diff mbox series

stdlib: Reinstate stable mergesort implementation on qsort

Message ID 20240112135736.3061055-1-adhemerval.zanella@linaro.org
State New
Headers show
Series stdlib: Reinstate stable mergesort implementation on qsort | expand

Commit Message

Adhemerval Zanella Netto Jan. 12, 2024, 1:57 p.m. UTC
The mergesort removal from qsort implementation (commit 03bf8357e8)
had the side-effect of making sorting nonstable.  Although neither
POSIX nor C standard specify that qsort should be stable, it seems
that it has become an instance of Hyrum's law where multiple programs
expect it.

Also, the resulting introsort implementation is not faster than
the previous mergesort (which makes the change even less appealing).

This patch restores the previous mergesort implementation, with the
exception of machinery that checks the resulting allocation against
the _SC_PHYS_PAGES (it only adds complexity and the heuristic not
always make sense depending on the system configuration and load).
The alloca usage was replaced with a fixed-size buffer.

For the fallback mechanism, the implementation uses heapsort.  It is
simpler than quicksort, and it does not suffer from adversarial
inputs.  With memory overcommit, it should be rarely triggered.

The drawback is mergesort requires O(n) extra space, and since it is
allocated with malloc the function is AS-signal-unsafe.  It should be
feasible to change it to use mmap, although I am not sure how urgent
it is.  The heapsort is also nonstable, so programs that require a
stable sort would still be subject to this latent issue.

The tst-qsort5 is removed since it will not create quicksort adversarial
inputs with the current qsort_r implementation.

Checked on x86_64-linux-gnu and aarch64-linux-gnu.
---
 manual/argp.texi    |   2 +-
 manual/locale.texi  |   2 +-
 manual/search.texi  |   7 +-
 stdlib/Makefile     |   1 -
 stdlib/qsort.c      | 469 +++++++++++++++++++++-----------------------
 stdlib/tst-qsort4.c |  25 +--
 stdlib/tst-qsort5.c | 171 ----------------
 7 files changed, 231 insertions(+), 446 deletions(-)
 delete mode 100644 stdlib/tst-qsort5.c

Comments

Florian Weimer Jan. 12, 2024, 6:23 p.m. UTC | #1
* Adhemerval Zanella:

> +  _Alignas (uintmax_t) char tmp[QSORT_STACK_SIZE] ;

Extra space before ';'.  And uintmax_t isn't correct here.  I don't
think we need alignment greater than uint64_t because that's the largest
swap we have.

Otherwise:

Reviewed-by: Florian Weimer <fweimer@redhat.com>

Thanks,
Florian
Adhemerval Zanella Netto Jan. 12, 2024, 6:29 p.m. UTC | #2
On 12/01/24 15:23, Florian Weimer wrote:
> * Adhemerval Zanella:
> 
>> +  _Alignas (uintmax_t) char tmp[QSORT_STACK_SIZE] ;
> 
> Extra space before ';'.  And uintmax_t isn't correct here.  I don't
> think we need alignment greater than uint64_t because that's the largest
> swap we have.

Hum why is is 'incorrect' here? Even for ABIs with uintmax_t larger than
uint64_t it should over-align and waste some more bits, but I don't think
this would be incorrect on the current usage.

The alloca uses __BIGGEST_ALIGNMENT__, which I initially though to use
it but I refrain to use another compiler specific.  I can use uint64_t,
I don't have a strong opinion here.

> 
> Otherwise:
> 
> Reviewed-by: Florian Weimer <fweimer@redhat.com>
Florian Weimer Jan. 12, 2024, 7:02 p.m. UTC | #3
* Adhemerval Zanella Netto:

> On 12/01/24 15:23, Florian Weimer wrote:
>> * Adhemerval Zanella:
>> 
>>> +  _Alignas (uintmax_t) char tmp[QSORT_STACK_SIZE] ;
>> 
>> Extra space before ';'.  And uintmax_t isn't correct here.  I don't
>> think we need alignment greater than uint64_t because that's the largest
>> swap we have.
>
> Hum why is is 'incorrect' here? Even for ABIs with uintmax_t larger than
> uint64_t it should over-align and waste some more bits, but I don't think
> this would be incorrect on the current usage.

I think it's misleading because we only need alignment up to the types
we actually use.  The alignment of the application array does not matter
because all access has to happen when the objects reside in the
application buffer.  But I don't feel strongly about it.

> The alloca uses __BIGGEST_ALIGNMENT__, which I initially though to use
> it but I refrain to use another compiler specific.  I can use uint64_t,
> I don't have a strong opinion here.

__BIGGEST_ALIGNMENT__ would result in worse code because it can be
larger than stack alignment:

$ echo __BIGGEST_ALIGNMENT__ | gcc -march=x86-64-v4 -E - | tail -n1
64

Thanks,
Florian
Adhemerval Zanella Netto Jan. 12, 2024, 7:05 p.m. UTC | #4
On 12/01/24 16:02, Florian Weimer wrote:
> * Adhemerval Zanella Netto:
> 
>> On 12/01/24 15:23, Florian Weimer wrote:
>>> * Adhemerval Zanella:
>>>
>>>> +  _Alignas (uintmax_t) char tmp[QSORT_STACK_SIZE] ;
>>>
>>> Extra space before ';'.  And uintmax_t isn't correct here.  I don't
>>> think we need alignment greater than uint64_t because that's the largest
>>> swap we have.
>>
>> Hum why is is 'incorrect' here? Even for ABIs with uintmax_t larger than
>> uint64_t it should over-align and waste some more bits, but I don't think
>> this would be incorrect on the current usage.
> 
> I think it's misleading because we only need alignment up to the types
> we actually use.  The alignment of the application array does not matter
> because all access has to happen when the objects reside in the
> application buffer.  But I don't feel strongly about it.

Alright, I will use uint64_t and add a comment about it.

> 
>> The alloca uses __BIGGEST_ALIGNMENT__, which I initially though to use
>> it but I refrain to use another compiler specific.  I can use uint64_t,
>> I don't have a strong opinion here.
> 
> __BIGGEST_ALIGNMENT__ would result in worse code because it can be
> larger than stack alignment:
> 
> $ echo __BIGGEST_ALIGNMENT__ | gcc -march=x86-64-v4 -E - | tail -n1
> 64

Yeah, this is another reason why I move away from it.

> 
> Thanks,
> Florian
>
Xi Ruoyao Jan. 13, 2024, 12:35 p.m. UTC | #5
在 2024-01-12星期五的 10:57 -0300,Adhemerval Zanella写道:
> The heapsort is also nonstable, so programs that require a
> stable sort would still be subject to this latent issue.

I think this might be problematic.  The downstream would start to see
issues like "hey, the program behaves erratically under a high memory
pressure but otherwise OK" if the program relies on the stability of
qsort.  And such a breakage would be far more difficult to be triaged
than making qsort always unstable.

IMO it might be even better to use bubble sort as the fallback here...
Florian Weimer Jan. 13, 2024, 12:38 p.m. UTC | #6
* Xi Ruoyao:

> 在 2024-01-12星期五的 10:57 -0300,Adhemerval Zanella写道:
>> The heapsort is also nonstable, so programs that require a
>> stable sort would still be subject to this latent issue.
>
> I think this might be problematic.  The downstream would start to see
> issues like "hey, the program behaves erratically under a high memory
> pressure but otherwise OK" if the program relies on the stability of
> qsort.  And such a breakage would be far more difficult to be triaged
> than making qsort always unstable.

But that's not a change relative to 2.38, the fallback sort was already
not stable there, either.

Thanks,
Florian
Xi Ruoyao Jan. 13, 2024, 12:47 p.m. UTC | #7
在 2024-01-13星期六的 13:38 +0100,Florian Weimer写道:
> * Xi Ruoyao:
> 
> > 在 2024-01-12星期五的 10:57 -0300,Adhemerval Zanella写道:
> > > The heapsort is also nonstable, so programs that require a
> > > stable sort would still be subject to this latent issue.
> > 
> > I think this might be problematic.  The downstream would start to see
> > issues like "hey, the program behaves erratically under a high memory
> > pressure but otherwise OK" if the program relies on the stability of
> > qsort.  And such a breakage would be far more difficult to be triaged
> > than making qsort always unstable.
> 
> But that's not a change relative to 2.38, the fallback sort was already
> not stable there, either.

No problem then.
diff mbox series

Patch

diff --git a/manual/argp.texi b/manual/argp.texi
index b77ad68285..0023441812 100644
--- a/manual/argp.texi
+++ b/manual/argp.texi
@@ -735,7 +735,7 @@  for options, bad phase of the moon, etc.
 @c  hol_set_group ok
 @c   hol_find_entry ok
 @c  hol_sort @mtslocale @acucorrupt
-@c   qsort dup
+@c   qsort dup @acucorrupt
 @c    hol_entry_qcmp @mtslocale
 @c     hol_entry_cmp @mtslocale
 @c      group_cmp ok
diff --git a/manual/locale.texi b/manual/locale.texi
index f6afa5dc44..1b3f97839b 100644
--- a/manual/locale.texi
+++ b/manual/locale.texi
@@ -253,7 +253,7 @@  The symbols in this section are defined in the header file @file{locale.h}.
 @c    calculate_head_size ok
 @c    __munmap ok
 @c    compute_hashval ok
-@c    qsort dup
+@c    qsort dup @acucorrupt
 @c     rangecmp ok
 @c    malloc @ascuheap @acsmem
 @c    strdup @ascuheap @acsmem
diff --git a/manual/search.texi b/manual/search.texi
index a550858478..ffaadc46f5 100644
--- a/manual/search.texi
+++ b/manual/search.texi
@@ -159,7 +159,7 @@  To sort an array using an arbitrary comparison function, use the
 
 @deftypefun void qsort (void *@var{array}, size_t @var{count}, size_t @var{size}, comparison_fn_t @var{compare})
 @standards{ISO, stdlib.h}
-@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
+@safety{@prelim{}@mtsafe{}@assafe{}@acunsafe{@acucorrupt{}}}
 The @code{qsort} function sorts the array @var{array}.  The array
 contains @var{count} elements, each of which is of size @var{size}.
 
@@ -199,8 +199,9 @@  Functions}):
 The @code{qsort} function derives its name from the fact that it was
 originally implemented using the ``quick sort'' algorithm.
 
-The implementation of @code{qsort} in this library is an in-place sort
-and uses a constant extra space (allocated on the stack).
+The implementation of @code{qsort} attempts to allocate auxiliary storage
+and use the merge sort algorithm, without violating C standard requirement
+that arguments passed to the comparison function point within the array.
 @end deftypefun
 
 @node Search/Sort Example
diff --git a/stdlib/Makefile b/stdlib/Makefile
index bed39b8258..d587f054d1 100644
--- a/stdlib/Makefile
+++ b/stdlib/Makefile
@@ -287,7 +287,6 @@  tests := \
   tst-qsort \
   tst-qsort2 \
   tst-qsort3 \
-  tst-qsort5 \
   tst-qsort6 \
   tst-quick_exit \
   tst-rand48 \
diff --git a/stdlib/qsort.c b/stdlib/qsort.c
index 0b3c638aa2..8d29f834fc 100644
--- a/stdlib/qsort.c
+++ b/stdlib/qsort.c
@@ -19,6 +19,7 @@ 
    Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
    Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */
 
+#include <errno.h>
 #include <limits.h>
 #include <memswap.h>
 #include <stdlib.h>
@@ -32,9 +33,13 @@  enum swap_type_t
   {
     SWAP_WORDS_64,
     SWAP_WORDS_32,
+    SWAP_VOID_ARG,
     SWAP_BYTES
   };
 
+typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
+typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
+
 /* If this function returns true, elements can be safely copied using word
    loads and stores.  Otherwise, it might not be safe.  BASE (as an integer)
    must be a multiple of the word alignment.  SIZE must be a multiple of
@@ -51,7 +56,6 @@  is_aligned (const void *base, size_t size, size_t wordsize)
 static inline void
 swap_words_64 (void * restrict a, void * restrict b, size_t n)
 {
-  typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
   do
    {
      n -= 8;
@@ -64,7 +68,6 @@  swap_words_64 (void * restrict a, void * restrict b, size_t n)
 static inline void
 swap_words_32 (void * restrict a, void * restrict b, size_t n)
 {
-  typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
   do
    {
      n -= 4;
@@ -88,43 +91,6 @@  do_swap (void * restrict a, void * restrict b, size_t size,
     __memswap (a, b, size);
 }
 
-/* Discontinue quicksort algorithm when partition gets below this size.
-   This particular magic number was chosen to work best on a Sun 4/260. */
-#define MAX_THRESH 4
-
-/* Stack node declarations used to store unfulfilled partition obligations. */
-typedef struct
-  {
-    char *lo;
-    char *hi;
-    size_t depth;
-  } stack_node;
-
-/* The stack needs log (total_elements) entries (we could even subtract
-   log(MAX_THRESH)).  Since total_elements has type size_t, we get as
-   upper bound for log (total_elements):
-   bits per byte (CHAR_BIT) * sizeof(size_t).  */
-enum { STACK_SIZE = CHAR_BIT * sizeof (size_t) };
-
-static inline stack_node *
-push (stack_node *top, char *lo, char *hi, size_t depth)
-{
-  top->lo = lo;
-  top->hi = hi;
-  top->depth = depth;
-  return ++top;
-}
-
-static inline stack_node *
-pop (stack_node *top, char **lo, char **hi, size_t *depth)
-{
-  --top;
-  *lo = top->lo;
-  *hi = top->hi;
-  *depth = top->depth;
-  return top;
-}
-
 /* Establish the heap condition at index K, that is, the key at K will
    not be less than either of its children, at 2 * K + 1 and 2 * K + 2
    (if they exist).  N is the last valid index. */
@@ -172,21 +138,35 @@  heapify (void *base, size_t size, size_t n, enum swap_type_t swap_type,
     }
 }
 
-/* A non-recursive heapsort, used on introsort implementation as a
-   fallback routine with worst-case performance of O(nlog n) and
-   worst-case space complexity of O(1).  It sorts the array starting
-   at BASE and ending at END (inclusive), with each element of SIZE
-   bytes.  The SWAP_TYPE is the callback function used to swap
-   elements, and CMP is the function used to compare elements.  */
+static enum swap_type_t
+get_swap_type (void *const pbase, size_t size)
+{
+  if ((size & (sizeof (uint32_t) - 1)) == 0
+      && ((uintptr_t) pbase) % __alignof__ (uint32_t) == 0)
+    {
+      if (size == sizeof (uint32_t))
+	return SWAP_WORDS_32;
+      else if (size == sizeof (uint64_t)
+	       && ((uintptr_t) pbase) % __alignof__ (uint64_t) == 0)
+	return SWAP_WORDS_64;
+    }
+  return SWAP_BYTES;
+}
+
+
+/* A non-recursive heapsort with worst-case performance of O(nlog n) and
+   worst-case space complexity of O(1).  It sorts the array starting at
+   BASE with n + 1 elements of SIZE bytes.  The SWAP_TYPE is the callback
+   function used to swap elements, and CMP is the function used to compare
+   elements.  */
 static void
-heapsort_r (void *base, void *end, size_t size, enum swap_type_t swap_type,
-	    __compar_d_fn_t cmp, void *arg)
+heapsort_r (void *base, size_t n, size_t size, __compar_d_fn_t cmp, void *arg)
 {
-  size_t n = ((uintptr_t) end - (uintptr_t) base) / size;
   if (n <= 1)
-    /* Handled by insertion sort.  */
     return;
 
+  enum swap_type_t swap_type = get_swap_type (base, size);
+
   /* Build the binary heap, largest value at the base[0].  */
   heapify (base, size, n, swap_type, cmp, arg);
 
@@ -208,226 +188,225 @@  heapsort_r (void *base, void *end, size_t size, enum swap_type_t swap_type,
     }
 }
 
-static inline void
-insertion_sort_qsort_partitions (void *const pbase, size_t total_elems,
-				 size_t size, enum swap_type_t swap_type,
-				 __compar_d_fn_t cmp, void *arg)
+/* The maximum size in bytes required by mergesort that will be provided
+   through a buffer allocated in the stack.  */
+#define QSORT_STACK_SIZE  1024
+
+/* Elements larger than this value will be sorted through indirect sorting
+   to minimize the need to memory swap calls.  */
+#define INDIRECT_SORT_SIZE_THRES  32
+
+struct msort_param
 {
-  char *base_ptr = (char *) pbase;
-  char *const end_ptr = &base_ptr[size * (total_elems - 1)];
-  char *tmp_ptr = base_ptr;
-#define min(x, y) ((x) < (y) ? (x) : (y))
-  const size_t max_thresh = MAX_THRESH * size;
-  char *thresh = min(end_ptr, base_ptr + max_thresh);
-  char *run_ptr;
+  size_t s;
+  enum swap_type_t var;
+  __compar_d_fn_t cmp;
+  void *arg;
+  char *t;
+};
 
-  /* Find smallest element in first threshold and place it at the
-     array's beginning.  This is the smallest array element,
-     and the operation speeds up insertion sort's inner loop. */
+static void
+msort_with_tmp (const struct msort_param *p, void *b, size_t n)
+{
+  char *b1, *b2;
+  size_t n1, n2;
 
-  for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
-    if (cmp (run_ptr, tmp_ptr, arg) < 0)
-      tmp_ptr = run_ptr;
+  if (n <= 1)
+    return;
 
-  if (tmp_ptr != base_ptr)
-    do_swap (tmp_ptr, base_ptr, size, swap_type);
+  n1 = n / 2;
+  n2 = n - n1;
+  b1 = b;
+  b2 = (char *) b + (n1 * p->s);
 
-  /* Insertion sort, running from left-hand-side up to right-hand-side.  */
+  msort_with_tmp (p, b1, n1);
+  msort_with_tmp (p, b2, n2);
 
-  run_ptr = base_ptr + size;
-  while ((run_ptr += size) <= end_ptr)
+  char *tmp = p->t;
+  const size_t s = p->s;
+  __compar_d_fn_t cmp = p->cmp;
+  void *arg = p->arg;
+  switch (p->var)
     {
-      tmp_ptr = run_ptr - size;
-      while (tmp_ptr != base_ptr && cmp (run_ptr, tmp_ptr, arg) < 0)
-        tmp_ptr -= size;
-
-      tmp_ptr += size;
-      if (tmp_ptr != run_ptr)
-        {
-          char *trav;
-
-          trav = run_ptr + size;
-          while (--trav >= run_ptr)
-            {
-              char c = *trav;
-              char *hi, *lo;
-
-              for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
-                *hi = *lo;
-              *hi = c;
-            }
-        }
+    case SWAP_WORDS_32:
+      while (n1 > 0 && n2 > 0)
+	{
+	  if (cmp (b1, b2, arg) <= 0)
+	    {
+	      *(u32_alias_t *) tmp = *(u32_alias_t *) b1;
+	      b1 += sizeof (u32_alias_t);
+	      --n1;
+	    }
+	  else
+	    {
+	      *(u32_alias_t *) tmp = *(u32_alias_t *) b2;
+	      b2 += sizeof (u32_alias_t);
+	      --n2;
+	    }
+	  tmp += sizeof (u32_alias_t);
+	}
+      break;
+    case SWAP_WORDS_64:
+      while (n1 > 0 && n2 > 0)
+	{
+	  if (cmp (b1, b2, arg) <= 0)
+	    {
+	      *(u64_alias_t *) tmp = *(u64_alias_t *) b1;
+	      b1 += sizeof (u64_alias_t);
+	      --n1;
+	    }
+	  else
+	    {
+	      *(u64_alias_t *) tmp = *(u64_alias_t *) b2;
+	      b2 += sizeof (u64_alias_t);
+	      --n2;
+	    }
+	  tmp += sizeof (u64_alias_t);
+	}
+      break;
+    case SWAP_VOID_ARG:
+      while (n1 > 0 && n2 > 0)
+	{
+	  if ((*cmp) (*(const void **) b1, *(const void **) b2, arg) <= 0)
+	    {
+	      *(void **) tmp = *(void **) b1;
+	      b1 += sizeof (void *);
+	      --n1;
+	    }
+	  else
+	    {
+	      *(void **) tmp = *(void **) b2;
+	      b2 += sizeof (void *);
+	      --n2;
+	    }
+	  tmp += sizeof (void *);
+	}
+      break;
+    default:
+      while (n1 > 0 && n2 > 0)
+	{
+	  if (cmp (b1, b2, arg) <= 0)
+	    {
+	      tmp = (char *) __mempcpy (tmp, b1, s);
+	      b1 += s;
+	      --n1;
+	    }
+	  else
+	    {
+	      tmp = (char *) __mempcpy (tmp, b2, s);
+	      b2 += s;
+	      --n2;
+	    }
+	}
+      break;
     }
-}
-
-/* Order size using quicksort.  This implementation incorporates
-   four optimizations discussed in Sedgewick:
 
-   1. Non-recursive, using an explicit stack of pointer that store the
-      next array partition to sort.  To save time, this maximum amount
-      of space required to store an array of SIZE_MAX is allocated on the
-      stack.  Assuming a 32-bit (64 bit) integer for size_t, this needs
-      only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
-      Pretty cheap, actually.
-
-   2. Chose the pivot element using a median-of-three decision tree.
-      This reduces the probability of selecting a bad pivot value and
-      eliminates certain extraneous comparisons.
+  if (n1 > 0)
+    memcpy (tmp, b1, n1 * s);
+  memcpy (b, p->t, (n - n2) * s);
+}
 
-   3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
-      insertion sort to order the MAX_THRESH items within each partition.
-      This is a big win, since insertion sort is faster for small, mostly
-      sorted array segments.
+static void
+__attribute_used__
+indirect_msort_with_tmp (const struct msort_param *p, void *b, size_t n,
+			 size_t s)
+{
+  /* Indirect sorting.  */
+  char *ip = (char *) b;
+  void **tp = (void **) (p->t + n * sizeof (void *));
+  void **t = tp;
+  void *tmp_storage = (void *) (tp + n);
 
-   4. The larger of the two sub-partitions is always pushed onto the
-      stack first, with the algorithm then concentrating on the
-      smaller partition.  This *guarantees* no more than log (total_elems)
-      stack size is needed (actually O(1) in this case)!  */
+  while ((void *) t < tmp_storage)
+    {
+      *t++ = ip;
+      ip += s;
+    }
+  msort_with_tmp (p, p->t + n * sizeof (void *), n);
+
+  /* tp[0] .. tp[n - 1] is now sorted, copy around entries of
+     the original array.  Knuth vol. 3 (2nd ed.) exercise 5.2-10.  */
+  char *kp;
+  size_t i;
+  for (i = 0, ip = (char *) b; i < n; i++, ip += s)
+    if ((kp = tp[i]) != ip)
+      {
+	size_t j = i;
+	char *jp = ip;
+	memcpy (tmp_storage, ip, s);
+
+	do
+	  {
+	    size_t k = (kp - (char *) b) / s;
+	    tp[j] = jp;
+	    memcpy (jp, kp, s);
+	    j = k;
+	    jp = kp;
+	    kp = tp[k];
+	  }
+	while (kp != ip);
+
+	tp[j] = jp;
+	memcpy (jp, tmp_storage, s);
+      }
+}
 
 void
 __qsort_r (void *const pbase, size_t total_elems, size_t size,
 	   __compar_d_fn_t cmp, void *arg)
 {
-  char *base_ptr = (char *) pbase;
-
-  const size_t max_thresh = MAX_THRESH * size;
-
   if (total_elems <= 1)
-    /* Avoid lossage with unsigned arithmetic below.  */
     return;
 
-  enum swap_type_t swap_type;
-  if (is_aligned (pbase, size, 8))
-    swap_type = SWAP_WORDS_64;
-  else if (is_aligned (pbase, size, 4))
-    swap_type = SWAP_WORDS_32;
-  else
-    swap_type = SWAP_BYTES;
+  _Alignas (uintmax_t) char tmp[QSORT_STACK_SIZE] ;
+  size_t total_size = total_elems * size;
+  char *buf;
 
-  /* Maximum depth before quicksort switches to heapsort.  */
-  size_t depth = 2 * (sizeof (size_t) * CHAR_BIT - 1
-		      - __builtin_clzl (total_elems));
+  if (size > INDIRECT_SORT_SIZE_THRES)
+    total_size = 2 * total_elems * sizeof (void *) + size;
 
-  if (total_elems > MAX_THRESH)
+  if (total_size < sizeof buf)
+    buf = tmp;
+  else
     {
-      char *lo = base_ptr;
-      char *hi = &lo[size * (total_elems - 1)];
-      stack_node stack[STACK_SIZE];
-      stack_node *top = push (stack, NULL, NULL, depth);
-
-      while (stack < top)
-        {
-          if (depth == 0)
-            {
-              heapsort_r (lo, hi, size, swap_type, cmp, arg);
-              top = pop (top, &lo, &hi, &depth);
-              continue;
-            }
-
-          char *left_ptr;
-          char *right_ptr;
-
-	  /* Select median value from among LO, MID, and HI. Rearrange
-	     LO and HI so the three values are sorted. This lowers the
-	     probability of picking a pathological pivot value and
-	     skips a comparison for both the LEFT_PTR and RIGHT_PTR in
-	     the while loops. */
-
-	  char *mid = lo + size * ((hi - lo) / size >> 1);
-
-	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
-	    do_swap (mid, lo, size, swap_type);
-	  if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
-	    do_swap (mid, hi, size, swap_type);
-	  else
-	    goto jump_over;
-	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
-	    do_swap (mid, lo, size, swap_type);
-	jump_over:;
-
-	  left_ptr  = lo + size;
-	  right_ptr = hi - size;
-
-	  /* Here's the famous ``collapse the walls'' section of quicksort.
-	     Gotta like those tight inner loops!  They are the main reason
-	     that this algorithm runs much faster than others. */
-	  do
-	    {
-	      while (left_ptr != mid
-		     && (*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
-		left_ptr += size;
-
-	      while (right_ptr != mid
-		     && (*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
-		right_ptr -= size;
-
-	      if (left_ptr < right_ptr)
-		{
-		  do_swap (left_ptr, right_ptr, size, swap_type);
-		  if (mid == left_ptr)
-		    mid = right_ptr;
-		  else if (mid == right_ptr)
-		    mid = left_ptr;
-		  left_ptr += size;
-		  right_ptr -= size;
-		}
-	      else if (left_ptr == right_ptr)
-		{
-		  left_ptr += size;
-		  right_ptr -= size;
-		  break;
-		}
-	    }
-	  while (left_ptr <= right_ptr);
-
-          /* Set up pointers for next iteration.  First determine whether
-             left and right partitions are below the threshold size.  If so,
-             ignore one or both.  Otherwise, push the larger partition's
-             bounds on the stack and continue sorting the smaller one. */
-
-          if ((size_t) (right_ptr - lo) <= max_thresh)
-            {
-              if ((size_t) (hi - left_ptr) <= max_thresh)
-		/* Ignore both small partitions. */
-		{
-		  top = pop (top, &lo, &hi, &depth);
-		  --depth;
-		}
-              else
-		{
-		  /* Ignore small left partition. */
-		  lo = left_ptr;
-		  --depth;
-		}
-            }
-          else if ((size_t) (hi - left_ptr) <= max_thresh)
-	    /* Ignore small right partition. */
-		{
-		  hi = right_ptr;
-		  --depth;
-		}
-          else if ((right_ptr - lo) > (hi - left_ptr))
-            {
-	      /* Push larger left partition indices. */
-              top = push (top, lo, right_ptr, depth - 1);
-              lo = left_ptr;
-            }
-          else
-            {
-	      /* Push larger right partition indices. */
-              top = push (top, left_ptr, hi, depth - 1);
-              hi = right_ptr;
-            }
-        }
+      int save = errno;
+      buf = malloc (total_size);
+      __set_errno (save);
+      if (buf == NULL)
+	{
+	  /* Fallback to heapsort in case of memory failure.  */
+	  heapsort_r (pbase, total_elems - 1, size, cmp, arg);
+	  return;
+	}
+    }
+
+  if (size > INDIRECT_SORT_SIZE_THRES)
+    {
+      const struct msort_param msort_param =
+	{
+	  .s = sizeof (void *),
+	  .cmp = cmp,
+	  .arg = arg,
+	  .var = SWAP_VOID_ARG,
+	  .t = buf,
+	};
+      indirect_msort_with_tmp (&msort_param, pbase, total_elems, size);
+    }
+  else
+    {
+      const struct msort_param msort_param =
+	{
+	  .s = size,
+	  .cmp = cmp,
+	  .arg = arg,
+	  .var = get_swap_type (pbase, size),
+	  .t = buf,
+	};
+      msort_with_tmp (&msort_param, pbase, total_elems);
     }
 
-  /* Once the BASE_PTR array is partially sorted by quicksort the rest
-     is completely sorted using insertion sort, since this is efficient
-     for partitions below MAX_THRESH size. BASE_PTR points to the beginning
-     of the array to sort, and END_PTR points at the very last element in
-     the array (*not* one beyond it!). */
-  insertion_sort_qsort_partitions (pbase, total_elems, size, swap_type, cmp,
-				   arg);
+  if (buf != tmp)
+    free (buf);
 }
 libc_hidden_def (__qsort_r)
 weak_alias (__qsort_r, qsort_r)
diff --git a/stdlib/tst-qsort4.c b/stdlib/tst-qsort4.c
index 5e631c65dc..4635275419 100644
--- a/stdlib/tst-qsort4.c
+++ b/stdlib/tst-qsort4.c
@@ -30,35 +30,12 @@  cmp (const void *a1, const void *b1, void *closure)
   return *a - *b;
 }
 
-/* Wrapper around heapsort_r that set ups the required variables.  */
-static void
-heapsort_wrapper (void *const pbase, size_t total_elems, size_t size,
-                  __compar_d_fn_t cmp, void *arg)
-{
-  char *base_ptr = (char *) pbase;
-  char *lo = base_ptr;
-  char *hi = &lo[size * (total_elems - 1)];
-
-  if (total_elems <= 1)
-    /* Avoid lossage with unsigned arithmetic below.  */
-    return;
-
-  enum swap_type_t swap_type;
-  if (is_aligned (pbase, size, 8))
-    swap_type = SWAP_WORDS_64;
-  else if (is_aligned (pbase, size, 4))
-    swap_type = SWAP_WORDS_32;
-  else
-    swap_type = SWAP_BYTES;
-  heapsort_r (lo, hi, size, swap_type, cmp, arg);
-}
-
 static void
 check_one_sort (signed char *array, int length)
 {
   signed char *copy = xmalloc (length);
   memcpy (copy, array, length);
-  heapsort_wrapper (copy, length, 1, cmp, NULL);
+  heapsort_r (copy, length - 1, 1, cmp, NULL);
 
   /* Verify that the result is sorted.  */
   for (int i = 1; i < length; ++i)
diff --git a/stdlib/tst-qsort5.c b/stdlib/tst-qsort5.c
deleted file mode 100644
index ad0a4b0fd5..0000000000
--- a/stdlib/tst-qsort5.c
+++ /dev/null
@@ -1,171 +0,0 @@ 
-/* Adversarial test for qsort_r.
-   Copyright (C) 2023-2024 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, see
-   <http://www.gnu.org/licenses/>.  */
-
-/* The approach follows Douglas McIlroy, A Killer Adversary for
-   Quicksort.  Software—Practice and Experience 29 (1999) 341-344.
-   Downloaded <http://www.cs.dartmouth.edu/~doug/mdmspe.pdf>
-   (2023-11-17).  */
-
-#include <math.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <support/check.h>
-#include <support/support.h>
-
-struct context
-{
-  /* Called the gas value in the paper.  This value is larger than all
-     other values (length minus one will do), so comparison with any
-     decided value has a known result.  */
-  int undecided_value;
-
-  /* If comparing undecided values, one of them as to be assigned a
-     value to ensure consistency with future comparisons.  This is the
-     value that will be used.  Starts out at zero.  */
-  int next_decided;
-
-  /* Used to trick pivot selection.  Deciding the value for the last
-     seen undcided value in a decided/undecided comparison happens
-     to trick the many qsort implementations.  */
-  int last_undecided_index;
-
-  /* This array contains the actually asigned values.  The call to
-     qsort_r sorts a different array that contains indices into this
-     array.  */
-  int *decided_values;
-};
-
-static int
-compare_opponent (const void *l1, const void *r1, void *ctx1)
-{
-  const int *l = l1;
-  const int *r = r1;
-  struct context *ctx = ctx1;
-  int rvalue = ctx->decided_values[*r];
-  int lvalue = ctx->decided_values[*l];
-
-  if (lvalue == ctx->undecided_value)
-    {
-      if (rvalue == ctx->undecided_value)
-        {
-          /* Both values are undecided.  In this case, make a decision
-             for the last-used undecided value.  This is tweak is very
-             specific to quicksort.  */
-          if (*l == ctx->last_undecided_index)
-            {
-              ctx->decided_values[*l] = ctx->next_decided;
-              ++ctx->next_decided;
-              /* The undecided value or *r is greater.  */
-              return -1;
-            }
-          else
-            {
-              ctx->decided_values[*r] = ctx->next_decided;
-              ++ctx->next_decided;
-              /* The undecided value for *l is greater.  */
-              return 1;
-            }
-        }
-      else
-        {
-          ctx->last_undecided_index = *l;
-          return 1;
-        }
-    }
-  else
-    {
-      /* *l is a decided value.  */
-      if (rvalue == ctx->undecided_value)
-        {
-          ctx->last_undecided_index = *r;
-          /* The undecided value for *r is greater.  */
-          return -1;
-        }
-      else
-        return lvalue - rvalue;
-    }
-}
-
-/* Return a pointer to the adversarial permutation of length N.  */
-static int *
-create_permutation (size_t n)
-{
-  struct context ctx =
-    {
-      .undecided_value = n - 1, /* Larger than all other values.  */
-      .decided_values = xcalloc (n, sizeof (int)),
-    };
-  for (size_t i = 0; i < n; ++i)
-    ctx.decided_values[i] = ctx.undecided_value;
-  int *scratch = xcalloc (n, sizeof (int));
-  for (size_t i = 0; i < n; ++i)
-    scratch[i] = i;
-  qsort_r (scratch, n, sizeof (*scratch), compare_opponent, &ctx);
-  free (scratch);
-  return ctx.decided_values;
-}
-
-/* Callback function for qsort which counts the number of invocations
-   in *CLOSURE.  */
-static int
-compare_counter (const void *l1, const void *r1, void *closure)
-{
-  const int *l = l1;
-  const int *r = r1;
-  unsigned long long int *counter = closure;
-  ++*counter;
-  return *l - *r;
-}
-
-/* Count the comparisons required for an adversarial permutation of
-   length N.  */
-static unsigned long long int
-count_comparisons (size_t n)
-{
-  int *array = create_permutation (n);
-  unsigned long long int counter = 0;
-  qsort_r (array, n, sizeof (*array), compare_counter, &counter);
-  free (array);
-  return counter;
-}
-
-/* Check the scaling factor for one adversarial permutation of length
-   N, and report some statistics.  */
-static void
-check_one_n (size_t n)
-{
-  unsigned long long int count = count_comparisons (n);
-  double factor = count / (n * log (count));
-  printf ("info: length %zu: %llu comparisons ~ %f * n * log (n)\n",
-          n, count, factor);
-  /* This is an arbitrary factor which is true for the current
-     implementation across a wide range of sizes.  */
-  TEST_VERIFY (factor <= 4.5);
-}
-
-static int
-do_test (void)
-{
-  check_one_n (100);
-  check_one_n (1000);
-  for (int i = 1; i <= 15; ++i)
-    check_one_n (i * 10 * 1000);
-  return 0;
-}
-
-#include <support/test-driver.c>