Message ID | 20210226193612.1199321-5-harshadshirwadkar@gmail.com |
---|---|
State | Superseded |
Headers | show |
Series | Improve group scanning in CR 0 and CR 1 passes | expand |
On Feb 26, 2021, at 12:36 PM, Harshad Shirwadkar <harshadshirwadkar@gmail.com> wrote: > Instead of traversing through groups linearly, scan groups in specific > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > largest free order >= the order of the request. So, with this patch, > we maintain lists for each possible order and insert each group into a > list based on the largest free order in its buddy bitmap. During cr 0 > allocation, we traverse these lists in the increasing order of largest > free orders. This allows us to find a group with the best available cr > 0 match in constant time. If nothing can be found, we fallback to cr 1 > immediately. Thanks for the updated patch, I think it looks pretty good, with a few suggestions. > At CR1, the story is slightly different. We want to traverse in the > order of increasing average fragment size. For CR1, we maintain a rb > tree of groupinfos which is sorted by average fragment size. Instead > of traversing linearly, at CR1, we traverse in the order of increasing > average fragment size, starting at the most optimal group. This brings > down cr 1 search complexity to log(num groups). One thing that came to mind here is that *average* fragment size is not necessarily a good heuristic for allocation. Consider a group with mean fragment size of 2MB, made up of equal parts 4MB and 4KB free blocks. If looking for many 2MB allocations this would quickly cause the 4MB chunks to be split (pushing down the average below 2MB) even when there are *exactly* 2MB free chunks available in that group. Another alternative (short of having a full "free extents" tree like XFS does) would be to keep the rbtree sorted by *maximum* fragment size. That would not be any more expensive (one entry per group) and guarantee that at least one free extent closely matches the size of the extent being allocated. I _suspect_ that the cr1 allocations are mostly for smaller files/tails that are not power-of-two sizes (which would normally be handled by cr0 except in pathological test cases), so finding an exact match is the right thing to do. In that case, the cr0 pass would handle most of the file's data, and cr1 would handle smaller files or the tail that are not 2^n extents. Filling (nearly) exact fragments would be good for space efficiency, and avoid fragmenting larger extents when that is not needed. That said, I'm not confident enough about this to suggest that this has to be changed before landing the patch, just an observation that came to mind. Having a good workload simulator (or actual application benchmark) would be needed to assess the difference here, since a synthetic workload (e.g. fill alternate 2MB chunks) is not reflective of how the filesystem would be used in real life. A few minor comments inline... > diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c > index 161412070fef..bcfd849bc61e 100644 > --- a/fs/ext4/mballoc.c > +++ b/fs/ext4/mballoc.c > > +/* > + * ext4_mb_choose_next_group: choose next group for allocation. > + * > + * @ac Allocation Context > + * @new_cr This is an output parameter. If the there is no good group available > + * at current CR level, this field is updated to indicate the new cr > + * level that should be used. > + * @group This is an input / output parameter. As an input it indicates the last > + * group used for allocation. As output, this field indicates the > + * next group that should be used. No reason why these comments can't be wrapped at 80 columns > @@ -2938,6 +3273,20 @@ int ext4_mb_init(struct super_block *sb) > spin_lock_init(&lg->lg_prealloc_lock); > } > > + if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) > + sbi->s_mb_linear_limit = 0; > + else > + sbi->s_mb_linear_limit = MB_DEFAULT_LINEAR_LIMIT; > +#ifndef CONFIG_EXT4_DEBUG > + /* > + * Disable mb_optimize scan if we don't have enough groups. If > + * CONFIG_EXT4_DEBUG is set, we don't disable this MB_OPTIMIZE_SCAN even > + * for small file systems. This allows us to test correctness on small > + * file systems. > + */ > + if (ext4_get_groups_count(sb) < MB_DEFAULT_LINEAR_SCAN_THRESHOLD) > + clear_opt2(sb, MB_OPTIMIZE_SCAN); > +#endif Making this a compile-time option makes it much harder to test. Having this managed by the /proc mb_linear_scan tunable or mount option would be useful. Cheers, Andreas
On Mar 1, 2021, at 6:53 PM, harshad shirwadkar <harshadshirwadkar@gmail.com> wrote: > > Thanks for the review! Some comments inlined: > > On Mon, Mar 1, 2021 at 2:22 PM Andreas Dilger <adilger@dilger.ca> wrote: > > > > On Feb 26, 2021, at 12:36 PM, Harshad Shirwadkar <harshadshirwadkar@gmail.com> wrote: > > > Instead of traversing through groups linearly, scan groups in specific > > > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > > > largest free order >= the order of the request. So, with this patch, > > > we maintain lists for each possible order and insert each group into a > > > list based on the largest free order in its buddy bitmap. During cr 0 > > > allocation, we traverse these lists in the increasing order of largest > > > free orders. This allows us to find a group with the best available cr > > > 0 match in constant time. If nothing can be found, we fallback to cr 1 > > > immediately. > > > > Thanks for the updated patch, I think it looks pretty good, with a > > few suggestions. Two other things that I wanted to mention in my previous email: - whether this code should be enabled by default? I think yes, because it is very unlikely that normal users will know this optimization exists, and the code will be dead for them, as they continue to suffer with long scan times. If we think it is not a win to use with smaller filesystems, then MB_DEFAULT_LINEAR_LIMIT could be increased to where it *is* a win (e.g. 1TB = 8192 groups). - rather than having mb_optimize_scan disabled for small filesystems at compile time, it would make more sense to allow mb_optimze_scan=N as a mount option to specify whether the feature is enabled or not. If unset, then filesystems over MB_DEFAULT_LINEAR_SCAN_THRESHOLD would be enabled by default, but if =0 it is disabled, and =1 it is enabled (regardless of filesystem size). Cheers, Andreas
Hello Harshad, Thank you for the new patchset. Everything looks good for me. One comment below. > On 26 Feb 2021, at 22:36, Harshad Shirwadkar <harshadshirwadkar@gmail.com> wrote: > > Instead of traversing through groups linearly, scan groups in specific > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > largest free order >= the order of the request. So, with this patch, > we maintain lists for each possible order and insert each group into a > list based on the largest free order in its buddy bitmap. During cr 0 > allocation, we traverse these lists in the increasing order of largest > free orders. This allows us to find a group with the best available cr > 0 match in constant time. If nothing can be found, we fallback to cr 1 > immediately. > > At CR1, the story is slightly different. We want to traverse in the > order of increasing average fragment size. For CR1, we maintain a rb > tree of groupinfos which is sorted by average fragment size. Instead > of traversing linearly, at CR1, we traverse in the order of increasing > average fragment size, starting at the most optimal group. This brings > down cr 1 search complexity to log(num groups). > > For cr >= 2, we just perform the linear search as before. Also, in > case of lock contention, we intermittently fallback to linear search > even in CR 0 and CR 1 cases. This allows us to proceed during the > allocation path even in case of high contention. > > There is an opportunity to do optimization at CR2 too. That's because > at CR2 we only consider groups where bb_free counter (number of free > blocks) is greater than the request extent size. That's left as future > work. > > All the changes introduced in this patch are protected under a new > mount option "mb_optimize_scan". > > Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com> > Reported-by: kernel test robot <lkp@intel.com> > Reported-by: Dan Carpenter <dan.carpenter@oracle.com> > --- > fs/ext4/ext4.h | 14 +- > fs/ext4/mballoc.c | 374 ++++++++++++++++++++++++++++++++++++++++++++-- > fs/ext4/mballoc.h | 14 ++ > fs/ext4/super.c | 6 +- > fs/ext4/sysfs.c | 2 + > 5 files changed, 397 insertions(+), 13 deletions(-) > > diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h > index 3e906a3d553a..d792418c39ca 100644 > --- a/fs/ext4/ext4.h > +++ b/fs/ext4/ext4.h > @@ -162,6 +162,8 @@ enum SHIFT_DIRECTION { > #define EXT4_MB_USE_RESERVED 0x2000 > /* Do strict check for free blocks while retrying block allocation */ > #define EXT4_MB_STRICT_CHECK 0x4000 > +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ > +#define EXT4_MB_CR1_OPTIMIZED 0x8000 > > struct ext4_allocation_request { > /* target inode for block we're allocating */ > @@ -1247,7 +1249,9 @@ struct ext4_inode_info { > #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ > #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ > #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ > - > +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group > + * scanning in mballoc > + */ > > #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ > ~EXT4_MOUNT_##opt > @@ -1527,9 +1531,14 @@ struct ext4_sb_info { > unsigned int s_mb_free_pending; > struct list_head s_freed_data_list; /* List of blocks to be freed > after commit completed */ > + struct rb_root s_mb_avg_fragment_size_root; > + rwlock_t s_mb_rb_lock; > + struct list_head *s_mb_largest_free_orders; > + rwlock_t *s_mb_largest_free_orders_locks; > > /* tunables */ > unsigned long s_stripe; > + unsigned int s_mb_linear_limit; > unsigned int s_mb_stream_request; > unsigned int s_mb_max_to_scan; > unsigned int s_mb_min_to_scan; > @@ -3308,11 +3317,14 @@ struct ext4_group_info { > ext4_grpblk_t bb_free; /* total free blocks */ > ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ > ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ > + ext4_group_t bb_group; /* Group number */ > struct list_head bb_prealloc_list; > #ifdef DOUBLE_CHECK > void *bb_bitmap; > #endif > struct rw_semaphore alloc_sem; > + struct rb_node bb_avg_fragment_size_rb; > + struct list_head bb_largest_free_order_node; > ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block > * regions, index is order. > * bb_counters[3] = 5 means > diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c > index 161412070fef..bcfd849bc61e 100644 > --- a/fs/ext4/mballoc.c > +++ b/fs/ext4/mballoc.c > @@ -127,11 +127,50 @@ > * smallest multiple of the stripe value (sbi->s_stripe) which is > * greater than the default mb_group_prealloc. > * > + * If "mb_optimize_scan" mount option is set, we maintain in memory group info > + * structures in two data structures: > + * > + * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) > + * > + * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) > + * > + * This is an array of lists where the index in the array represents the > + * largest free order in the buddy bitmap of the participating group infos of > + * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total > + * number of buddy bitmap orders possible) number of lists. Group-infos are > + * placed in appropriate lists. > + * > + * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) > + * > + * Locking: sbi->s_mb_rb_lock (rwlock) > + * > + * This is a red black tree consisting of group infos and the tree is sorted > + * by average fragment sizes (which is calculated as ext4_group_info->bb_free > + * / ext4_group_info->bb_fragments). > + * > + * When "mb_optimize_scan" mount option is set, mballoc consults the above data > + * structures to decide the order in which groups are to be traversed for > + * fulfilling an allocation request. > + * > + * At CR = 0, we look for groups which have the largest_free_order >= the order > + * of the request. We directly look at the largest free order list in the data > + * structure (1) above where largest_free_order = order of the request. If that > + * list is empty, we look at remaining list in the increasing order of > + * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. > + * > + * At CR = 1, we only consider groups where average fragment size > request > + * size. So, we lookup a group which has average fragment size just above or > + * equal to request size using our rb tree (data structure 2) in O(log N) time. > + * > + * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in > + * linear order which requires O(N) search time for each CR 0 and CR 1 phase. > + * > * The regular allocator (using the buddy cache) supports a few tunables. > * > * /sys/fs/ext4/<partition>/mb_min_to_scan > * /sys/fs/ext4/<partition>/mb_max_to_scan > * /sys/fs/ext4/<partition>/mb_order2_req > + * /sys/fs/ext4/<partition>/mb_linear_limit > * > * The regular allocator uses buddy scan only if the request len is power of > * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The > @@ -149,6 +188,16 @@ > * can be used for allocation. ext4_mb_good_group explains how the groups are > * checked. > * > + * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not > + * get traversed linearly. That may result in subsequent allocations being not > + * close to each other. And so, the underlying device may get filled up in a > + * non-linear fashion. While that may not matter on non-rotational devices, for Actually I believe this matters even for non-rotational devices. Flash-friendly filesystems (such as F2FS for instance) try to escape rewriting and fill a device sequentially to prolong device lifetime. Ext4 starts searching from a goal block. For empty disk next good group would be located near previous one. For a filled filesystem, I agree, this doesn’t matter. > + * rotational devices that may result in higher seek times. "mb_linear_limit" > + * tells mballoc how many groups mballoc should search linearly before > + * performing consulting above data structures for more efficient lookups. For > + * non rotational devices, this value defaults to 0 and for rotational devices > + * this is set to MB_DEFAULT_LINEAR_LIMIT. Concerning the comment above are we going to set non-0 for non-rotational devices? > + * > * Both the prealloc space are getting populated as above. So for the first > * request we will hit the buddy cache which will result in this prealloc > * space getting filled. The prealloc space is then later used for the > @@ -299,6 +348,8 @@ > * - bitlock on a group (group) > * - object (inode/locality) (object) > * - per-pa lock (pa) > + * - cr0 lists lock (cr0) > + * - cr1 tree lock (cr1) > * > * Paths: > * - new pa > @@ -328,6 +379,9 @@ > * group > * object > * > + * - allocation path (ext4_mb_regular_allocator) > + * group > + * cr0/cr1 > */ > static struct kmem_cache *ext4_pspace_cachep; > static struct kmem_cache *ext4_ac_cachep; > @@ -351,6 +405,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, > ext4_group_t group); > static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); > > +static bool ext4_mb_good_group(struct ext4_allocation_context *ac, > + ext4_group_t group, int cr); > + > /* > * The algorithm using this percpu seq counter goes below: > * 1. We sample the percpu discard_pa_seq counter before trying for block > @@ -744,6 +801,243 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > } > } > > +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, > + int (*cmp)(struct rb_node *, struct rb_node *)) > +{ > + struct rb_node **iter = &root->rb_node, *parent = NULL; > + > + while (*iter) { > + parent = *iter; > + if (cmp(new, *iter)) > + iter = &((*iter)->rb_left); > + else > + iter = &((*iter)->rb_right); > + } > + > + rb_link_node(new, parent, iter); > + rb_insert_color(new, root); > +} > + > +static int > +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) > +{ > + struct ext4_group_info *grp1 = rb_entry(rb1, > + struct ext4_group_info, > + bb_avg_fragment_size_rb); > + struct ext4_group_info *grp2 = rb_entry(rb2, > + struct ext4_group_info, > + bb_avg_fragment_size_rb); > + int num_frags_1, num_frags_2; > + > + num_frags_1 = grp1->bb_fragments ? > + grp1->bb_free / grp1->bb_fragments : 0; > + num_frags_2 = grp2->bb_fragments ? > + grp2->bb_free / grp2->bb_fragments : 0; > + > + return (num_frags_1 < num_frags_2); > +} > + > +/* > + * Reinsert grpinfo into the avg_fragment_size tree with new average > + * fragment size. > + */ > +static void > +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(sb); > + > + if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) > + return; > + > + write_lock(&sbi->s_mb_rb_lock); > + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { > + rb_erase(&grp->bb_avg_fragment_size_rb, > + &sbi->s_mb_avg_fragment_size_root); > + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); > + } > + > + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, > + &grp->bb_avg_fragment_size_rb, > + ext4_mb_avg_fragment_size_cmp); > + write_unlock(&sbi->s_mb_rb_lock); > +} > + > +/* > + * Choose next group by traversing largest_free_order lists. Return 0 if next > + * group was selected optimally. Return 1 if next group was not selected > + * optimally. Updates *new_cr if cr level needs an update. > + */ > +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > + struct ext4_group_info *iter, *grp; > + int i; > + > + if (ac->ac_status == AC_STATUS_FOUND) > + return 1; > + > + grp = NULL; > + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) > + continue; > + read_lock(&sbi->s_mb_largest_free_orders_locks[i]); > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) { > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > + continue; > + } > + grp = NULL; > + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], > + bb_largest_free_order_node) { > + ac->ac_groups_considered++; > + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { > + grp = iter; > + break; > + } > + } > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > + if (grp) > + break; > + } > + > + if (!grp) { > + /* Increment cr and search again */ > + *new_cr = 1; > + } else { > + *group = grp->bb_group; > + ac->ac_last_optimal_group = *group; > + } > + return 0; > +} > + > +/* > + * Choose next group by traversing average fragment size tree. Return 0 if next > + * group was selected optimally. Return 1 if next group could not selected > + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an > + * update. > + */ > +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > + int avg_fragment_size, best_so_far; > + struct rb_node *node, *found; > + struct ext4_group_info *grp; > + > + /* > + * If there is contention on the lock, instead of waiting for the lock > + * to become available, just continue searching lineraly. We'll resume > + * our rb tree search later starting at ac->ac_last_optimal_group. > + */ > + if (!read_trylock(&sbi->s_mb_rb_lock)) > + return 1; > + > + if (ac->ac_flags & EXT4_MB_CR1_OPTIMIZED) { > + /* We have found something at CR 1 in the past */ > + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); > + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; > + found = rb_next(found)) { > + grp = rb_entry(found, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + ac->ac_groups_considered++; > + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) > + break; > + } > + > + goto done; > + } > + > + node = sbi->s_mb_avg_fragment_size_root.rb_node; > + best_so_far = 0; > + found = NULL; > + > + while (node) { > + grp = rb_entry(node, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + avg_fragment_size = 0; > + /* > + * Perform this check without locking, we'll lock later to confirm. > + */ > + if (ext4_mb_good_group(ac, grp->bb_group, 1)) { > + avg_fragment_size = grp->bb_fragments ? > + grp->bb_free / grp->bb_fragments : 0; > + if (!best_so_far || avg_fragment_size < best_so_far) { > + best_so_far = avg_fragment_size; > + found = node; > + } > + } > + if (avg_fragment_size > ac->ac_g_ex.fe_len) > + node = node->rb_right; > + else > + node = node->rb_left; > + } > + > +done: > + if (found) { > + grp = rb_entry(found, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + *group = grp->bb_group; > + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; > + } else { > + *new_cr = 2; > + } > + > + read_unlock(&sbi->s_mb_rb_lock); > + ac->ac_last_optimal_group = *group; > + return 0; > +} > + > +/* > + * ext4_mb_choose_next_group: choose next group for allocation. > + * > + * @ac Allocation Context > + * @new_cr This is an output parameter. If the there is no good group available > + * at current CR level, this field is updated to indicate the new cr > + * level that should be used. > + * @group This is an input / output parameter. As an input it indicates the last > + * group used for allocation. As output, this field indicates the > + * next group that should be used. > + * @ngroups Total number of groups > + */ > +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + int ret; > + > + *new_cr = ac->ac_criteria; > + > + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) || > + *new_cr >= 2 || > + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) > + goto inc_and_return; > + > + if (ac->ac_groups_linear_remaining) { > + ac->ac_groups_linear_remaining--; > + goto inc_and_return; > + } > + > + if (*new_cr == 0) { > + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); > + if (ret) > + goto inc_and_return; > + } > + if (*new_cr == 1) { > + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); > + if (ret) > + goto inc_and_return; > + } > + return; > + > +inc_and_return: > + /* > + * Artificially restricted ngroups for non-extent > + * files makes group > ngroups possible on first loop. > + */ > + *group = *group + 1; > + if (*group >= ngroups) > + *group = 0; > +} > + > /* > * Cache the order of the largest free extent we have available in this block > * group. > @@ -751,18 +1045,33 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > static void > mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) > { > + struct ext4_sb_info *sbi = EXT4_SB(sb); > int i; > - int bits; > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + list_del_init(&grp->bb_largest_free_order_node); > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + } > grp->bb_largest_free_order = -1; /* uninit */ > > - bits = MB_NUM_ORDERS(sb) - 1; > - for (i = bits; i >= 0; i--) { > + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { > if (grp->bb_counters[i] > 0) { > grp->bb_largest_free_order = i; > break; > } > } > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && > + grp->bb_largest_free_order >= 0 && grp->bb_free) { > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + list_add_tail(&grp->bb_largest_free_order_node, > + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + } > } > > static noinline_for_stack > @@ -818,6 +1127,7 @@ void ext4_mb_generate_buddy(struct super_block *sb, > period = get_cycles() - period; > atomic_inc(&sbi->s_mb_buddies_generated); > atomic64_add(period, &sbi->s_mb_generation_time); > + mb_update_avg_fragment_size(sb, grp); > } > > /* The buddy information is attached the buddy cache inode > @@ -1517,6 +1827,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, > > done: > mb_set_largest_free_order(sb, e4b->bd_info); > + mb_update_avg_fragment_size(sb, e4b->bd_info); > mb_check_buddy(e4b); > } > > @@ -1653,6 +1964,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) > } > mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); > > + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); > ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); > mb_check_buddy(e4b); > > @@ -2346,17 +2658,21 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac) > * from the goal value specified > */ > group = ac->ac_g_ex.fe_group; > + ac->ac_last_optimal_group = group; > + ac->ac_groups_linear_remaining = sbi->s_mb_linear_limit; > prefetch_grp = group; > > - for (i = 0; i < ngroups; group++, i++) { > - int ret = 0; > + for (i = 0; i < ngroups; i++) { > + int ret = 0, new_cr; > + > cond_resched(); > - /* > - * Artificially restricted ngroups for non-extent > - * files makes group > ngroups possible on first loop. > - */ > - if (group >= ngroups) > - group = 0; > + > + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); > + > + if (new_cr != cr) { > + cr = new_cr; > + goto repeat; > + } > > /* > * Batch reads of the block allocation bitmaps > @@ -2696,7 +3012,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, > INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); > init_rwsem(&meta_group_info[i]->alloc_sem); > meta_group_info[i]->bb_free_root = RB_ROOT; > + INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); > + RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); > meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ > + meta_group_info[i]->bb_group = group; > > mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); > return 0; > @@ -2886,6 +3205,22 @@ int ext4_mb_init(struct super_block *sb) > i++; > } while (i < MB_NUM_ORDERS(sb)); > > + sbi->s_mb_avg_fragment_size_root = RB_ROOT; > + sbi->s_mb_largest_free_orders = > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), > + GFP_KERNEL); > + if (!sbi->s_mb_largest_free_orders) > + goto out; > + sbi->s_mb_largest_free_orders_locks = > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), > + GFP_KERNEL); > + if (!sbi->s_mb_largest_free_orders_locks) > + goto out; > + for (i = 0; i < MB_NUM_ORDERS(sb); i++) { > + INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); > + rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); > + } > + rwlock_init(&sbi->s_mb_rb_lock); > > spin_lock_init(&sbi->s_md_lock); > sbi->s_mb_free_pending = 0; > @@ -2938,6 +3273,20 @@ int ext4_mb_init(struct super_block *sb) > spin_lock_init(&lg->lg_prealloc_lock); > } > > + if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) > + sbi->s_mb_linear_limit = 0; > + else > + sbi->s_mb_linear_limit = MB_DEFAULT_LINEAR_LIMIT; > +#ifndef CONFIG_EXT4_DEBUG > + /* > + * Disable mb_optimize scan if we don't have enough groups. If > + * CONFIG_EXT4_DEBUG is set, we don't disable this MB_OPTIMIZE_SCAN even > + * for small file systems. This allows us to test correctness on small > + * file systems. > + */ > + if (ext4_get_groups_count(sb) < MB_DEFAULT_LINEAR_SCAN_THRESHOLD) > + clear_opt2(sb, MB_OPTIMIZE_SCAN); > +#endif > /* init file for buddy data */ > ret = ext4_mb_init_backend(sb); > if (ret != 0) > @@ -2949,6 +3298,8 @@ int ext4_mb_init(struct super_block *sb) > free_percpu(sbi->s_locality_groups); > sbi->s_locality_groups = NULL; > out: > + kfree(sbi->s_mb_largest_free_orders); > + kfree(sbi->s_mb_largest_free_orders_locks); > kfree(sbi->s_mb_offsets); > sbi->s_mb_offsets = NULL; > kfree(sbi->s_mb_maxs); > @@ -3005,6 +3356,7 @@ int ext4_mb_release(struct super_block *sb) > kvfree(group_info); > rcu_read_unlock(); > } > + kfree(sbi->s_mb_largest_free_orders); > kfree(sbi->s_mb_offsets); > kfree(sbi->s_mb_maxs); > iput(sbi->s_buddy_cache); > diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h > index 02861406932f..5c0275f832a0 100644 > --- a/fs/ext4/mballoc.h > +++ b/fs/ext4/mballoc.h > @@ -78,6 +78,18 @@ > */ > #define MB_DEFAULT_MAX_INODE_PREALLOC 512 > > +/* > + * Number of groups to search linearly before performing group scanning > + * optimization. > + */ > +#define MB_DEFAULT_LINEAR_LIMIT 4 > + > +/* > + * Minimum number of groups that should be present in the file system to perform > + * group scanning optimizations. > + */ > +#define MB_DEFAULT_LINEAR_SCAN_THRESHOLD 16 > + > /* > * Number of valid buddy orders > */ > @@ -166,8 +178,10 @@ struct ext4_allocation_context { > /* copy of the best found extent taken before preallocation efforts */ > struct ext4_free_extent ac_f_ex; > > + ext4_group_t ac_last_optimal_group; > __u32 ac_groups_considered; > __u16 ac_groups_scanned; > + __u16 ac_groups_linear_remaining; > __u16 ac_found; > __u16 ac_tail; > __u16 ac_buddy; > diff --git a/fs/ext4/super.c b/fs/ext4/super.c > index 071d131fadd8..aa92d3ebe13d 100644 > --- a/fs/ext4/super.c > +++ b/fs/ext4/super.c > @@ -154,6 +154,7 @@ static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, > clear_buffer_verified(bh); > > bh->b_end_io = end_io ? end_io : end_buffer_read_sync; > + > get_bh(bh); > submit_bh(REQ_OP_READ, op_flags, bh); > } > @@ -1687,7 +1688,7 @@ enum { > Opt_dioread_nolock, Opt_dioread_lock, > Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, > Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, > - Opt_prefetch_block_bitmaps, > + Opt_prefetch_block_bitmaps, Opt_mb_optimize_scan, > #ifdef CONFIG_EXT4_DEBUG > Opt_fc_debug_max_replay, Opt_fc_debug_force > #endif > @@ -1788,6 +1789,7 @@ static const match_table_t tokens = { > {Opt_nombcache, "nombcache"}, > {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ > {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, > + {Opt_mb_optimize_scan, "mb_optimize_scan"}, > {Opt_removed, "check=none"}, /* mount option from ext2/3 */ > {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ > {Opt_removed, "reservation"}, /* mount option from ext2/3 */ > @@ -2008,6 +2010,8 @@ static const struct mount_opts { > {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, > {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, > MOPT_SET}, > + {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, > + MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > #ifdef CONFIG_EXT4_DEBUG > {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, > MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > diff --git a/fs/ext4/sysfs.c b/fs/ext4/sysfs.c > index 59ca9d73b42f..16b8a838f631 100644 > --- a/fs/ext4/sysfs.c > +++ b/fs/ext4/sysfs.c > @@ -213,6 +213,7 @@ EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); > EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); > EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); > EXT4_RW_ATTR_SBI_UI(mb_max_inode_prealloc, s_mb_max_inode_prealloc); > +EXT4_RW_ATTR_SBI_UI(mb_linear_limit, s_mb_linear_limit); > EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); > EXT4_ATTR(trigger_fs_error, 0200, trigger_test_error); > EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); > @@ -260,6 +261,7 @@ static struct attribute *ext4_attrs[] = { > ATTR_LIST(mb_stream_req), > ATTR_LIST(mb_group_prealloc), > ATTR_LIST(mb_max_inode_prealloc), > + ATTR_LIST(mb_linear_limit), > ATTR_LIST(max_writeback_mb_bump), > ATTR_LIST(extent_max_zeroout_kb), > ATTR_LIST(trigger_fs_error), > -- > 2.30.1.766.gb4fecdf3b7-goog Best regards, Artem Blagodarenko.
Hi all, Thanks Andreas and Artem for the feedback. I'll incorporate these suggestions in the next version of the patchset. In our discussions above, we have been trying to fine tune the flow of the block allocator based on different use cases. I wonder given the number of different allocation paths that now exist and given their own pros and cons, does it make sense to consider adding an eBPF hook in the allocator path and let the user-space be involved in some of decisions based on the use case? For example, a system that cares most about the fragmentation levels and performance can choose to do this fast path and skip other paths like prealloc, linear search, search by goal etc. Having an eBPF hook in the allocator can also allow for following other enhancements: 1) Allocator behavior can be dynamically configured. For example, if we reach a threshold fragmentation level, turn off linear allocation. 2) Different allocation paths can be used for different regions of the disk. 3) The userspace can have a say in how files are laid on the disk. On a rotational disk, mysql can choose to keep its files together, while directing any non-mysql files to be written farther away from mysql files. Also, different applications can have a different allocation path based on their latency requirements. Having said that, I'm not sure what kind of performance impact we'll see by putting an eBPF hook in the allocation path. Also, given that we don't yet have an ecosystem around eBPF in Ext4 (or file systems in general), this is really a far-fetched idea and may take a long time to become mature enough to be usable in production. This is just an idea that I wanted to share, this patch series doesn't do or intend to do anything that's mentioned above. Thanks, Harshad On Wed, Mar 3, 2021 at 3:31 AM Благодаренко Артём <artem.blagodarenko@gmail.com> wrote: > > Hello Harshad, > > Thank you for the new patchset. Everything looks good for me. > One comment below. > > > On 26 Feb 2021, at 22:36, Harshad Shirwadkar <harshadshirwadkar@gmail.com> wrote: > > > > Instead of traversing through groups linearly, scan groups in specific > > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > > largest free order >= the order of the request. So, with this patch, > > we maintain lists for each possible order and insert each group into a > > list based on the largest free order in its buddy bitmap. During cr 0 > > allocation, we traverse these lists in the increasing order of largest > > free orders. This allows us to find a group with the best available cr > > 0 match in constant time. If nothing can be found, we fallback to cr 1 > > immediately. > > > > At CR1, the story is slightly different. We want to traverse in the > > order of increasing average fragment size. For CR1, we maintain a rb > > tree of groupinfos which is sorted by average fragment size. Instead > > of traversing linearly, at CR1, we traverse in the order of increasing > > average fragment size, starting at the most optimal group. This brings > > down cr 1 search complexity to log(num groups). > > > > For cr >= 2, we just perform the linear search as before. Also, in > > case of lock contention, we intermittently fallback to linear search > > even in CR 0 and CR 1 cases. This allows us to proceed during the > > allocation path even in case of high contention. > > > > There is an opportunity to do optimization at CR2 too. That's because > > at CR2 we only consider groups where bb_free counter (number of free > > blocks) is greater than the request extent size. That's left as future > > work. > > > > All the changes introduced in this patch are protected under a new > > mount option "mb_optimize_scan". > > > > Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com> > > Reported-by: kernel test robot <lkp@intel.com> > > Reported-by: Dan Carpenter <dan.carpenter@oracle.com> > > --- > > fs/ext4/ext4.h | 14 +- > > fs/ext4/mballoc.c | 374 ++++++++++++++++++++++++++++++++++++++++++++-- > > fs/ext4/mballoc.h | 14 ++ > > fs/ext4/super.c | 6 +- > > fs/ext4/sysfs.c | 2 + > > 5 files changed, 397 insertions(+), 13 deletions(-) > > > > diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h > > index 3e906a3d553a..d792418c39ca 100644 > > --- a/fs/ext4/ext4.h > > +++ b/fs/ext4/ext4.h > > @@ -162,6 +162,8 @@ enum SHIFT_DIRECTION { > > #define EXT4_MB_USE_RESERVED 0x2000 > > /* Do strict check for free blocks while retrying block allocation */ > > #define EXT4_MB_STRICT_CHECK 0x4000 > > +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ > > +#define EXT4_MB_CR1_OPTIMIZED 0x8000 > > > > struct ext4_allocation_request { > > /* target inode for block we're allocating */ > > @@ -1247,7 +1249,9 @@ struct ext4_inode_info { > > #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ > > #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ > > #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ > > - > > +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group > > + * scanning in mballoc > > + */ > > > > #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ > > ~EXT4_MOUNT_##opt > > @@ -1527,9 +1531,14 @@ struct ext4_sb_info { > > unsigned int s_mb_free_pending; > > struct list_head s_freed_data_list; /* List of blocks to be freed > > after commit completed */ > > + struct rb_root s_mb_avg_fragment_size_root; > > + rwlock_t s_mb_rb_lock; > > + struct list_head *s_mb_largest_free_orders; > > + rwlock_t *s_mb_largest_free_orders_locks; > > > > /* tunables */ > > unsigned long s_stripe; > > + unsigned int s_mb_linear_limit; > > unsigned int s_mb_stream_request; > > unsigned int s_mb_max_to_scan; > > unsigned int s_mb_min_to_scan; > > @@ -3308,11 +3317,14 @@ struct ext4_group_info { > > ext4_grpblk_t bb_free; /* total free blocks */ > > ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ > > ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ > > + ext4_group_t bb_group; /* Group number */ > > struct list_head bb_prealloc_list; > > #ifdef DOUBLE_CHECK > > void *bb_bitmap; > > #endif > > struct rw_semaphore alloc_sem; > > + struct rb_node bb_avg_fragment_size_rb; > > + struct list_head bb_largest_free_order_node; > > ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block > > * regions, index is order. > > * bb_counters[3] = 5 means > > diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c > > index 161412070fef..bcfd849bc61e 100644 > > --- a/fs/ext4/mballoc.c > > +++ b/fs/ext4/mballoc.c > > @@ -127,11 +127,50 @@ > > * smallest multiple of the stripe value (sbi->s_stripe) which is > > * greater than the default mb_group_prealloc. > > * > > + * If "mb_optimize_scan" mount option is set, we maintain in memory group info > > + * structures in two data structures: > > + * > > + * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) > > + * > > + * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) > > + * > > + * This is an array of lists where the index in the array represents the > > + * largest free order in the buddy bitmap of the participating group infos of > > + * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total > > + * number of buddy bitmap orders possible) number of lists. Group-infos are > > + * placed in appropriate lists. > > + * > > + * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) > > + * > > + * Locking: sbi->s_mb_rb_lock (rwlock) > > + * > > + * This is a red black tree consisting of group infos and the tree is sorted > > + * by average fragment sizes (which is calculated as ext4_group_info->bb_free > > + * / ext4_group_info->bb_fragments). > > + * > > + * When "mb_optimize_scan" mount option is set, mballoc consults the above data > > + * structures to decide the order in which groups are to be traversed for > > + * fulfilling an allocation request. > > + * > > + * At CR = 0, we look for groups which have the largest_free_order >= the order > > + * of the request. We directly look at the largest free order list in the data > > + * structure (1) above where largest_free_order = order of the request. If that > > + * list is empty, we look at remaining list in the increasing order of > > + * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. > > + * > > + * At CR = 1, we only consider groups where average fragment size > request > > + * size. So, we lookup a group which has average fragment size just above or > > + * equal to request size using our rb tree (data structure 2) in O(log N) time. > > + * > > + * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in > > + * linear order which requires O(N) search time for each CR 0 and CR 1 phase. > > + * > > * The regular allocator (using the buddy cache) supports a few tunables. > > * > > * /sys/fs/ext4/<partition>/mb_min_to_scan > > * /sys/fs/ext4/<partition>/mb_max_to_scan > > * /sys/fs/ext4/<partition>/mb_order2_req > > + * /sys/fs/ext4/<partition>/mb_linear_limit > > * > > * The regular allocator uses buddy scan only if the request len is power of > > * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The > > @@ -149,6 +188,16 @@ > > * can be used for allocation. ext4_mb_good_group explains how the groups are > > * checked. > > * > > + * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not > > + * get traversed linearly. That may result in subsequent allocations being not > > + * close to each other. And so, the underlying device may get filled up in a > > + * non-linear fashion. While that may not matter on non-rotational devices, for > > Actually I believe this matters even for non-rotational devices. Flash-friendly filesystems > (such as F2FS for instance) try to escape rewriting and fill a device sequentially to prolong device lifetime. > Ext4 starts searching from a goal block. For empty disk next good group would be located near previous one. > For a filled filesystem, I agree, this doesn’t matter. > > > + * rotational devices that may result in higher seek times. "mb_linear_limit" > > + * tells mballoc how many groups mballoc should search linearly before > > + * performing consulting above data structures for more efficient lookups. For > > + * non rotational devices, this value defaults to 0 and for rotational devices > > + * this is set to MB_DEFAULT_LINEAR_LIMIT. > > Concerning the comment above are we going to set non-0 for non-rotational devices? > > > + * > > * Both the prealloc space are getting populated as above. So for the first > > * request we will hit the buddy cache which will result in this prealloc > > * space getting filled. The prealloc space is then later used for the > > @@ -299,6 +348,8 @@ > > * - bitlock on a group (group) > > * - object (inode/locality) (object) > > * - per-pa lock (pa) > > + * - cr0 lists lock (cr0) > > + * - cr1 tree lock (cr1) > > * > > * Paths: > > * - new pa > > @@ -328,6 +379,9 @@ > > * group > > * object > > * > > + * - allocation path (ext4_mb_regular_allocator) > > + * group > > + * cr0/cr1 > > */ > > static struct kmem_cache *ext4_pspace_cachep; > > static struct kmem_cache *ext4_ac_cachep; > > @@ -351,6 +405,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, > > ext4_group_t group); > > static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); > > > > +static bool ext4_mb_good_group(struct ext4_allocation_context *ac, > > + ext4_group_t group, int cr); > > + > > /* > > * The algorithm using this percpu seq counter goes below: > > * 1. We sample the percpu discard_pa_seq counter before trying for block > > @@ -744,6 +801,243 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > > } > > } > > > > +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, > > + int (*cmp)(struct rb_node *, struct rb_node *)) > > +{ > > + struct rb_node **iter = &root->rb_node, *parent = NULL; > > + > > + while (*iter) { > > + parent = *iter; > > + if (cmp(new, *iter)) > > + iter = &((*iter)->rb_left); > > + else > > + iter = &((*iter)->rb_right); > > + } > > + > > + rb_link_node(new, parent, iter); > > + rb_insert_color(new, root); > > +} > > + > > +static int > > +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) > > +{ > > + struct ext4_group_info *grp1 = rb_entry(rb1, > > + struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + struct ext4_group_info *grp2 = rb_entry(rb2, > > + struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + int num_frags_1, num_frags_2; > > + > > + num_frags_1 = grp1->bb_fragments ? > > + grp1->bb_free / grp1->bb_fragments : 0; > > + num_frags_2 = grp2->bb_fragments ? > > + grp2->bb_free / grp2->bb_fragments : 0; > > + > > + return (num_frags_1 < num_frags_2); > > +} > > + > > +/* > > + * Reinsert grpinfo into the avg_fragment_size tree with new average > > + * fragment size. > > + */ > > +static void > > +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(sb); > > + > > + if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) > > + return; > > + > > + write_lock(&sbi->s_mb_rb_lock); > > + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { > > + rb_erase(&grp->bb_avg_fragment_size_rb, > > + &sbi->s_mb_avg_fragment_size_root); > > + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); > > + } > > + > > + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, > > + &grp->bb_avg_fragment_size_rb, > > + ext4_mb_avg_fragment_size_cmp); > > + write_unlock(&sbi->s_mb_rb_lock); > > +} > > + > > +/* > > + * Choose next group by traversing largest_free_order lists. Return 0 if next > > + * group was selected optimally. Return 1 if next group was not selected > > + * optimally. Updates *new_cr if cr level needs an update. > > + */ > > +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > > + struct ext4_group_info *iter, *grp; > > + int i; > > + > > + if (ac->ac_status == AC_STATUS_FOUND) > > + return 1; > > + > > + grp = NULL; > > + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { > > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) > > + continue; > > + read_lock(&sbi->s_mb_largest_free_orders_locks[i]); > > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) { > > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > > + continue; > > + } > > + grp = NULL; > > + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], > > + bb_largest_free_order_node) { > > + ac->ac_groups_considered++; > > + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { > > + grp = iter; > > + break; > > + } > > + } > > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > > + if (grp) > > + break; > > + } > > + > > + if (!grp) { > > + /* Increment cr and search again */ > > + *new_cr = 1; > > + } else { > > + *group = grp->bb_group; > > + ac->ac_last_optimal_group = *group; > > + } > > + return 0; > > +} > > + > > +/* > > + * Choose next group by traversing average fragment size tree. Return 0 if next > > + * group was selected optimally. Return 1 if next group could not selected > > + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an > > + * update. > > + */ > > +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > > + int avg_fragment_size, best_so_far; > > + struct rb_node *node, *found; > > + struct ext4_group_info *grp; > > + > > + /* > > + * If there is contention on the lock, instead of waiting for the lock > > + * to become available, just continue searching lineraly. We'll resume > > + * our rb tree search later starting at ac->ac_last_optimal_group. > > + */ > > + if (!read_trylock(&sbi->s_mb_rb_lock)) > > + return 1; > > + > > + if (ac->ac_flags & EXT4_MB_CR1_OPTIMIZED) { > > + /* We have found something at CR 1 in the past */ > > + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); > > + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; > > + found = rb_next(found)) { > > + grp = rb_entry(found, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + ac->ac_groups_considered++; > > + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) > > + break; > > + } > > + > > + goto done; > > + } > > + > > + node = sbi->s_mb_avg_fragment_size_root.rb_node; > > + best_so_far = 0; > > + found = NULL; > > + > > + while (node) { > > + grp = rb_entry(node, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + avg_fragment_size = 0; > > + /* > > + * Perform this check without locking, we'll lock later to confirm. > > + */ > > + if (ext4_mb_good_group(ac, grp->bb_group, 1)) { > > + avg_fragment_size = grp->bb_fragments ? > > + grp->bb_free / grp->bb_fragments : 0; > > + if (!best_so_far || avg_fragment_size < best_so_far) { > > + best_so_far = avg_fragment_size; > > + found = node; > > + } > > + } > > + if (avg_fragment_size > ac->ac_g_ex.fe_len) > > + node = node->rb_right; > > + else > > + node = node->rb_left; > > + } > > + > > +done: > > + if (found) { > > + grp = rb_entry(found, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + *group = grp->bb_group; > > + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; > > + } else { > > + *new_cr = 2; > > + } > > + > > + read_unlock(&sbi->s_mb_rb_lock); > > + ac->ac_last_optimal_group = *group; > > + return 0; > > +} > > + > > +/* > > + * ext4_mb_choose_next_group: choose next group for allocation. > > + * > > + * @ac Allocation Context > > + * @new_cr This is an output parameter. If the there is no good group available > > + * at current CR level, this field is updated to indicate the new cr > > + * level that should be used. > > + * @group This is an input / output parameter. As an input it indicates the last > > + * group used for allocation. As output, this field indicates the > > + * next group that should be used. > > + * @ngroups Total number of groups > > + */ > > +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + int ret; > > + > > + *new_cr = ac->ac_criteria; > > + > > + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) || > > + *new_cr >= 2 || > > + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) > > + goto inc_and_return; > > + > > + if (ac->ac_groups_linear_remaining) { > > + ac->ac_groups_linear_remaining--; > > + goto inc_and_return; > > + } > > + > > + if (*new_cr == 0) { > > + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); > > + if (ret) > > + goto inc_and_return; > > + } > > + if (*new_cr == 1) { > > + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); > > + if (ret) > > + goto inc_and_return; > > + } > > + return; > > + > > +inc_and_return: > > + /* > > + * Artificially restricted ngroups for non-extent > > + * files makes group > ngroups possible on first loop. > > + */ > > + *group = *group + 1; > > + if (*group >= ngroups) > > + *group = 0; > > +} > > + > > /* > > * Cache the order of the largest free extent we have available in this block > > * group. > > @@ -751,18 +1045,33 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > > static void > > mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) > > { > > + struct ext4_sb_info *sbi = EXT4_SB(sb); > > int i; > > - int bits; > > > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { > > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + list_del_init(&grp->bb_largest_free_order_node); > > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + } > > grp->bb_largest_free_order = -1; /* uninit */ > > > > - bits = MB_NUM_ORDERS(sb) - 1; > > - for (i = bits; i >= 0; i--) { > > + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { > > if (grp->bb_counters[i] > 0) { > > grp->bb_largest_free_order = i; > > break; > > } > > } > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && > > + grp->bb_largest_free_order >= 0 && grp->bb_free) { > > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + list_add_tail(&grp->bb_largest_free_order_node, > > + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); > > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + } > > } > > > > static noinline_for_stack > > @@ -818,6 +1127,7 @@ void ext4_mb_generate_buddy(struct super_block *sb, > > period = get_cycles() - period; > > atomic_inc(&sbi->s_mb_buddies_generated); > > atomic64_add(period, &sbi->s_mb_generation_time); > > + mb_update_avg_fragment_size(sb, grp); > > } > > > > /* The buddy information is attached the buddy cache inode > > @@ -1517,6 +1827,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, > > > > done: > > mb_set_largest_free_order(sb, e4b->bd_info); > > + mb_update_avg_fragment_size(sb, e4b->bd_info); > > mb_check_buddy(e4b); > > } > > > > @@ -1653,6 +1964,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) > > } > > mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); > > > > + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); > > ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); > > mb_check_buddy(e4b); > > > > @@ -2346,17 +2658,21 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac) > > * from the goal value specified > > */ > > group = ac->ac_g_ex.fe_group; > > + ac->ac_last_optimal_group = group; > > + ac->ac_groups_linear_remaining = sbi->s_mb_linear_limit; > > prefetch_grp = group; > > > > - for (i = 0; i < ngroups; group++, i++) { > > - int ret = 0; > > + for (i = 0; i < ngroups; i++) { > > + int ret = 0, new_cr; > > + > > cond_resched(); > > - /* > > - * Artificially restricted ngroups for non-extent > > - * files makes group > ngroups possible on first loop. > > - */ > > - if (group >= ngroups) > > - group = 0; > > + > > + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); > > + > > + if (new_cr != cr) { > > + cr = new_cr; > > + goto repeat; > > + } > > > > /* > > * Batch reads of the block allocation bitmaps > > @@ -2696,7 +3012,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, > > INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); > > init_rwsem(&meta_group_info[i]->alloc_sem); > > meta_group_info[i]->bb_free_root = RB_ROOT; > > + INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); > > + RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); > > meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ > > + meta_group_info[i]->bb_group = group; > > > > mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); > > return 0; > > @@ -2886,6 +3205,22 @@ int ext4_mb_init(struct super_block *sb) > > i++; > > } while (i < MB_NUM_ORDERS(sb)); > > > > + sbi->s_mb_avg_fragment_size_root = RB_ROOT; > > + sbi->s_mb_largest_free_orders = > > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), > > + GFP_KERNEL); > > + if (!sbi->s_mb_largest_free_orders) > > + goto out; > > + sbi->s_mb_largest_free_orders_locks = > > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), > > + GFP_KERNEL); > > + if (!sbi->s_mb_largest_free_orders_locks) > > + goto out; > > + for (i = 0; i < MB_NUM_ORDERS(sb); i++) { > > + INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); > > + rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); > > + } > > + rwlock_init(&sbi->s_mb_rb_lock); > > > > spin_lock_init(&sbi->s_md_lock); > > sbi->s_mb_free_pending = 0; > > @@ -2938,6 +3273,20 @@ int ext4_mb_init(struct super_block *sb) > > spin_lock_init(&lg->lg_prealloc_lock); > > } > > > > + if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) > > + sbi->s_mb_linear_limit = 0; > > + else > > + sbi->s_mb_linear_limit = MB_DEFAULT_LINEAR_LIMIT; > > +#ifndef CONFIG_EXT4_DEBUG > > + /* > > + * Disable mb_optimize scan if we don't have enough groups. If > > + * CONFIG_EXT4_DEBUG is set, we don't disable this MB_OPTIMIZE_SCAN even > > + * for small file systems. This allows us to test correctness on small > > + * file systems. > > + */ > > + if (ext4_get_groups_count(sb) < MB_DEFAULT_LINEAR_SCAN_THRESHOLD) > > + clear_opt2(sb, MB_OPTIMIZE_SCAN); > > +#endif > > /* init file for buddy data */ > > ret = ext4_mb_init_backend(sb); > > if (ret != 0) > > @@ -2949,6 +3298,8 @@ int ext4_mb_init(struct super_block *sb) > > free_percpu(sbi->s_locality_groups); > > sbi->s_locality_groups = NULL; > > out: > > + kfree(sbi->s_mb_largest_free_orders); > > + kfree(sbi->s_mb_largest_free_orders_locks); > > kfree(sbi->s_mb_offsets); > > sbi->s_mb_offsets = NULL; > > kfree(sbi->s_mb_maxs); > > @@ -3005,6 +3356,7 @@ int ext4_mb_release(struct super_block *sb) > > kvfree(group_info); > > rcu_read_unlock(); > > } > > + kfree(sbi->s_mb_largest_free_orders); > > kfree(sbi->s_mb_offsets); > > kfree(sbi->s_mb_maxs); > > iput(sbi->s_buddy_cache); > > diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h > > index 02861406932f..5c0275f832a0 100644 > > --- a/fs/ext4/mballoc.h > > +++ b/fs/ext4/mballoc.h > > @@ -78,6 +78,18 @@ > > */ > > #define MB_DEFAULT_MAX_INODE_PREALLOC 512 > > > > +/* > > + * Number of groups to search linearly before performing group scanning > > + * optimization. > > + */ > > +#define MB_DEFAULT_LINEAR_LIMIT 4 > > + > > +/* > > + * Minimum number of groups that should be present in the file system to perform > > + * group scanning optimizations. > > + */ > > +#define MB_DEFAULT_LINEAR_SCAN_THRESHOLD 16 > > + > > /* > > * Number of valid buddy orders > > */ > > @@ -166,8 +178,10 @@ struct ext4_allocation_context { > > /* copy of the best found extent taken before preallocation efforts */ > > struct ext4_free_extent ac_f_ex; > > > > + ext4_group_t ac_last_optimal_group; > > __u32 ac_groups_considered; > > __u16 ac_groups_scanned; > > + __u16 ac_groups_linear_remaining; > > __u16 ac_found; > > __u16 ac_tail; > > __u16 ac_buddy; > > diff --git a/fs/ext4/super.c b/fs/ext4/super.c > > index 071d131fadd8..aa92d3ebe13d 100644 > > --- a/fs/ext4/super.c > > +++ b/fs/ext4/super.c > > @@ -154,6 +154,7 @@ static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, > > clear_buffer_verified(bh); > > > > bh->b_end_io = end_io ? end_io : end_buffer_read_sync; > > + > > get_bh(bh); > > submit_bh(REQ_OP_READ, op_flags, bh); > > } > > @@ -1687,7 +1688,7 @@ enum { > > Opt_dioread_nolock, Opt_dioread_lock, > > Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, > > Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, > > - Opt_prefetch_block_bitmaps, > > + Opt_prefetch_block_bitmaps, Opt_mb_optimize_scan, > > #ifdef CONFIG_EXT4_DEBUG > > Opt_fc_debug_max_replay, Opt_fc_debug_force > > #endif > > @@ -1788,6 +1789,7 @@ static const match_table_t tokens = { > > {Opt_nombcache, "nombcache"}, > > {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ > > {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, > > + {Opt_mb_optimize_scan, "mb_optimize_scan"}, > > {Opt_removed, "check=none"}, /* mount option from ext2/3 */ > > {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ > > {Opt_removed, "reservation"}, /* mount option from ext2/3 */ > > @@ -2008,6 +2010,8 @@ static const struct mount_opts { > > {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, > > {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, > > MOPT_SET}, > > + {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, > > + MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > > #ifdef CONFIG_EXT4_DEBUG > > {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, > > MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > > diff --git a/fs/ext4/sysfs.c b/fs/ext4/sysfs.c > > index 59ca9d73b42f..16b8a838f631 100644 > > --- a/fs/ext4/sysfs.c > > +++ b/fs/ext4/sysfs.c > > @@ -213,6 +213,7 @@ EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); > > EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); > > EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); > > EXT4_RW_ATTR_SBI_UI(mb_max_inode_prealloc, s_mb_max_inode_prealloc); > > +EXT4_RW_ATTR_SBI_UI(mb_linear_limit, s_mb_linear_limit); > > EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); > > EXT4_ATTR(trigger_fs_error, 0200, trigger_test_error); > > EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); > > @@ -260,6 +261,7 @@ static struct attribute *ext4_attrs[] = { > > ATTR_LIST(mb_stream_req), > > ATTR_LIST(mb_group_prealloc), > > ATTR_LIST(mb_max_inode_prealloc), > > + ATTR_LIST(mb_linear_limit), > > ATTR_LIST(max_writeback_mb_bump), > > ATTR_LIST(extent_max_zeroout_kb), > > ATTR_LIST(trigger_fs_error), > > -- > > 2.30.1.766.gb4fecdf3b7-goog > > Best regards, > Artem Blagodarenko. >
diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h index 3e906a3d553a..d792418c39ca 100644 --- a/fs/ext4/ext4.h +++ b/fs/ext4/ext4.h @@ -162,6 +162,8 @@ enum SHIFT_DIRECTION { #define EXT4_MB_USE_RESERVED 0x2000 /* Do strict check for free blocks while retrying block allocation */ #define EXT4_MB_STRICT_CHECK 0x4000 +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ +#define EXT4_MB_CR1_OPTIMIZED 0x8000 struct ext4_allocation_request { /* target inode for block we're allocating */ @@ -1247,7 +1249,9 @@ struct ext4_inode_info { #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ - +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group + * scanning in mballoc + */ #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ ~EXT4_MOUNT_##opt @@ -1527,9 +1531,14 @@ struct ext4_sb_info { unsigned int s_mb_free_pending; struct list_head s_freed_data_list; /* List of blocks to be freed after commit completed */ + struct rb_root s_mb_avg_fragment_size_root; + rwlock_t s_mb_rb_lock; + struct list_head *s_mb_largest_free_orders; + rwlock_t *s_mb_largest_free_orders_locks; /* tunables */ unsigned long s_stripe; + unsigned int s_mb_linear_limit; unsigned int s_mb_stream_request; unsigned int s_mb_max_to_scan; unsigned int s_mb_min_to_scan; @@ -3308,11 +3317,14 @@ struct ext4_group_info { ext4_grpblk_t bb_free; /* total free blocks */ ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ + ext4_group_t bb_group; /* Group number */ struct list_head bb_prealloc_list; #ifdef DOUBLE_CHECK void *bb_bitmap; #endif struct rw_semaphore alloc_sem; + struct rb_node bb_avg_fragment_size_rb; + struct list_head bb_largest_free_order_node; ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block * regions, index is order. * bb_counters[3] = 5 means diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c index 161412070fef..bcfd849bc61e 100644 --- a/fs/ext4/mballoc.c +++ b/fs/ext4/mballoc.c @@ -127,11 +127,50 @@ * smallest multiple of the stripe value (sbi->s_stripe) which is * greater than the default mb_group_prealloc. * + * If "mb_optimize_scan" mount option is set, we maintain in memory group info + * structures in two data structures: + * + * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) + * + * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) + * + * This is an array of lists where the index in the array represents the + * largest free order in the buddy bitmap of the participating group infos of + * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total + * number of buddy bitmap orders possible) number of lists. Group-infos are + * placed in appropriate lists. + * + * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) + * + * Locking: sbi->s_mb_rb_lock (rwlock) + * + * This is a red black tree consisting of group infos and the tree is sorted + * by average fragment sizes (which is calculated as ext4_group_info->bb_free + * / ext4_group_info->bb_fragments). + * + * When "mb_optimize_scan" mount option is set, mballoc consults the above data + * structures to decide the order in which groups are to be traversed for + * fulfilling an allocation request. + * + * At CR = 0, we look for groups which have the largest_free_order >= the order + * of the request. We directly look at the largest free order list in the data + * structure (1) above where largest_free_order = order of the request. If that + * list is empty, we look at remaining list in the increasing order of + * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. + * + * At CR = 1, we only consider groups where average fragment size > request + * size. So, we lookup a group which has average fragment size just above or + * equal to request size using our rb tree (data structure 2) in O(log N) time. + * + * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in + * linear order which requires O(N) search time for each CR 0 and CR 1 phase. + * * The regular allocator (using the buddy cache) supports a few tunables. * * /sys/fs/ext4/<partition>/mb_min_to_scan * /sys/fs/ext4/<partition>/mb_max_to_scan * /sys/fs/ext4/<partition>/mb_order2_req + * /sys/fs/ext4/<partition>/mb_linear_limit * * The regular allocator uses buddy scan only if the request len is power of * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The @@ -149,6 +188,16 @@ * can be used for allocation. ext4_mb_good_group explains how the groups are * checked. * + * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not + * get traversed linearly. That may result in subsequent allocations being not + * close to each other. And so, the underlying device may get filled up in a + * non-linear fashion. While that may not matter on non-rotational devices, for + * rotational devices that may result in higher seek times. "mb_linear_limit" + * tells mballoc how many groups mballoc should search linearly before + * performing consulting above data structures for more efficient lookups. For + * non rotational devices, this value defaults to 0 and for rotational devices + * this is set to MB_DEFAULT_LINEAR_LIMIT. + * * Both the prealloc space are getting populated as above. So for the first * request we will hit the buddy cache which will result in this prealloc * space getting filled. The prealloc space is then later used for the @@ -299,6 +348,8 @@ * - bitlock on a group (group) * - object (inode/locality) (object) * - per-pa lock (pa) + * - cr0 lists lock (cr0) + * - cr1 tree lock (cr1) * * Paths: * - new pa @@ -328,6 +379,9 @@ * group * object * + * - allocation path (ext4_mb_regular_allocator) + * group + * cr0/cr1 */ static struct kmem_cache *ext4_pspace_cachep; static struct kmem_cache *ext4_ac_cachep; @@ -351,6 +405,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, ext4_group_t group); static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); +static bool ext4_mb_good_group(struct ext4_allocation_context *ac, + ext4_group_t group, int cr); + /* * The algorithm using this percpu seq counter goes below: * 1. We sample the percpu discard_pa_seq counter before trying for block @@ -744,6 +801,243 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, } } +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, + int (*cmp)(struct rb_node *, struct rb_node *)) +{ + struct rb_node **iter = &root->rb_node, *parent = NULL; + + while (*iter) { + parent = *iter; + if (cmp(new, *iter)) + iter = &((*iter)->rb_left); + else + iter = &((*iter)->rb_right); + } + + rb_link_node(new, parent, iter); + rb_insert_color(new, root); +} + +static int +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) +{ + struct ext4_group_info *grp1 = rb_entry(rb1, + struct ext4_group_info, + bb_avg_fragment_size_rb); + struct ext4_group_info *grp2 = rb_entry(rb2, + struct ext4_group_info, + bb_avg_fragment_size_rb); + int num_frags_1, num_frags_2; + + num_frags_1 = grp1->bb_fragments ? + grp1->bb_free / grp1->bb_fragments : 0; + num_frags_2 = grp2->bb_fragments ? + grp2->bb_free / grp2->bb_fragments : 0; + + return (num_frags_1 < num_frags_2); +} + +/* + * Reinsert grpinfo into the avg_fragment_size tree with new average + * fragment size. + */ +static void +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) +{ + struct ext4_sb_info *sbi = EXT4_SB(sb); + + if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) + return; + + write_lock(&sbi->s_mb_rb_lock); + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { + rb_erase(&grp->bb_avg_fragment_size_rb, + &sbi->s_mb_avg_fragment_size_root); + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); + } + + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, + &grp->bb_avg_fragment_size_rb, + ext4_mb_avg_fragment_size_cmp); + write_unlock(&sbi->s_mb_rb_lock); +} + +/* + * Choose next group by traversing largest_free_order lists. Return 0 if next + * group was selected optimally. Return 1 if next group was not selected + * optimally. Updates *new_cr if cr level needs an update. + */ +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) +{ + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); + struct ext4_group_info *iter, *grp; + int i; + + if (ac->ac_status == AC_STATUS_FOUND) + return 1; + + grp = NULL; + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { + if (list_empty(&sbi->s_mb_largest_free_orders[i])) + continue; + read_lock(&sbi->s_mb_largest_free_orders_locks[i]); + if (list_empty(&sbi->s_mb_largest_free_orders[i])) { + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); + continue; + } + grp = NULL; + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], + bb_largest_free_order_node) { + ac->ac_groups_considered++; + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { + grp = iter; + break; + } + } + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); + if (grp) + break; + } + + if (!grp) { + /* Increment cr and search again */ + *new_cr = 1; + } else { + *group = grp->bb_group; + ac->ac_last_optimal_group = *group; + } + return 0; +} + +/* + * Choose next group by traversing average fragment size tree. Return 0 if next + * group was selected optimally. Return 1 if next group could not selected + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an + * update. + */ +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) +{ + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); + int avg_fragment_size, best_so_far; + struct rb_node *node, *found; + struct ext4_group_info *grp; + + /* + * If there is contention on the lock, instead of waiting for the lock + * to become available, just continue searching lineraly. We'll resume + * our rb tree search later starting at ac->ac_last_optimal_group. + */ + if (!read_trylock(&sbi->s_mb_rb_lock)) + return 1; + + if (ac->ac_flags & EXT4_MB_CR1_OPTIMIZED) { + /* We have found something at CR 1 in the past */ + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; + found = rb_next(found)) { + grp = rb_entry(found, struct ext4_group_info, + bb_avg_fragment_size_rb); + ac->ac_groups_considered++; + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) + break; + } + + goto done; + } + + node = sbi->s_mb_avg_fragment_size_root.rb_node; + best_so_far = 0; + found = NULL; + + while (node) { + grp = rb_entry(node, struct ext4_group_info, + bb_avg_fragment_size_rb); + avg_fragment_size = 0; + /* + * Perform this check without locking, we'll lock later to confirm. + */ + if (ext4_mb_good_group(ac, grp->bb_group, 1)) { + avg_fragment_size = grp->bb_fragments ? + grp->bb_free / grp->bb_fragments : 0; + if (!best_so_far || avg_fragment_size < best_so_far) { + best_so_far = avg_fragment_size; + found = node; + } + } + if (avg_fragment_size > ac->ac_g_ex.fe_len) + node = node->rb_right; + else + node = node->rb_left; + } + +done: + if (found) { + grp = rb_entry(found, struct ext4_group_info, + bb_avg_fragment_size_rb); + *group = grp->bb_group; + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; + } else { + *new_cr = 2; + } + + read_unlock(&sbi->s_mb_rb_lock); + ac->ac_last_optimal_group = *group; + return 0; +} + +/* + * ext4_mb_choose_next_group: choose next group for allocation. + * + * @ac Allocation Context + * @new_cr This is an output parameter. If the there is no good group available + * at current CR level, this field is updated to indicate the new cr + * level that should be used. + * @group This is an input / output parameter. As an input it indicates the last + * group used for allocation. As output, this field indicates the + * next group that should be used. + * @ngroups Total number of groups + */ +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) +{ + int ret; + + *new_cr = ac->ac_criteria; + + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) || + *new_cr >= 2 || + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) + goto inc_and_return; + + if (ac->ac_groups_linear_remaining) { + ac->ac_groups_linear_remaining--; + goto inc_and_return; + } + + if (*new_cr == 0) { + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); + if (ret) + goto inc_and_return; + } + if (*new_cr == 1) { + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); + if (ret) + goto inc_and_return; + } + return; + +inc_and_return: + /* + * Artificially restricted ngroups for non-extent + * files makes group > ngroups possible on first loop. + */ + *group = *group + 1; + if (*group >= ngroups) + *group = 0; +} + /* * Cache the order of the largest free extent we have available in this block * group. @@ -751,18 +1045,33 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, static void mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) { + struct ext4_sb_info *sbi = EXT4_SB(sb); int i; - int bits; + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { + write_lock(&sbi->s_mb_largest_free_orders_locks[ + grp->bb_largest_free_order]); + list_del_init(&grp->bb_largest_free_order_node); + write_unlock(&sbi->s_mb_largest_free_orders_locks[ + grp->bb_largest_free_order]); + } grp->bb_largest_free_order = -1; /* uninit */ - bits = MB_NUM_ORDERS(sb) - 1; - for (i = bits; i >= 0; i--) { + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { if (grp->bb_counters[i] > 0) { grp->bb_largest_free_order = i; break; } } + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && + grp->bb_largest_free_order >= 0 && grp->bb_free) { + write_lock(&sbi->s_mb_largest_free_orders_locks[ + grp->bb_largest_free_order]); + list_add_tail(&grp->bb_largest_free_order_node, + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); + write_unlock(&sbi->s_mb_largest_free_orders_locks[ + grp->bb_largest_free_order]); + } } static noinline_for_stack @@ -818,6 +1127,7 @@ void ext4_mb_generate_buddy(struct super_block *sb, period = get_cycles() - period; atomic_inc(&sbi->s_mb_buddies_generated); atomic64_add(period, &sbi->s_mb_generation_time); + mb_update_avg_fragment_size(sb, grp); } /* The buddy information is attached the buddy cache inode @@ -1517,6 +1827,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, done: mb_set_largest_free_order(sb, e4b->bd_info); + mb_update_avg_fragment_size(sb, e4b->bd_info); mb_check_buddy(e4b); } @@ -1653,6 +1964,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) } mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); mb_check_buddy(e4b); @@ -2346,17 +2658,21 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac) * from the goal value specified */ group = ac->ac_g_ex.fe_group; + ac->ac_last_optimal_group = group; + ac->ac_groups_linear_remaining = sbi->s_mb_linear_limit; prefetch_grp = group; - for (i = 0; i < ngroups; group++, i++) { - int ret = 0; + for (i = 0; i < ngroups; i++) { + int ret = 0, new_cr; + cond_resched(); - /* - * Artificially restricted ngroups for non-extent - * files makes group > ngroups possible on first loop. - */ - if (group >= ngroups) - group = 0; + + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); + + if (new_cr != cr) { + cr = new_cr; + goto repeat; + } /* * Batch reads of the block allocation bitmaps @@ -2696,7 +3012,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); init_rwsem(&meta_group_info[i]->alloc_sem); meta_group_info[i]->bb_free_root = RB_ROOT; + INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); + RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ + meta_group_info[i]->bb_group = group; mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); return 0; @@ -2886,6 +3205,22 @@ int ext4_mb_init(struct super_block *sb) i++; } while (i < MB_NUM_ORDERS(sb)); + sbi->s_mb_avg_fragment_size_root = RB_ROOT; + sbi->s_mb_largest_free_orders = + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), + GFP_KERNEL); + if (!sbi->s_mb_largest_free_orders) + goto out; + sbi->s_mb_largest_free_orders_locks = + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), + GFP_KERNEL); + if (!sbi->s_mb_largest_free_orders_locks) + goto out; + for (i = 0; i < MB_NUM_ORDERS(sb); i++) { + INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); + rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); + } + rwlock_init(&sbi->s_mb_rb_lock); spin_lock_init(&sbi->s_md_lock); sbi->s_mb_free_pending = 0; @@ -2938,6 +3273,20 @@ int ext4_mb_init(struct super_block *sb) spin_lock_init(&lg->lg_prealloc_lock); } + if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) + sbi->s_mb_linear_limit = 0; + else + sbi->s_mb_linear_limit = MB_DEFAULT_LINEAR_LIMIT; +#ifndef CONFIG_EXT4_DEBUG + /* + * Disable mb_optimize scan if we don't have enough groups. If + * CONFIG_EXT4_DEBUG is set, we don't disable this MB_OPTIMIZE_SCAN even + * for small file systems. This allows us to test correctness on small + * file systems. + */ + if (ext4_get_groups_count(sb) < MB_DEFAULT_LINEAR_SCAN_THRESHOLD) + clear_opt2(sb, MB_OPTIMIZE_SCAN); +#endif /* init file for buddy data */ ret = ext4_mb_init_backend(sb); if (ret != 0) @@ -2949,6 +3298,8 @@ int ext4_mb_init(struct super_block *sb) free_percpu(sbi->s_locality_groups); sbi->s_locality_groups = NULL; out: + kfree(sbi->s_mb_largest_free_orders); + kfree(sbi->s_mb_largest_free_orders_locks); kfree(sbi->s_mb_offsets); sbi->s_mb_offsets = NULL; kfree(sbi->s_mb_maxs); @@ -3005,6 +3356,7 @@ int ext4_mb_release(struct super_block *sb) kvfree(group_info); rcu_read_unlock(); } + kfree(sbi->s_mb_largest_free_orders); kfree(sbi->s_mb_offsets); kfree(sbi->s_mb_maxs); iput(sbi->s_buddy_cache); diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h index 02861406932f..5c0275f832a0 100644 --- a/fs/ext4/mballoc.h +++ b/fs/ext4/mballoc.h @@ -78,6 +78,18 @@ */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 +/* + * Number of groups to search linearly before performing group scanning + * optimization. + */ +#define MB_DEFAULT_LINEAR_LIMIT 4 + +/* + * Minimum number of groups that should be present in the file system to perform + * group scanning optimizations. + */ +#define MB_DEFAULT_LINEAR_SCAN_THRESHOLD 16 + /* * Number of valid buddy orders */ @@ -166,8 +178,10 @@ struct ext4_allocation_context { /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; + ext4_group_t ac_last_optimal_group; __u32 ac_groups_considered; __u16 ac_groups_scanned; + __u16 ac_groups_linear_remaining; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; diff --git a/fs/ext4/super.c b/fs/ext4/super.c index 071d131fadd8..aa92d3ebe13d 100644 --- a/fs/ext4/super.c +++ b/fs/ext4/super.c @@ -154,6 +154,7 @@ static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, clear_buffer_verified(bh); bh->b_end_io = end_io ? end_io : end_buffer_read_sync; + get_bh(bh); submit_bh(REQ_OP_READ, op_flags, bh); } @@ -1687,7 +1688,7 @@ enum { Opt_dioread_nolock, Opt_dioread_lock, Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, - Opt_prefetch_block_bitmaps, + Opt_prefetch_block_bitmaps, Opt_mb_optimize_scan, #ifdef CONFIG_EXT4_DEBUG Opt_fc_debug_max_replay, Opt_fc_debug_force #endif @@ -1788,6 +1789,7 @@ static const match_table_t tokens = { {Opt_nombcache, "nombcache"}, {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, + {Opt_mb_optimize_scan, "mb_optimize_scan"}, {Opt_removed, "check=none"}, /* mount option from ext2/3 */ {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ {Opt_removed, "reservation"}, /* mount option from ext2/3 */ @@ -2008,6 +2010,8 @@ static const struct mount_opts { {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, MOPT_SET}, + {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, + MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, #ifdef CONFIG_EXT4_DEBUG {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, diff --git a/fs/ext4/sysfs.c b/fs/ext4/sysfs.c index 59ca9d73b42f..16b8a838f631 100644 --- a/fs/ext4/sysfs.c +++ b/fs/ext4/sysfs.c @@ -213,6 +213,7 @@ EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); EXT4_RW_ATTR_SBI_UI(mb_max_inode_prealloc, s_mb_max_inode_prealloc); +EXT4_RW_ATTR_SBI_UI(mb_linear_limit, s_mb_linear_limit); EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); EXT4_ATTR(trigger_fs_error, 0200, trigger_test_error); EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); @@ -260,6 +261,7 @@ static struct attribute *ext4_attrs[] = { ATTR_LIST(mb_stream_req), ATTR_LIST(mb_group_prealloc), ATTR_LIST(mb_max_inode_prealloc), + ATTR_LIST(mb_linear_limit), ATTR_LIST(max_writeback_mb_bump), ATTR_LIST(extent_max_zeroout_kb), ATTR_LIST(trigger_fs_error),
Instead of traversing through groups linearly, scan groups in specific orders at cr 0 and cr 1. At cr 0, we want to find groups that have the largest free order >= the order of the request. So, with this patch, we maintain lists for each possible order and insert each group into a list based on the largest free order in its buddy bitmap. During cr 0 allocation, we traverse these lists in the increasing order of largest free orders. This allows us to find a group with the best available cr 0 match in constant time. If nothing can be found, we fallback to cr 1 immediately. At CR1, the story is slightly different. We want to traverse in the order of increasing average fragment size. For CR1, we maintain a rb tree of groupinfos which is sorted by average fragment size. Instead of traversing linearly, at CR1, we traverse in the order of increasing average fragment size, starting at the most optimal group. This brings down cr 1 search complexity to log(num groups). For cr >= 2, we just perform the linear search as before. Also, in case of lock contention, we intermittently fallback to linear search even in CR 0 and CR 1 cases. This allows us to proceed during the allocation path even in case of high contention. There is an opportunity to do optimization at CR2 too. That's because at CR2 we only consider groups where bb_free counter (number of free blocks) is greater than the request extent size. That's left as future work. All the changes introduced in this patch are protected under a new mount option "mb_optimize_scan". Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com> Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> --- fs/ext4/ext4.h | 14 +- fs/ext4/mballoc.c | 374 ++++++++++++++++++++++++++++++++++++++++++++-- fs/ext4/mballoc.h | 14 ++ fs/ext4/super.c | 6 +- fs/ext4/sysfs.c | 2 + 5 files changed, 397 insertions(+), 13 deletions(-)