this regard. Other constants are represented with IPA_JF_CONST. IPA_JF_ANCESTOR is a special pass-through jump function, which means that the result is an address of a part of the object pointed to by the formal parameter to which the function refers. It is mainly intended to represent getting addresses of of ancestor fields in C++ (e.g. &this_1(D)->D.1766.D.1756). Note that if the original pointer is NULL, ancestor jump function must behave like a simple pass-through. Other pass-through functions can either simply pass on an unchanged formal parameter or can apply one simple binary operation to it (such jump functions are called polynomial). IPA_JF_KNOWN_TYPE is a special type of an "unknown" function that applies only to pointer parameters. It means that even though we cannot prove that the passed value is an interprocedural constant, we still know the exact type of the containing object which may be valuable for devirtualization. Jump functions are computed in ipa-prop.c by function update_call_notes_after_inlining. Some information can be lost and jump functions degraded accordingly when inlining, see update_call_notes_after_inlining in the same file. */ enum jump_func_type { IPA_JF_UNKNOWN = 0, /* newly allocated and zeroed jump functions default */ IPA_JF_KNOWN_TYPE, /* represented by field base_binfo */ IPA_JF_CONST, /* represented by field costant */ IPA_JF_CONST_MEMBER_PTR, /* represented by field member_cst */ IPA_JF_PASS_THROUGH, /* represented by field pass_through */ IPA_JF_ANCESTOR /* represented by field ancestor */ }; /* Structure holding data required to describe a pass-through jump function. */ struct GTY(()) ipa_pass_through_data { /* If an operation is to be performed on the original parameter, this is the second (constant) operand. */ tree operand; /* Number of the caller's formal parameter being passed. */ int formal_id; /* Operation that is performed on the argument before it is passed on. NOP_EXPR means no operation. Otherwise oper must be a simple binary arithmetic operation where the caller's parameter is the first operand and operand field from this structure is the second one. */ enum tree_code operation; }; /* Structure holding data required to describe an ancestor pass-through jump function. */ struct GTY(()) ipa_ancestor_jf_data { /* Offset of the field representing the ancestor. */ HOST_WIDE_INT offset; /* TYpe of the result. */ tree type; /* Number of the caller's formal parameter being passed. */ int formal_id; }; /* Structure holding a C++ member pointer constant. Holds a pointer to the method and delta offset. */ struct GTY(()) ipa_member_ptr_cst { tree pfn; tree delta; }; /* A jump function for a callsite represents the values passed as actual arguments of the callsite. See enum jump_func_type for the various types of jump functions supported. */ struct GTY (()) ipa_jump_func { enum jump_func_type type; /* Represents a value of a jump function. pass_through is used only in jump function context. constant represents the actual constant in constant jump functions and member_cst holds constant c++ member functions. */ union jump_func_value { tree GTY ((tag ("IPA_JF_KNOWN_TYPE"))) base_binfo; tree GTY ((tag ("IPA_JF_CONST"))) constant; struct ipa_member_ptr_cst GTY ((tag ("IPA_JF_CONST_MEMBER_PTR"))) member_cst; struct ipa_pass_through_data GTY ((tag ("IPA_JF_PASS_THROUGH"))) pass_through; struct ipa_ancestor_jf_data GTY ((tag ("IPA_JF_ANCESTOR"))) ancestor; } GTY ((desc ("%1.type"))) value; }; struct ipcp_value; /* Describes a particular source for an IPA-CP value. */ struct ipcp_value_source { /* The incoming edge that brought the value. */ struct cgraph_edge *cs; /* If the jump function that resulted into his value was a pass-through or an ancestor, this is the ipcp_value of the caller from which the described value has been derived. Otherwise it is NULL. */ struct ipcp_value *val; /* Next pointer in a linked list of sources of a value. */ struct ipcp_value_source *next; /* If the jump function that resulted into his value was a pass-through or an ancestor, this is the index of the parameter of the caller the jump function references. */ int index; }; /* Describes one particular value stored in struct ipcp_lattice. */ struct ipcp_value { /* The actual value for the given parameter. This is either an IPA invariant or a TREE_BINFO describing a type that can be used for devirtualization. */ tree value; /* The list of sources from which this value originates. */ struct ipcp_value_source *sources; /* Next pointers in a linked list of all values in a lattice. */ struct ipcp_value *next; /* Next pointers in a linked list of values in a strongly connected component of values. */ struct ipcp_value *scc_next; /* Next pointers in a linked list of SCCs of values sorted topologically according their sources. */ struct ipcp_value *topo_next; /* A specialized node created for this value, NULL if none has been (so far) created. */ struct cgraph_node *spec_node; /* Depth first search number and low link for topological sorting of values. */ int dfs, low_link; /* Time benefit and size cost that specializing the function for this value would bring about in this function alone. */ int local_time_benefit, local_size_cost; /* Time benefit and size cost that specializing the function for this value can bring about in it's callees (transitively). */ int prop_time_benefit, prop_size_cost; /* True if this valye is currently on the topo-sort stack. */ bool on_stack; }; extern alloc_pool ipcp_values_pool; extern alloc_pool ipcp_sources_pool; /* Lattice describing potential values of a formal parameter of a function and some of their other properties. */ struct ipcp_lattice { /* PARAM_DECL of this parameter. */ tree decl; /* The list of known values and types in this lattice. */ struct ipcp_value *values; /* Number of known values and types in this lattice. */ int values_count; /* The lattice contains a variable component (in addition to values). */ bool contains_variable; /* The value of the lattice is bottom (i.e. variable and unusable for any propagation). */ bool bottom; /* The parameter is used. */ bool used; /* There is a virtual call based on this parameter. */ bool virt_call; }; /* ipa_node_params stores information related to formal parameters of functions and some other information for interprocedural passes that operate on parameters (such as ipa-cp). */ struct ipa_node_params { /* Pointer to an array of structures describing individual formal parameters. */ struct ipcp_lattice *lattices; /* Only for versioned nodes this field would not be NULL, it points to the node that IPA cp cloned from. */ struct cgraph_node *ipcp_orig_node; /* Number of formal parameters of this function. When set to 0, this function's parameters would not be analyzed by IPA CP. */ /* If this node is an ipa-cp clone, these are the known values that describe what it has been specialized for. */ VEC (tree, heap) *known_vals; int param_count; /* Whether this function is called with variable number of actual arguments. */ unsigned called_with_var_arguments : 1; /* Set when it is possible to create specialized versions of this node. */ unsigned node_versionable : 1; /* Whether the param uses analysis has already been performed. */ unsigned uses_analysis_done : 1; /* Whether the function is enqueued in ipa-cp propagation stack. */ unsigned node_enqueued : 1; /* Whether we should create a specialized version based on values that are known to be constant in all contexts. */ unsigned clone_for_all_contexts : 1; /* Node has been completely replaced by clones and will be removed after ipa-cp is finished. */ unsigned node_dead : 1; }; /* ipa_node_params access functions. Please use these to access fields that are or will be shared among various passes. */ /* Set the number of formal parameters. */ static inline void ipa_set_param_count (struct ipa_node_params *info, int count) { info->param_count = count; } /* Return the number of formal parameters. */ static inline int ipa_get_param_count (struct ipa_node_params *info) { return info->param_count; } /* Return the declaration of Ith formal parameter of the function corresponding to INFO. Note there is no setter function as this array is built just once using ipa_initialize_node_params. */ static inline tree ipa_get_param (struct ipa_node_params *info, int i) { gcc_assert (i >= 0 && i <= info->param_count); return info->lattices[i].decl; } /* Return the used flag corresponding to the Ith formal parameter of the function associated with INFO. */ static inline bool ipa_is_param_used (struct ipa_node_params *info, int i) { gcc_assert (i >= 0 && i <= info->param_count); return info->lattices[i].used; } /* Flag this node as having callers with variable number of arguments. */ static inline void ipa_set_called_with_variable_arg (struct ipa_node_params *info) { info->called_with_var_arguments = 1; } /* Have we detected this node was called with variable number of arguments? */ static inline bool ipa_is_called_with_var_arguments (struct ipa_node_params *info) { return info->called_with_var_arguments; } /* ipa_edge_args stores information related to a callsite and particularly its arguments. It can be accessed by the IPA_EDGE_REF macro. */ typedef struct GTY(()) ipa_edge_args { /* Next pointer in a linked list of clones of the same function. */ struct cgraph_edge *next_edge_clone; /* Number of actual arguments in this callsite. When set to 0, this callsite's parameters would not be analyzed by the different stages of IPA CP. */ int argument_count; /* Array of the callsite's jump function of each parameter. */ struct ipa_jump_func GTY ((length ("%h.argument_count"))) *jump_functions; } ipa_edge_args_t; /* ipa_edge_args access functions. Please use these to access fields that are or will be shared among various passes. */ /* Set the number of actual arguments. */ static inline void ipa_set_cs_argument_count (struct ipa_edge_args *args, int count) { args->argument_count = count; } /* Return the number of actual arguments. */ static inline int ipa_get_cs_argument_count (struct ipa_edge_args *args) { return args->argument_count; } /* Returns a pointer to the jump function for the ith argument. Please note there is no setter function as jump functions are all set up in ipa_compute_jump_functions. */ static inline struct ipa_jump_func * ipa_get_ith_jump_func (struct ipa_edge_args *args, int i) { gcc_assert (i >= 0 && i <= args->argument_count); return &args->jump_functions[i]; } /* Vectors need to have typedefs of structures. */ typedef struct ipa_node_params ipa_node_params_t; /* Types of vectors holding the infos. */ DEF_VEC_O (ipa_node_params_t); DEF_VEC_ALLOC_O (ipa_node_params_t, heap); DEF_VEC_O (ipa_edge_args_t); DEF_VEC_ALLOC_O (ipa_edge_args_t, gc); /* Vector where the parameter infos are actually stored. */ extern VEC (ipa_node_params_t, heap) *ipa_node_params_vector; /* Vector where the parameter infos are actually stored. */ extern GTY(()) VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector; /* Return the associated parameter/argument info corresponding to the given node/edge. */ #define IPA_NODE_REF(NODE) (VEC_index (ipa_node_params_t, \ ipa_node_params_vector, (NODE)->uid)) #define IPA_EDGE_REF(EDGE) (VEC_index (ipa_edge_args_t, \ ipa_edge_args_vector, (EDGE)->uid)) /* This macro checks validity of index returned by ipa_get_param_decl_index function. */ #define IS_VALID_JUMP_FUNC_INDEX(I) ((I) != -1) /* Creating and freeing ipa_node_params and ipa_edge_args. */ void ipa_create_all_node_params (void); void ipa_create_all_edge_args (void); void ipa_free_edge_args_substructures (struct ipa_edge_args *); void ipa_free_node_params_substructures (struct ipa_node_params *); void ipa_free_all_node_params (void); void ipa_free_all_edge_args (void); void ipa_create_all_structures_for_iinln (void); void ipa_free_all_structures_after_ipa_cp (void); void ipa_free_all_structures_after_iinln (void); void ipa_register_cgraph_hooks (void); /* This function ensures the array of node param infos is big enough to accommodate a structure for all nodes and reallocates it if not. */ static inline void ipa_check_create_node_params (void) { if (!ipa_node_params_vector) ipa_node_params_vector = VEC_alloc (ipa_node_params_t, heap, cgraph_max_uid); if (VEC_length (ipa_node_params_t, ipa_node_params_vector) <= (unsigned) cgraph_max_uid) VEC_safe_grow_cleared (ipa_node_params_t, heap, ipa_node_params_vector, cgraph_max_uid + 1); } /* This function ensures the array of edge arguments infos is big enough to accommodate a structure for all edges and reallocates it if not. */ static inline void ipa_check_create_edge_args (void) { if (!ipa_edge_args_vector) ipa_edge_args_vector = VEC_alloc (ipa_edge_args_t, gc, cgraph_edge_max_uid); if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector) <= (unsigned) cgraph_edge_max_uid) VEC_safe_grow_cleared (ipa_edge_args_t, gc, ipa_edge_args_vector, cgraph_edge_max_uid + 1); } /* Returns true if the array of edge infos is large enough to accommodate an info for EDGE. The main purpose of this function is that debug dumping function can check info availability without causing reallocations. */ static inline bool ipa_edge_args_info_available_for_edge_p (struct cgraph_edge *edge) { return ((unsigned) edge->uid < VEC_length (ipa_edge_args_t, ipa_edge_args_vector)); } /* Function formal parameters related computations. */ void ipa_initialize_node_params (struct cgraph_node *node); bool ipa_propagate_indirect_call_infos (struct cgraph_edge *cs, VEC (cgraph_edge_p, heap) **new_edges); /* Indirect edge and binfo processing. */ struct cgraph_edge *ipa_make_edge_direct_to_target (struct cgraph_edge *, tree, tree); /* Functions related to both. */ void ipa_analyze_node (struct cgraph_node *); /* Debugging interface. */ void ipa_print_node_params (FILE *, struct cgraph_node *node); void ipa_print_all_params (FILE *); void ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node); void ipa_print_all_jump_functions (FILE * f); /* Structure to describe transformations of formal parameters and actual arguments. Each instance describes one new parameter and they are meant to be stored in a vector. Additionally, most users will probably want to store adjustments about parameters that are being removed altogether so that SSA names belonging to them can be replaced by SSA names of an artificial variable. */ struct ipa_parm_adjustment { /* The original PARM_DECL itself, helpful for processing of the body of the function itself. Intended for traversing function bodies. ipa_modify_formal_parameters, ipa_modify_call_arguments and ipa_combine_adjustments ignore this and use base_index. ipa_modify_formal_parameters actually sets this. */ tree base; /* Type of the new parameter. However, if by_ref is true, the real type will be a pointer to this type. */ tree type; /* Alias refrerence type to be used in MEM_REFs when adjusting caller arguments. */ tree alias_ptr_type; /* The new declaration when creating/replacing a parameter. Created by ipa_modify_formal_parameters, useful for functions modifying the body accordingly. */ tree reduction; /* New declaration of a substitute variable that we may use to replace all non-default-def ssa names when a parm decl is going away. */ tree new_ssa_base; /* If non-NULL and the original parameter is to be removed (copy_param below is NULL), this is going to be its nonlocalized vars value. */ tree nonlocal_value; /* Offset into the original parameter (for the cases when the new parameter is a component of an original one). */ HOST_WIDE_INT offset; /* Zero based index of the original parameter this one is based on. (ATM there is no way to insert a new parameter out of the blue because there is no need but if it arises the code can be easily exteded to do so.) */ int base_index; /* This new parameter is an unmodified parameter at index base_index. */ unsigned copy_param : 1; /* This adjustment describes a parameter that is about to be removed completely. Most users will probably need to book keep those so that they don't leave behinfd any non default def ssa names belonging to them. */ unsigned remove_param : 1; /* The parameter is to be passed by reference. */ unsigned by_ref : 1; }; typedef struct ipa_parm_adjustment ipa_parm_adjustment_t; DEF_VEC_O (ipa_parm_adjustment_t); DEF_VEC_ALLOC_O (ipa_parm_adjustment_t, heap); typedef VEC (ipa_parm_adjustment_t, heap) *ipa_parm_adjustment_vec; VEC(tree, heap) *ipa_get_vector_of_formal_parms (tree fndecl); void ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec, const char *); void ipa_modify_call_arguments (struct cgraph_edge *, gimple, ipa_parm_adjustment_vec); ipa_parm_adjustment_vec ipa_combine_adjustments (ipa_parm_adjustment_vec, ipa_parm_adjustment_vec); void ipa_dump_param_adjustments (FILE *, ipa_parm_adjustment_vec, tree); void ipa_prop_write_jump_functions (cgraph_node_set set); void ipa_prop_read_jump_functions (void); void ipa_update_after_lto_read (void); int ipa_get_param_decl_index (struct ipa_node_params *, tree); tree ipa_get_jf_pass_through_result (struct ipa_jump_func *, tree); tree ipa_get_jf_ancestor_result (struct ipa_jump_func *, tree); tree ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc); tree ipa_cst_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc); /* From tree-sra.c: */ tree build_ref_for_offset (location_t, tree, HOST_WIDE_INT, tree, gimple_stmt_iterator *, bool); /* Return the lattice corresponding to the Ith formal parameter of the function described by INFO. */ static inline struct ipcp_lattice * ipa_get_lattice (struct ipa_node_params *info, int i) { gcc_assert (i >= 0 && i <= info->param_count); return &(info->lattices[i]); } /* Return whether LAT is a lattice with a single constant and without an undefined value. */ static inline bool ipa_lat_is_single_const (struct ipcp_lattice *lat) { if (lat->bottom || lat->contains_variable || lat->values_count != 1) return false; else return true; } #endif /* IPA_PROP_H */ ==================== ipa-cp.c ==================== /* Interprocedural constant propagation Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Razya Ladelsky <RAZYA@il.ibm.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* Interprocedural constant propagation (IPA-CP). The goal of this transformation is to 1) discover functions which are always invoked with some arguments with the same known constant values and modify the functions so that the subsequent optimizations can take advantage of the knowledge, and 2) create specialized versions of functions transformed in this way if some parameters are known constants only in certain contexts but the estimated tradeoff between speedup and cost size is deemed good. The algorithm also propagates types and attempts to perform type based devirtualization. Types are propagated much like constants. The algorithm basically consists of three stages. In the first, functions are analyzed one at a time and jump functions are constructed for all known call-sites. In the second phase, the pass propagates information from the jump functions across the call to reveal what values are available at what call sites, performs estimations of effects of known values on functions and their callees, and finally decides what specialized extra versions should be created. In the third, the special versions materialize and appropriate calls are redirected. The algorithm used is to a certain extent based on "Interprocedural Constant Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D Cooper, Mary W. Hall, and Ken Kennedy. First stage - intraprocedural analysis ======================================= This phase computes jump_function and modification flags. A jump function for a call-site represents the values passed as an actual arguments of a given call-site. In principle, there are three types of values: Pass through - the caller's formal parameter is passed as an actual argument, plus an operation on it can be performed. Constant - a constant is passed as an actual argument. Unknown - neither of the above. All jump function types are described in detail in ipa-prop.h, together with the data structures that represent them and methods of accessing them. ipcp_generate_summary() is the main function of the first stage. Second stage - interprocedural analysis ======================================== This stage is itself divided into two phases. In the first, we propagate known values over the call graph, in the second, we make cloning decisions. First, we traverse the functions topologically from callers to callees and, for each strongly connected component (SCC), we propagate constants according to previously computed jump functions. We also record what known values depend on other known values and estimate local effects. Finally, we propagate cumulative information about these effects from dependant values to those on which they depend. Second, we again traverse the call graph in the same topological order and make clones for functions which we know are called with the same values in all contexts and decide about extra specialized clones of functions just for some contexts - these decisions are based on both local estimates and cumulative estimates propagated from callees. ipcp_propagate_stage() and ipcp_decision_stage() together constitute the third stage. Third phase - materialization of clones, call statement updates. ============================================ This stage is currently performed by call graph code (mainly in cgraphunit.c and tree-inline.c) according to instructions inserted to the call graph by the second stage. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "target.h" #include "gimple.h" #include "cgraph.h" #include "ipa-prop.h" #include "tree-flow.h" #include "tree-pass.h" #include "flags.h" #include "timevar.h" #include "diagnostic.h" #include "tree-pretty-print.h" #include "tree-dump.h" #include "tree-inline.h" #include "fibheap.h" #include "params.h" #include "ipa-inline.h" #include "ipa-utils.h" /* Maximal count found in program. */ static gcov_type max_count; /* Original overall size of the program. */ static long overall_size, max_new_size; /* Allocation pools for values and their sources. */ alloc_pool ipcp_values_pool; alloc_pool ipcp_sources_pool; /* Head of the linked list of topologically sorted values. */ static struct ipcp_value *values_topo; /* Return true iff the CS is an edge within a strongly connected component as computed by ipa_reduced_postorder. */ static inline bool edge_within_scc (struct cgraph_edge *cs) { struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux; struct ipa_dfs_info *callee_dfs; struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL); callee_dfs = (struct ipa_dfs_info *) callee->aux; return (caller_dfs && callee_dfs && caller_dfs->scc_no == callee_dfs->scc_no); } /* Print V which is extracted from a value in a lattice to F. */ static void print_ipcp_constant_value (FILE * f, tree v) { if (TREE_CODE (v) == TREE_BINFO) { fprintf (f, "BINFO "); print_generic_expr (f, BINFO_TYPE (v), 0); } else if (TREE_CODE (v) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL) { fprintf (f, "& "); print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0); } else print_generic_expr (f, v, 0); } /* Print all ipcp_lattices of all functions to F. */ static void print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits) { struct cgraph_node *node; int i, count; fprintf (f, "\nLattices:\n"); FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node) { struct ipa_node_params *info; info = IPA_NODE_REF (node); fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid); count = ipa_get_param_count (info); for (i = 0; i < count; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); struct ipcp_value *val; bool prev = false; fprintf (f, " param [%d]: ", i); if (lat->bottom) { fprintf (f, "BOTTOM\n"); continue; } if (!lat->values_count && !lat->contains_variable) { fprintf (f, "TOP\n"); continue; } if (lat->contains_variable) { fprintf (f, "VARIABLE"); prev = true; if (dump_benefits) fprintf (f, "\n"); } for (val = lat->values; val; val = val->next) { if (dump_benefits && prev) fprintf (f, " "); else if (!dump_benefits && prev) fprintf (f, ", "); else prev = true; print_ipcp_constant_value (f, val->value); if (dump_sources) { struct ipcp_value_source *s; fprintf (f, " [from:"); for (s = val->sources; s; s = s->next) fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency); fprintf (f, "]"); } if (dump_benefits) fprintf (f, " [loc_time: %i, loc_size: %i, " "prop_time: %i, prop_size: %i]\n", val->local_time_benefit, val->local_size_cost, val->prop_time_benefit, val->prop_size_cost); } if (!dump_benefits) fprintf (f, "\n"); } } } /* Determine whether it is at all technically possible to create clones of NODE and store this information in the ipa_node_params structure associated with NODE. */ static void determine_versionability (struct cgraph_node *node) { struct cgraph_edge *edge; bool res = true; /* There are a number of generic reasons functions cannot be versioned. We also cannot remove parameters if there are type attributes such as fnspec present. */ if (node->alias || node->thunk.thunk_p || !inline_summary (node)->versionable || TYPE_ATTRIBUTES (TREE_TYPE (node->decl)) || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE) res = false; else /* Removing arguments doesn't work if the function takes varargs or use __builtin_apply_args. FIXME: handle this together with can_change_signature flag. */ for (edge = node->callees; edge; edge = edge->next_callee) { tree t = edge->callee->decl; if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL && (DECL_FUNCTION_CODE (t) == BUILT_IN_APPLY_ARGS || DECL_FUNCTION_CODE (t) == BUILT_IN_VA_START)) { res = false; break; }; } if (!res && dump_file && node->alias && node->thunk.thunk_p) fprintf (dump_file, "Function %s/%i is not versionable.\n", cgraph_node_name (node), node->uid); IPA_NODE_REF (node)->node_versionable = res; } /* Return true if it is at all technically possible to create clones of a NODE. */ static bool ipcp_versionable_function_p (struct cgraph_node *node) { return IPA_NODE_REF (node)->node_versionable; } /* Structure holding accumulated information about callers of a node. */ struct caller_statistics { gcov_type count_sum; int n_calls, n_hot_calls, freq_sum; }; /* Initialize fields of STAT to zeroes. */ static inline void init_caller_stats (struct caller_statistics *stats) { stats->count_sum = 0; stats->n_calls = 0; stats->n_hot_calls = 0; stats->freq_sum = 0; } /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of non-thunk incoming edges to NODE. */ static bool gather_caller_stats (struct cgraph_node *node, void *data) { struct caller_statistics *stats = (struct caller_statistics *) data; struct cgraph_edge *cs; for (cs = node->callers; cs; cs = cs->next_caller) if (cs->caller->thunk.thunk_p) gather_caller_stats (cs->caller, stats); else { stats->count_sum += cs->count; stats->freq_sum += cs->frequency; stats->n_calls++; if (cgraph_maybe_hot_edge_p (cs)) stats->n_hot_calls ++; } return false; } /* Return true if this NODE is viable candidate for cloning. */ static bool ipcp_cloning_candidate_p (struct cgraph_node *node) { struct caller_statistics stats; if (!cgraph_function_with_gimple_body_p (node)) return false; if (!flag_ipa_cp_clone) { if (dump_file) fprintf (dump_file, "Not considering %s for cloning; " "-fipa-cp-clone disabled.\n", cgraph_node_name (node)); return false; } if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl))) { if (dump_file) fprintf (dump_file, "Not considering %s for cloning; " "optimizing it for size.\n", cgraph_node_name (node)); return false; } init_caller_stats (&stats); cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false); if (inline_summary (node)->self_size < stats.n_calls) { if (dump_file) fprintf (dump_file, "Considering %s for cloning; code might shrink.\n", cgraph_node_name (node)); return true; } /* When profile is available and function is hot, propagate into it even if calls seems cold; constant propagation can improve function's speed significantly. */ if (max_count) { if (stats.count_sum > node->count * 90 / 100) { if (dump_file) fprintf (dump_file, "Considering %s for cloning; " "usually called directly.\n", cgraph_node_name (node)); return true; } } if (!stats.n_hot_calls) { if (dump_file) fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n", cgraph_node_name (node)); return false; } if (dump_file) fprintf (dump_file, "Considering %s for cloning.\n", cgraph_node_name (node)); return true; } /* Arrays representing a topological ordering of call graph nodes and a stack of noes used during constant propagation. */ struct topo_info { struct cgraph_node **order; struct cgraph_node **stack; int nnodes, stack_top; }; /* Allocate the arrays in TOPO and topologically sort the nodes into order. */ static void build_topo_info (struct topo_info *topo) { topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); topo->stack_top = 0; topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL); } /* Free information about strongly connected components and the arrays in TOPO. */ static void free_topo_info (struct topo_info *topo) { ipa_free_postorder_info (); free (topo->order); free (topo->stack); } /* Add NODE to the stack in TOPO, unless it is already there. */ static inline void push_node_to_stack (struct topo_info *topo, struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); if (info->node_enqueued) return; info->node_enqueued = 1; topo->stack[topo->stack_top++] = node; } /* Pop a node from the stack in TOPO and return it or return NULL if the stack is empty. */ static struct cgraph_node * pop_node_from_stack (struct topo_info *topo) { if (topo->stack_top) { struct cgraph_node *node; topo->stack_top--; node = topo->stack[topo->stack_top]; IPA_NODE_REF (node)->node_enqueued = 0; return node; } else return NULL; } /* Set lattice LAT to bottom and return true if it previously was not set as such. */ static inline bool set_lattice_to_bottom (struct ipcp_lattice *lat) { bool ret = !lat->bottom; lat->bottom = true; return ret; } /* Mark lattice as containing an unknown value and return true if it previously was not marked as such. */ static inline bool set_lattice_contains_variable (struct ipcp_lattice *lat) { bool ret = !lat->contains_variable; lat->contains_variable = true; return ret; } /* Initialize ipcp_lattices. */ static void initialize_node_lattices (struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); struct cgraph_edge *ie; bool disable = false, variable = false; int i; /* FIXME: Can we clobber only the first argument of thunks? */ if (node->alias || node->thunk.thunk_p || ipa_is_called_with_var_arguments (info)) disable = true; else if (!node->local.local) { /* When cloning is allowed, we can assume that externally visible functions are not called. We will compensate this by cloning later. */ if (ipcp_versionable_function_p (node) && ipcp_cloning_candidate_p (node)) variable = true; else disable = true; } if (disable || variable) { for (i = 0; i < ipa_get_param_count (info) ; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); if (disable) set_lattice_to_bottom (lat); else set_lattice_contains_variable (lat); } if (dump_file && (dump_flags & TDF_DETAILS) && node->alias && node->thunk.thunk_p) fprintf (dump_file, "Marking all lattices of %s/%i as %s\n", cgraph_node_name (node), node->uid, disable ? "BOTTOM" : "VARIABLE"); } for (ie = node->indirect_calls; ie; ie = ie->next_callee) if (ie->indirect_info->polymorphic) { gcc_checking_assert (ie->indirect_info->param_index >= 0); ipa_get_lattice (info, ie->indirect_info->param_index)->virt_call = 1; } } /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not bottom, not containing a variable component and without any known value at the same time. */ static void verify_propagated_values (void) { #ifdef ENABLE_CHECKING struct cgraph_node *node; FOR_EACH_DEFINED_FUNCTION (node) { struct ipa_node_params *info = IPA_NODE_REF (node); int i, count = ipa_get_param_count (info); for (i = 0; i < count; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); if (!lat->bottom && !lat->contains_variable && lat->values_count == 0) { if (dump_file) { fprintf (dump_file, "\nIPA lattices after constant " "propagation:\n"); print_all_lattices (dump_file, true, false); } gcc_unreachable (); } } } #endif } /* Return true iff X and Y should be considered equal values by IPA-CP. */ static bool values_equal_for_ipcp_p (tree x, tree y) { gcc_checking_assert (x != NULL_TREE && y != NULL_TREE); if (x == y) return true; if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO) return false; if (TREE_CODE (x) == ADDR_EXPR && TREE_CODE (y) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL) return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)), DECL_INITIAL (TREE_OPERAND (y, 0)), 0); else return operand_equal_p (x, y, 0); } /* Add a new value source to VAL, marking that a value comes from edge CS and (if the underlying jump function is a pass-through or an ancestor one) from a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */ static void add_value_source (struct ipcp_value *val, struct cgraph_edge *cs, struct ipcp_value *src_val, int src_idx) { struct ipcp_value_source *src; src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool); src->cs = cs; src->val = src_val; src->index = src_idx; src->next = val->sources; val->sources = src; } /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the same meaning. */ static bool add_value_to_lattice (struct ipcp_lattice *lat, tree newval, struct cgraph_edge *cs, struct ipcp_value *src_val, int src_idx) { struct ipcp_value *val; if (lat->bottom) return false; for (val = lat->values; val; val = val->next) if (values_equal_for_ipcp_p (val->value, newval)) { if (edge_within_scc (cs)) { struct ipcp_value_source *s; for (s = val->sources; s ; s = s->next) if (s->cs == cs) break; if (s) return false; } add_value_source (val, cs, src_val, src_idx); return false; } if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE)) { /* We can only free sources, not the values themselves, because sources of other values in this this SCC might point to them. */ for (val = lat->values; val; val = val->next) { while (val->sources) { struct ipcp_value_source *src = val->sources; val->sources = src->next; pool_free (ipcp_sources_pool, src); } } lat->values = NULL; return set_lattice_to_bottom (lat); } lat->values_count++; val = (struct ipcp_value *) pool_alloc (ipcp_values_pool); memset (val, 0, sizeof (*val)); add_value_source (val, cs, src_val, src_idx); val->value = newval; val->next = lat->values; lat->values = val; return true; } /* Propagate values through a pass-through jump function JFUNC associated with edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX is the index of the source parameter. */ static bool propagate_vals_accross_pass_through (struct cgraph_edge *cs, struct ipa_jump_func *jfunc, struct ipcp_lattice *src_lat, struct ipcp_lattice *dest_lat, int src_idx) { struct ipcp_value *src_val; bool ret = false; if (jfunc->value.pass_through.operation == NOP_EXPR) for (src_val = src_lat->values; src_val; src_val = src_val->next) ret |= add_value_to_lattice (dest_lat, src_val->value, cs, src_val, src_idx); else if (edge_within_scc (cs)) ret = set_lattice_contains_variable (dest_lat); else for (src_val = src_lat->values; src_val; src_val = src_val->next) { tree cstval = src_val->value; if (TREE_CODE (cstval) == TREE_BINFO) { ret |= set_lattice_contains_variable (dest_lat); continue; } cstval = ipa_get_jf_pass_through_result (jfunc, cstval); if (cstval) ret |= add_value_to_lattice (dest_lat, cstval, cs, src_val, src_idx); else ret |= set_lattice_contains_variable (dest_lat); } return ret; } /* Propagate values through an ancestor jump function JFUNC associated with edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX is the index of the source parameter. */ static bool propagate_vals_accross_ancestor (struct cgraph_edge *cs, struct ipa_jump_func *jfunc, struct ipcp_lattice *src_lat, struct ipcp_lattice *dest_lat, int src_idx) { struct ipcp_value *src_val; bool ret = false; if (edge_within_scc (cs)) return set_lattice_contains_variable (dest_lat); for (src_val = src_lat->values; src_val; src_val = src_val->next) { tree t = src_val->value; if (TREE_CODE (t) == TREE_BINFO) t = get_binfo_at_offset (t, jfunc->value.ancestor.offset, jfunc->value.ancestor.type); else t = ipa_get_jf_ancestor_result (jfunc, t); if (t) ret |= add_value_to_lattice (dest_lat, t, cs, src_val, src_idx); else ret |= set_lattice_contains_variable (dest_lat); } return ret; } /* Propagate values across jump function JFUNC that is associated with edge CS and put the values into DEST_LAT. */ static bool propagate_accross_jump_function (struct cgraph_edge *cs, struct ipa_jump_func *jfunc, struct ipcp_lattice *dest_lat) { if (dest_lat->bottom) return false; if (jfunc->type == IPA_JF_CONST || jfunc->type == IPA_JF_KNOWN_TYPE) { tree val; if (jfunc->type == IPA_JF_KNOWN_TYPE) val = jfunc->value.base_binfo; else val = jfunc->value.constant; return add_value_to_lattice (dest_lat, val, cs, NULL, 0); } else if (jfunc->type == IPA_JF_PASS_THROUGH || jfunc->type == IPA_JF_ANCESTOR) { struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller); struct ipcp_lattice *src_lat; int src_idx; bool ret; if (jfunc->type == IPA_JF_PASS_THROUGH) src_idx = jfunc->value.pass_through.formal_id; else src_idx = jfunc->value.ancestor.formal_id; src_lat = ipa_get_lattice (caller_info, src_idx); if (src_lat->bottom) return set_lattice_contains_variable (dest_lat); /* If we would need to clone the caller and cannot, do not propagate. */ if (!ipcp_versionable_function_p (cs->caller) && (src_lat->contains_variable || (src_lat->values_count > 1))) return set_lattice_contains_variable (dest_lat); if (jfunc->type == IPA_JF_PASS_THROUGH) ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat, dest_lat, src_idx); else ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat, src_idx); if (src_lat->contains_variable) ret |= set_lattice_contains_variable (dest_lat); return ret; } /* TODO: We currently do not handle member method pointers in IPA-CP (we only use it for indirect inlining), we should propagate them too. */ return set_lattice_contains_variable (dest_lat); } /* Propagate constants from the caller to the callee of CS. INFO describes the caller. */ static bool propagate_constants_accross_call (struct cgraph_edge *cs) { struct ipa_node_params *callee_info; enum availability availability; struct cgraph_node *callee; struct ipa_edge_args *args; bool ret = false; int i, count; callee = cgraph_function_or_thunk_node (cs->callee, &availability); if (!callee || !cgraph_function_with_gimple_body_p (callee)) return false; callee_info = IPA_NODE_REF (callee); if (ipa_is_called_with_var_arguments (callee_info)) return false; args = IPA_EDGE_REF (cs); count = ipa_get_cs_argument_count (args); for (i = 0; i < count; i++) { struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i); struct ipcp_lattice *dest_lat = ipa_get_lattice (callee_info, i); if (availability == AVAIL_OVERWRITABLE) ret |= set_lattice_contains_variable (dest_lat); else ret |= propagate_accross_jump_function (cs, jump_func, dest_lat); } return ret; } /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS (which can contain both constants and binfos) or KNOWN_BINFOS (which can be NULL) return the destination. If simple thunk delta must be applied too, store it to DELTA. */ static tree get_indirect_edge_target (struct cgraph_edge *ie, tree *delta, VEC (tree, heap) *known_vals, VEC (tree, heap) *known_binfos) { int param_index = ie->indirect_info->param_index; HOST_WIDE_INT token, anc_offset; tree otr_type; tree t; if (param_index == -1) return NULL_TREE; if (!ie->indirect_info->polymorphic) { tree t = VEC_index (tree, known_vals, param_index); if (t && TREE_CODE (t) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL) { *delta = NULL_TREE; return TREE_OPERAND (t, 0); } else return NULL_TREE; } token = ie->indirect_info->otr_token; anc_offset = ie->indirect_info->anc_offset; otr_type = ie->indirect_info->otr_type; t = VEC_index (tree, known_vals, param_index); if (!t && known_binfos) t = VEC_index (tree, known_binfos, param_index); if (!t) return NULL_TREE; if (TREE_CODE (t) != TREE_BINFO) { tree binfo; binfo = gimple_extract_devirt_binfo_from_cst (t); if (!binfo) return NULL_TREE; binfo = get_binfo_at_offset (binfo, anc_offset, otr_type); if (!binfo) return NULL_TREE; return gimple_get_virt_method_for_binfo (token, binfo, delta); } else { tree binfo; binfo = get_binfo_at_offset (t, anc_offset, otr_type); if (!binfo) return NULL_TREE; return gimple_get_virt_method_for_binfo (token, binfo, delta); } } /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS and KNOWN_BINFOS. */ static int devirtualization_time_bonus (struct cgraph_node *node, VEC (tree, heap) *known_csts, VEC (tree, heap) *known_binfos) { struct cgraph_edge *ie; int res = 0; for (ie = node->indirect_calls; ie; ie = ie->next_callee) { struct cgraph_node *callee; struct inline_summary *isummary; tree delta, target; target = get_indirect_edge_target (ie, &delta, known_csts, known_binfos); if (!target) continue; /* Only bare minimum benefit for clearly un-inlineable targets. */ res += 1; callee = cgraph_get_node (target); if (!callee) continue; /* FIXME: The values below need re-considering and perhaps also integrating into the cost metrics, at lest in some very basic way. */ isummary = inline_summary (callee); if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4) res += 31; else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2) res += 15; else if (isummary->size <= MAX_INLINE_INSNS_AUTO || DECL_DECLARED_INLINE_P (callee->decl)) res += 7; } return res; } /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT and SIZE_COST and with the sum of frequencies of incoming edges to the potential new clone in FREQUENCIES. */ static bool good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit, int freq_sum, gcov_type count_sum, int size_cost) { if (time_benefit == 0 || !flag_ipa_cp_clone || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl))) return false; gcc_checking_assert (size_cost >= 0); /* FIXME: These decisions need tuning. */ if (max_count) { int evaluation, factor = (count_sum * 1000) / max_count; evaluation = (time_benefit * factor) / size_cost; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " good_cloning_opportunity_p (time: %i, " "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC ") -> evaluation: %i, threshold: %i\n", time_benefit, size_cost, (HOST_WIDE_INT) count_sum, evaluation, 500); return evaluation > 500; } else { int evaluation = (time_benefit * freq_sum) / size_cost; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " good_cloning_opportunity_p (time: %i, " "size: %i, freq_sum: %i) -> evaluation: %i, threshold: %i\n", time_benefit, size_cost, freq_sum, evaluation, CGRAPH_FREQ_BASE /2); return evaluation > (CGRAPH_FREQ_BASE /2); } } /* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of parameters that are known independent of the context. INFO describes the function. If REMOVABLE_PARAMS is non-NULL, store the number o removable parameters in it. */ static bool gather_context_independent_values (struct ipa_node_params *info, VEC (tree, heap) **known_csts, VEC (tree, heap) **known_binfos, int *removable_params) { int i, count = ipa_get_param_count (info); int rparams = 0; bool ret = false; *known_csts = NULL; *known_binfos = NULL; VEC_safe_grow_cleared (tree, heap, *known_csts, count); VEC_safe_grow_cleared (tree, heap, *known_binfos, count); for (i = 0; i < count ; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); if (ipa_lat_is_single_const (lat)) { struct ipcp_value *val = lat->values; if (TREE_CODE (val->value) != TREE_BINFO) { VEC_replace (tree, *known_csts, i, val->value); rparams++; ret = true; } else if (lat->virt_call) { VEC_replace (tree, *known_binfos, i, val->value); ret = true; } else if (!ipa_is_param_used (info, i)) rparams++; } else if (!ipa_is_param_used (info, i)) rparams++; } if (removable_params) *removable_params = rparams; return ret; } /* Iterate over known values of parameters of NODE and estimate the local effects in terms of time and size they have. */ static void estimate_local_effects (struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); int i, count = ipa_get_param_count (info); VEC (tree, heap) *known_csts, *known_binfos; bool always_const; int base_time = inline_summary (node)->time; int removable_params; if (!count || !ipcp_versionable_function_p (node)) return; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n", cgraph_node_name (node), node->uid, base_time); always_const = gather_context_independent_values (info, &known_csts, &known_binfos, &removable_params); if (always_const) { struct caller_statistics stats; int time, size; init_caller_stats (&stats); cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false); estimate_ipcp_clone_size_and_time (node, known_csts, &size, &time); time -= devirtualization_time_bonus (node, known_csts, known_binfos); size -= stats.n_calls * removable_params; if (dump_file) fprintf (dump_file, " * context independent values, size: %i, " "time_benefit: %i\n", size, base_time - time); if (size <= 0 || cgraph_will_be_removed_from_program_if_no_direct_calls (node)) { info->clone_for_all_contexts = true; base_time = time; if (dump_file) fprintf (dump_file, " Decided to specialize for all " "known contexts, code not going to grow.\n"); } else if (good_cloning_opportunity_p (node, base_time - time, stats.freq_sum, stats.count_sum, size)) { if (size + overall_size <= max_new_size) { info->clone_for_all_contexts = true; base_time = time; overall_size += size; if (dump_file) fprintf (dump_file, " Decided to specialize for all " "known contexts, growth deemed beneficial.\n"); } else if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Not cloning for all contexts because " "max_new_size would be reached with %li.\n", size + overall_size); } } for (i = 0; i < count ; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); struct ipcp_value *val; if (lat->bottom || !lat->values || VEC_index (tree, known_csts, i) || VEC_index (tree, known_binfos, i)) continue; for (val = lat->values; val; val = val->next) { int time, size, time_benefit; if (TREE_CODE (val->value) != TREE_BINFO) { VEC_replace (tree, known_csts, i, val->value); VEC_replace (tree, known_binfos, i, NULL_TREE); } else if (lat->virt_call) { VEC_replace (tree, known_csts, i, NULL_TREE); VEC_replace (tree, known_binfos, i, val->value); } else continue; estimate_ipcp_clone_size_and_time (node, known_csts, &size, &time); time_benefit = base_time - time + devirtualization_time_bonus (node, known_csts, known_binfos); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " - estimates for value "); print_ipcp_constant_value (dump_file, val->value); fprintf (dump_file, " for parameter "); print_generic_expr (dump_file, ipa_get_param (info, i), 0); fprintf (dump_file, ": time_benefit: %i, size: %i\n", time_benefit, size); } val->local_time_benefit = time_benefit; val->local_size_cost = size; } } VEC_free (tree, heap, known_csts); VEC_free (tree, heap, known_binfos); } /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the topological sort of values. */ static void add_val_to_toposort (struct ipcp_value *cur_val) { static int dfs_counter = 0; static struct ipcp_value *stack; struct ipcp_value_source *src; if (cur_val->dfs) return; dfs_counter++; cur_val->dfs = dfs_counter; cur_val->low_link = dfs_counter; cur_val->topo_next = stack; stack = cur_val; cur_val->on_stack = true; for (src = cur_val->sources; src; src = src->next) if (src->val) { if (src->val->dfs == 0) { add_val_to_toposort (src->val); if (src->val->low_link < cur_val->low_link) cur_val->low_link = src->val->low_link; } else if (src->val->on_stack && src->val->dfs < cur_val->low_link) cur_val->low_link = src->val->dfs; } if (cur_val->dfs == cur_val->low_link) { struct ipcp_value *v, *scc_list = NULL; do { v = stack; stack = v->topo_next; v->on_stack = false; v->scc_next = scc_list; scc_list = v; } while (v != cur_val); cur_val->topo_next = values_topo; values_topo = cur_val; } } /* Add all values in lattices associated with NODE to the topological sort if they are not there yet. */ static void add_all_node_vals_to_toposort (struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); int i, count = ipa_get_param_count (info); for (i = 0; i < count ; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); struct ipcp_value *val; if (lat->bottom || !lat->values) continue; for (val = lat->values; val; val = val->next) add_val_to_toposort (val); } } /* One pass of constants propagation along the call graph edges, from callers to callees (requires topological ordering in TOPO), iterate over strongly connected components. */ static void propagate_constants_topo (struct topo_info *topo) { int i; for (i = topo->nnodes - 1; i >= 0; i--) { struct cgraph_node *v, *node = topo->order[i]; struct ipa_dfs_info *node_dfs_info; if (!cgraph_function_with_gimple_body_p (node)) continue; node_dfs_info = (struct ipa_dfs_info *) node->aux; /* First, iteratively propagate within the strongly connected component until all lattices stabilize. */ v = node_dfs_info->next_cycle; while (v) { push_node_to_stack (topo, v); v = ((struct ipa_dfs_info *) v->aux)->next_cycle; } v = node; while (v) { struct cgraph_edge *cs; for (cs = v->callees; cs; cs = cs->next_callee) if (edge_within_scc (cs) && propagate_constants_accross_call (cs)) push_node_to_stack (topo, cs->callee); v = pop_node_from_stack (topo); } /* Afterwards, propagate along edges leading out of the SCC, calculates the local effects of the discovered constants and all valid values to their topological sort. */ v = node; while (v) { struct cgraph_edge *cs; estimate_local_effects (v); add_all_node_vals_to_toposort (v); for (cs = v->callees; cs; cs = cs->next_callee) if (!edge_within_scc (cs)) propagate_constants_accross_call (cs); v = ((struct ipa_dfs_info *) v->aux)->next_cycle; } } } /* Propagate the estimated effects of individual values along the topological from the dependant values to those they depend on. */ static void propagate_effects (void) { struct ipcp_value *base; for (base = values_topo; base; base = base->topo_next) { struct ipcp_value_source *src; struct ipcp_value *val; int time = 0, size = 0; for (val = base; val; val = val->scc_next) { time += val->local_time_benefit + val->prop_time_benefit; size += val->local_size_cost + val->prop_size_cost; } for (val = base; val; val = val->scc_next) for (src = val->sources; src; src = src->next) if (src->val && cgraph_maybe_hot_edge_p (src->cs)) { src->val->prop_time_benefit += time; src->val->prop_size_cost += size; } } } /* Propagate constants, binfos and their effects from the summaries interprocedurally. */ static void ipcp_propagate_stage (struct topo_info *topo) { struct cgraph_node *node; if (dump_file) fprintf (dump_file, "\n Propagating constants:\n\n"); if (in_lto_p) ipa_update_after_lto_read (); FOR_EACH_DEFINED_FUNCTION (node) { determine_versionability (node); initialize_node_lattices (node); if (node->count > max_count) max_count = node->count; overall_size += inline_summary (node)->self_size; } max_new_size = overall_size; if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS)) max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS); max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1; if (dump_file) fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n", overall_size, max_new_size); propagate_constants_topo (topo); verify_propagated_values (); propagate_effects (); if (dump_file) { fprintf (dump_file, "\nIPA lattices after all propagation:\n"); print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true); } } /* Discover newly direct outgoing edges from NODE which is a new clone with known KNOWN_VALS and make them direct. */ static void ipcp_discover_new_direct_edges (struct cgraph_node *node, VEC (tree, heap) *known_vals) { struct cgraph_edge *ie, *next_ie; for (ie = node->indirect_calls; ie; ie = next_ie) { tree delta, target; next_ie = ie->next_callee; target = get_indirect_edge_target (ie, &delta, known_vals, NULL); if (target) ipa_make_edge_direct_to_target (ie, target, delta); } } /* Return true if edge CS does bring about the value described by SRC. */ static bool cgraph_edge_brings_value_p (struct cgraph_edge *cs, struct ipcp_value_source *src) { struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller); if (IPA_NODE_REF (cs->callee)->ipcp_orig_node || caller_info->node_dead) return false; if (!src->val) return true; if (caller_info->ipcp_orig_node) { tree t = VEC_index (tree, caller_info->known_vals, src->index); return (t != NULL_TREE && values_equal_for_ipcp_p (src->val->value, t)); } else { struct ipcp_lattice *lat = ipa_get_lattice (caller_info, src->index); if (ipa_lat_is_single_const (lat) && values_equal_for_ipcp_p (src->val->value, lat->values->value)) return true; else return false; } } /* Get the next clone in the linked list of clones of an edge. */ static inline struct cgraph_edge * get_next_cgraph_edge_clone (struct cgraph_edge *cs) { struct ipa_edge_args *args = IPA_EDGE_REF (cs); return args->next_edge_clone; } /* Given VAL, iterate over all its sources and if they still hold, add their edge frequency and their number into *FREQUENCY and *CALLER_COUNT respectively. */ static bool get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum, gcov_type *count_sum, int *caller_count) { struct ipcp_value_source *src; int freq = 0, count = 0; gcov_type cnt = 0; bool hot = false; for (src = val->sources; src; src = src->next) { struct cgraph_edge *cs = src->cs; while (cs) { if (cgraph_edge_brings_value_p (cs, src)) { count++; freq += cs->frequency; cnt += cs->count; hot |= cgraph_maybe_hot_edge_p (cs); } cs = get_next_cgraph_edge_clone (cs); } } *freq_sum = freq; *count_sum = cnt; *caller_count = count; return hot; } /* Return a vector of incoming edges that do bring value VAL. It is assumed their number is known and equal to CALLER_COUNT. */ static VEC (cgraph_edge_p,heap) * gather_edges_for_value (struct ipcp_value *val, int caller_count) { struct ipcp_value_source *src; VEC (cgraph_edge_p,heap) *ret; ret = VEC_alloc (cgraph_edge_p, heap, caller_count); for (src = val->sources; src; src = src->next) { struct cgraph_edge *cs = src->cs; while (cs) { if (cgraph_edge_brings_value_p (cs, src)) VEC_quick_push (cgraph_edge_p, ret, cs); cs = get_next_cgraph_edge_clone (cs); } } return ret; } /* Construct a replacement map for a know VALUE for a formal parameter PARAM. Return it or NULL if for some reason it cannot be created. */ static struct ipa_replace_map * get_replacement_map (tree value, tree parm) { tree req_type = TREE_TYPE (parm); struct ipa_replace_map *replace_map; if (!useless_type_conversion_p (req_type, TREE_TYPE (value))) { if (fold_convertible_p (req_type, value)) value = fold_build1 (NOP_EXPR, req_type, value); else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value))) value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value); else { if (dump_file) { fprintf (dump_file, " const "); print_generic_expr (dump_file, value, 0); fprintf (dump_file, " can't be converted to param "); print_generic_expr (dump_file, parm, 0); fprintf (dump_file, "\n"); } return NULL; } } replace_map = ggc_alloc_ipa_replace_map (); if (dump_file) { fprintf (dump_file, " replacing param "); print_generic_expr (dump_file, parm, 0); fprintf (dump_file, " with const "); print_generic_expr (dump_file, value, 0); fprintf (dump_file, "\n"); } replace_map->old_tree = parm; replace_map->new_tree = value; replace_map->replace_p = true; replace_map->ref_p = false; return replace_map; } /* Dump new profiling counts */ static void dump_profile_updates (struct cgraph_node *orig_node, struct cgraph_node *new_node) { struct cgraph_edge *cs; fprintf (dump_file, " setting count of the specialized node to " HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count); for (cs = new_node->callees; cs ; cs = cs->next_callee) fprintf (dump_file, " edge to %s has count " HOST_WIDE_INT_PRINT_DEC "\n", cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count); fprintf (dump_file, " setting count of the original node to " HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count); for (cs = orig_node->callees; cs ; cs = cs->next_callee) fprintf (dump_file, " edge to %s is left with " HOST_WIDE_INT_PRINT_DEC "\n", cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count); } /* After a specialized NEW_NODE version of ORIG_NODE has been created, update their profile information to reflect this. */ static void update_profiling_info (struct cgraph_node *orig_node, struct cgraph_node *new_node) { struct cgraph_edge *cs; struct caller_statistics stats; gcov_type new_sum, orig_sum; gcov_type remainder, orig_node_count = orig_node->count; if (orig_node_count == 0) return; init_caller_stats (&stats); cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false); orig_sum = stats.count_sum; init_caller_stats (&stats); cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false); new_sum = stats.count_sum; if (orig_node_count < orig_sum + new_sum) { if (dump_file) fprintf (dump_file, " Problem: node %s/%i has too low count " HOST_WIDE_INT_PRINT_DEC " while the sum of incoming " "counts is " HOST_WIDE_INT_PRINT_DEC "\n", cgraph_node_name (orig_node), orig_node->uid, (HOST_WIDE_INT) orig_node_count, (HOST_WIDE_INT) (orig_sum + new_sum)); orig_node_count = (orig_sum + new_sum) * 12 / 10; if (dump_file) fprintf (dump_file, " proceeding by pretending it was " HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node_count); } new_node->count = new_sum; remainder = orig_node_count - new_sum; orig_node->count = remainder; for (cs = new_node->callees; cs ; cs = cs->next_callee) if (cs->frequency) cs->count = cs->count * new_sum / orig_node_count; else cs->count = 0; for (cs = orig_node->callees; cs ; cs = cs->next_callee) cs->count = cs->count * remainder / orig_node_count; if (dump_file) dump_profile_updates (orig_node, new_node); } /* Update the respective profile of specialized NEW_NODE and the original ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM have been redirected to the specialized version. */ static void update_specialized_profile (struct cgraph_node *new_node, struct cgraph_node *orig_node, gcov_type redirected_sum) { struct cgraph_edge *cs; gcov_type new_node_count, orig_node_count = orig_node->count; if (dump_file) fprintf (dump_file, " the sum of counts of redirected edges is " HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum); if (orig_node_count == 0) return; gcc_assert (orig_node_count >= redirected_sum); new_node_count = new_node->count; new_node->count += redirected_sum; orig_node->count -= redirected_sum; for (cs = new_node->callees; cs ; cs = cs->next_callee) if (cs->frequency) cs->count += cs->count * redirected_sum / new_node_count; else cs->count = 0; for (cs = orig_node->callees; cs ; cs = cs->next_callee) { gcov_type dec = cs->count * redirected_sum / orig_node_count; if (dec < cs->count) cs->count -= dec; else cs->count = 0; } if (dump_file) dump_profile_updates (orig_node, new_node); } /* Create a specialized version of NODE with known constants and types of parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */ static struct cgraph_node * create_specialized_node (struct cgraph_node *node, VEC (tree, heap) *known_vals, VEC (cgraph_edge_p,heap) *callers) { struct ipa_node_params *new_info, *info = IPA_NODE_REF (node); VEC (ipa_replace_map_p,gc)* replace_trees = NULL; struct cgraph_node *new_node; int i, count = ipa_get_param_count (info); bitmap args_to_skip; gcc_assert (!info->ipcp_orig_node); if (node->local.can_change_signature) { args_to_skip = BITMAP_GGC_ALLOC (); for (i = 0; i < count; i++) { tree t = VEC_index (tree, known_vals, i); if ((t && TREE_CODE (t) != TREE_BINFO) || !ipa_is_param_used (info, i)) bitmap_set_bit (args_to_skip, i); } } else args_to_skip = NULL; for (i = 0; i < count ; i++) { tree t = VEC_index (tree, known_vals, i); if (t && TREE_CODE (t) != TREE_BINFO) { struct ipa_replace_map *replace_map; replace_map = get_replacement_map (t, ipa_get_param (info, i)); if (replace_map) VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_map); } } new_node = cgraph_create_virtual_clone (node, callers, replace_trees, args_to_skip, "constprop"); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " the new node is %s/%i.\n", cgraph_node_name (new_node), new_node->uid); gcc_checking_assert (ipa_node_params_vector && (VEC_length (ipa_node_params_t, ipa_node_params_vector) > (unsigned) cgraph_max_uid)); update_profiling_info (node, new_node); new_info = IPA_NODE_REF (new_node); gcc_checking_assert (new_info->lattices); new_info->ipcp_orig_node = node; new_info->known_vals = known_vals; ipcp_discover_new_direct_edges (new_node, known_vals); VEC_free (cgraph_edge_p, heap, callers); return new_node; } /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in KNOWN_VALS with constants and types that are also known for all of the CALLERS. */ static void find_more_values_for_callers_subset (struct cgraph_node *node, VEC (tree, heap) *known_vals, VEC (cgraph_edge_p,heap) *callers) { struct ipa_node_params *info = IPA_NODE_REF (node); int i, count = ipa_get_param_count (info); for (i = 0; i < count ; i++) { struct cgraph_edge *cs; tree newval = NULL_TREE; int j; if (ipa_get_lattice (info, i)->bottom || VEC_index (tree, known_vals, i)) continue; FOR_EACH_VEC_ELT (cgraph_edge_p, callers, j, cs) { struct ipa_jump_func *jump_func; tree t; jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i); t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func); if (!t || (newval && !values_equal_for_ipcp_p (t, newval))) { newval = NULL_TREE; break; } else newval = t; } if (newval) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " adding an extra known value "); print_ipcp_constant_value (dump_file, newval); fprintf (dump_file, " for parameter "); print_generic_expr (dump_file, ipa_get_param (info, i), 0); fprintf (dump_file, "\n"); } VEC_replace (tree, known_vals, i, newval); } } } /* Given an original NODE and a VAL for which we have already created a specialized clone, look whether there are incoming edges that still lead into the old node but now also bring the requested value and also conform to all other criteria such that they can be redirected the the special node. This function can therefore redirect the final edge in a SCC. */ static void perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val) { struct ipa_node_params *dest_info = IPA_NODE_REF (val->spec_node); struct ipcp_value_source *src; int count = ipa_get_param_count (dest_info); gcov_type redirected_sum = 0; for (src = val->sources; src; src = src->next) { struct cgraph_edge *cs = src->cs; while (cs) { enum availability availability; bool insufficient = false; if (cgraph_function_or_thunk_node (cs->callee, &availability) == node && availability > AVAIL_OVERWRITABLE && cgraph_edge_brings_value_p (cs, src)) { struct ipa_node_params *caller_info; struct ipa_edge_args *args; int i; caller_info = IPA_NODE_REF (cs->caller); args = IPA_EDGE_REF (cs); for (i = 0; i < count; i++) { struct ipa_jump_func *jump_func; tree val, t; val = VEC_index (tree, dest_info->known_vals, i); if (!val) continue; jump_func = ipa_get_ith_jump_func (args, i); t = ipa_value_from_jfunc (caller_info, jump_func); if (!t || !values_equal_for_ipcp_p (val, t)) { insufficient = true; break; } } if (!insufficient) { if (dump_file) fprintf (dump_file, " - adding an extra caller %s/%i" " of %s/%i\n", cgraph_node_name (cs->caller), cs->caller->uid, cgraph_node_name (val->spec_node), val->spec_node->uid); cgraph_redirect_edge_callee (cs, val->spec_node); redirected_sum += cs->count; } } cs = get_next_cgraph_edge_clone (cs); } } if (redirected_sum) update_specialized_profile (val->spec_node, node, redirected_sum); } /* Copy KNOWN_BINFOS to KNOWN_VALS. */ static void move_binfos_to_values (VEC (tree, heap) *known_vals, VEC (tree, heap) *known_binfos) { tree t; int i; for (i = 0; VEC_iterate (tree, known_binfos, i, t); i++) if (t) VEC_replace (tree, known_vals, i, t); } /* Decide whether and what specialized clones of NODE should be created. */ static bool decide_whether_version_node (struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); int i, count = ipa_get_param_count (info); VEC (tree, heap) *known_csts, *known_binfos; bool ret = false; if (count == 0) return false; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n", cgraph_node_name (node), node->uid); gather_context_independent_values (info, &known_csts, &known_binfos, NULL); for (i = 0; i < count ; i++) { struct ipcp_lattice *lat = ipa_get_lattice (info, i); struct ipcp_value *val; if (lat->bottom || VEC_index (tree, known_csts, i) || VEC_index (tree, known_binfos, i)) continue; for (val = lat->values; val; val = val->next) { int freq_sum, caller_count; gcov_type count_sum; VEC (cgraph_edge_p, heap) *callers; VEC (tree, heap) *kv; if (val->spec_node) { perhaps_add_new_callers (node, val); continue; } else if (val->local_size_cost + overall_size > max_new_size) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Ignoring candidate value because " "max_new_size would be reached with %li.\n", val->local_size_cost + overall_size); continue; } else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum, &caller_count)) continue; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " - considering value "); print_ipcp_constant_value (dump_file, val->value); fprintf (dump_file, " for parameter "); print_generic_expr (dump_file, ipa_get_param (info, i), 0); fprintf (dump_file, " (caller_count: %i)\n", caller_count); } if (!good_cloning_opportunity_p (node, val->local_time_benefit, freq_sum, count_sum, val->local_size_cost) && !good_cloning_opportunity_p (node, val->local_time_benefit + val->prop_time_benefit, freq_sum, count_sum, val->local_size_cost + val->prop_size_cost)) continue; if (dump_file) fprintf (dump_file, " Creating a specialized node of %s/%i.\n", cgraph_node_name (node), node->uid); callers = gather_edges_for_value (val, caller_count); kv = VEC_copy (tree, heap, known_csts); move_binfos_to_values (kv, known_binfos); VEC_replace (tree, kv, i, val->value); find_more_values_for_callers_subset (node, kv, callers); val->spec_node = create_specialized_node (node, kv, callers); overall_size += val->local_size_cost; info = IPA_NODE_REF (node); /* TODO: If for some lattice there is only one other known value left, make a special node for it too. */ ret = true; VEC_replace (tree, kv, i, val->value); } } if (info->clone_for_all_contexts) { VEC (cgraph_edge_p, heap) *callers; if (dump_file) fprintf (dump_file, " * Creating a specialized node of %s/%i " "for all contexts.\n", cgraph_node_name (node), node->uid); callers = collect_callers_of_node (node); move_binfos_to_values (known_csts, known_binfos); create_specialized_node (node, known_csts, callers); info = IPA_NODE_REF (node); info->clone_for_all_contexts = false; ret = true; } else VEC_free (tree, heap, known_csts); VEC_free (tree, heap, known_binfos); return ret; } /* Transitively mark all callees of NODE within the same SCC as not dead. */ static void spread_undeadness (struct cgraph_node *node) { struct cgraph_edge *cs; for (cs = node->callees; cs; cs = cs->next_callee) if (edge_within_scc (cs)) { struct cgraph_node *callee; struct ipa_node_params *info; callee = cgraph_function_or_thunk_node (cs->callee, NULL); info = IPA_NODE_REF (callee); if (info->node_dead) { info->node_dead = 0; spread_undeadness (callee); } } } /* Return true if NODE has a caller from outside of its SCC that is not dead. Worker callback for cgraph_for_node_and_aliases. */ static bool has_unded_caller_from_outside_scc_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED) { struct cgraph_edge *cs; for (cs = node->callers; cs; cs = cs->next_caller) if (cs->caller->thunk.thunk_p && has_unded_caller_from_outside_scc_p (cs->caller, NULL)) return true; else if (!edge_within_scc (cs) && !IPA_NODE_REF (cs->caller)->node_dead) return true; return false; } /* Identify nodes within the same SCC as NODE which are no longer needed because of new clones and will be removed as unreachable. */ static void identify_dead_nodes (struct cgraph_node *node) { struct cgraph_node *v; for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle) if (cgraph_will_be_removed_from_program_if_no_direct_calls (v) && !cgraph_for_node_and_aliases (v, has_unded_caller_from_outside_scc_p, NULL, true)) IPA_NODE_REF (v)->node_dead = 1; for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle) if (!IPA_NODE_REF (v)->node_dead) spread_undeadness (v); if (dump_file && (dump_flags & TDF_DETAILS)) { for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle) if (IPA_NODE_REF (v)->node_dead) fprintf (dump_file, " Marking node as dead: %s/%i.\n", cgraph_node_name (v), v->uid); } } /* The decision stage. Iterate over the topological order of call graph nodes TOPO and make specialized clones if deemed beneficial. */ static void ipcp_decision_stage (struct topo_info *topo) { int i; if (dump_file) fprintf (dump_file, "\nIPA decision stage:\n\n"); for (i = topo->nnodes - 1; i >= 0; i--) { struct cgraph_node *node = topo->order[i]; bool change = false, iterate = true; while (iterate) { struct cgraph_node *v; iterate = false; for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle) if (cgraph_function_with_gimple_body_p (v) && ipcp_versionable_function_p (v)) iterate |= decide_whether_version_node (v); change |= iterate; } if (change) identify_dead_nodes (node); } } /* The IPCP driver. */ static unsigned int ipcp_driver (void) { struct topo_info topo; cgraph_remove_unreachable_nodes (true,dump_file); ipa_check_create_node_params (); ipa_check_create_edge_args (); ipcp_values_pool = create_alloc_pool ("IPA-CP values", sizeof (struct ipcp_value), 32); ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources", sizeof (struct ipcp_value_source), 64); if (dump_file) { fprintf (dump_file, "\nIPA structures before propagation:\n"); if (dump_flags & TDF_DETAILS) ipa_print_all_params (dump_file); ipa_print_all_jump_functions (dump_file); } build_topo_info (&topo); /* 2. Do the interprocedural propagation. */ ipcp_propagate_stage (&topo); /* 3. Decide what constant propagation and cloning should be performed. */ ipcp_decision_stage (&topo); /* Free all IPCP structures. */ free_topo_info (&topo); ipa_free_all_structures_after_ipa_cp (); if (dump_file) fprintf (dump_file, "\nIPA constant propagation end\n"); return 0; } /* Initialization and computation of IPCP data structures. This is the initial intraprocedural analysis of functions, which gathers information to be propagated later on. */ static void ipcp_generate_summary (void) { struct cgraph_node *node; if (dump_file) fprintf (dump_file, "\nIPA constant propagation start:\n"); ipa_register_cgraph_hooks (); /* FIXME: We could propagate through thunks happily and we could be even able to clone them, if needed. Do that later. */ FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node) { /* Unreachable nodes should have been eliminated before ipcp. */ gcc_assert (node->needed || node->reachable); inline_summary (node)->versionable = tree_versionable_function_p (node->decl); ipa_analyze_node (node); } } /* Write ipcp summary for nodes in SET. */ static void ipcp_write_summary (cgraph_node_set set, varpool_node_set vset ATTRIBUTE_UNUSED) { ipa_prop_write_jump_functions (set); } /* Read ipcp summary. */ static void ipcp_read_summary (void) { ipa_prop_read_jump_functions (); } /* Gate for IPCP optimization. */ static bool cgraph_gate_cp (void) { /* FIXME: We should remove the optimize check after we ensure we never run IPA passes when not optimizing. */ return flag_ipa_cp && optimize; } struct ipa_opt_pass_d pass_ipa_cp = { { IPA_PASS, "cp", /* name */ cgraph_gate_cp, /* gate */ ipcp_driver, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_IPA_CONSTANT_PROP, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_cgraph | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */ }, ipcp_generate_summary, /* generate_summary */ ipcp_write_summary, /* write_summary */ ipcp_read_summary, /* read_summary */ NULL, /* write_optimization_summary */ NULL, /* read_optimization_summary */ NULL, /* stmt_fixup */ 0, /* TODOs */ NULL, /* function_transform */ NULL, /* variable_transform */ };